Oshawa to Bowmanville Rail Service Extension: Environmental Project Report Addendum

Appendix A4 Noise and Vibration Technical Report

Final

August 24, 2023

Prepared for:

Metrolinx 20 Bay Street, 6th Floor Toronto ON M5J 2W3

Prepared by:

Stantec Consulting Ltd. 400-2100 Derry Road West Mississauga ON L5N 0B3

Project Number: 165011019

Limitations and Sign-off

The conclusions in the Report titled Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Noise and Vibration Technical Report are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Metrolinx (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided to applicable authorities having jurisdiction and others for whom the Client is responsible, Stantec does not warrant the services to any third party. The report may not be relied upon by any other party without the express written consent of Stantec, which may be withheld at Stantec's discretion.

Prepared by

Digitally signed by Samuel Arnold Date: 2023.09.24 22:45:09 -04'00'

(signature)

Samuel Arnold, M.A.Sc., P.Eng. Acoustics, Noise, and Vibration Engineer

Reviewed by

Digitally signed by Mohammed Salim Date: 2023.09.25 13:53:05 -04'00'

(signature)

Mohammed Salim, MBA, P.Eng. Senior Acoustics, Noise, and Vibration Engineer

Executive Summary

Stantec Consulting Ltd. (Stantec) was retained by Metrolinx, an agency of the Province of Ontario, to complete a Noise and Vibration Technical Report in support of the Oshawa to Bowmanville Rail Service Extension Project (the Project), formally referred to as the Oshawa to Bowmanville Rail Service Expansion Project in the 2011 Environmental Project Report (EPR).

A noise and vibration report was completed by AECOM as part of the EPR that was approved in 2011 to expand GO Transit rail services from Oshawa to Bowmanville. Since the completion of the 2011 EPR, Metrolinx has advanced the design of the rail expansion project, including updates to the alignment and infrastructure needs of the project. A new noise and vibration assessment is being undertaken to support an Addendum to the 2011 EPR.

The current Project includes the following elements:

- Tracking and supporting track infrastructure:
 - Proposed new track within the existing GO Lakeshore East Rail Corridor at the western limit of the Project, crossing Highway 401 via the existing General Motors (GM) Spur bridge. A new bridge will be constructed adjacent to the existing GM Spur bridge for the proposed realigned CP Rail track. The new GO track will extend north to the existing CP Rail corridor, ending at Bowmanville Avenue.
 - Retaining walls and grading to support track infrastructure
- Proposed GO station locations in proximity to:
 - Fox Street (B1 Thornton's Corners East)
 - Front Street (B2 Ritson)
 - Courtice Road (B3 Courtice)
 - Bowmanville Avenue (B4 Bowmanville)
- New bridges at the following locations:
 - Highway 401
 - GM Spur
 - Oshawa Creek
 - Wilson Road

- Farewell Creek
- Harmony Creek
- Green Road
- New multi-use crossing (bridge or tunnel, to be determined)
- Front Street (Michael Starr Trail)Bridge replacements at the following locations:
 - Simcoe Street
 - Ritson Road
 - Farewell Street¹
- Bridge removal at Albert Street
- Bridge expansions at the following locations:
 - Durham College (DC) Oshawa GO (formerly Oshawa GO Station) pedestrian bridge
 - Stevenson Road
 - Park Road
 - Harmony Road
 - Courtice Road
- Widening of at-grade crossings to accommodate GO track(s) at the following locations:
 - Bloor Street
 - Prestonvale Road
 - Private crossing for Dom's Auto
 - Trulls Road
 - Baseline Road (two crossings)
 - Rundle Road

¹ Multi-use bridge only. Multi-use bridges can be used by pedestrians and cyclists crossing the rail corridor.

- Holt Road
- Private farm crossing west of Maple Grove Road
- Maple Grove Road

The objective of this noise and vibration addendum is to update the baseline, construction and operation impact from the Project. The following applicable guidelines are considered for this assessment:

- The Ministry of the Environment, Conservation and Parks (MECP) guidance document "Environmental Noise Guideline – Stationary and Transportation Sources – Approval and Planning" Noise Pollution Control (NPC) - 300 (MECP August 2013) for GO station stationary operation noise assessment.
- MECP Publication Noise Pollution Control (NPC) -115 "Model Municipal Noise Control By-law" (MECP August 1978) and NPC -118 "Motorized Conveyances" (MECP August 1982) are the applicable Provincial noise guidelines for construction.
- The Metrolinx Environmental Guide for Noise and Vibration Impact Assessment (Metrolinx 2021) that provides construction noise and vibration limits referenced from the City of Toronto's By-law 514-2008 (Toronto By-law 514 2008) and the United States Federal Transit Administration (US FTA) Noise and Vibration Impact Assessment Manual (FTA 2018), and operation noise and vibration from the Ministry of Energy and Environment (MOEE)/GO Transit Draft Protocol for Noise and Vibration Assessment (MOEE/GO Protocol 1995).

Construction

Construction is expected 8 hours per day and 5 days per week. Therefore, the receptorbased construction noise assessment was completed for the weekday limits only. Construction of Project components involve several construction activities under multiple phases. Phase specific equipment lists (i.e., equipment types and quantities) were provided by the design team.

The methodology described in Section 4.2 was used to assess Project construction noise impacts. The emission-based noise assessment was also completed for the construction equipment and the sound levels were compared to the applicable MECP NPC-115 and NPC-118 limits. The construction equipment exceeding the MECP limits requires an investigation of additional noise control for the construction phase.

A comparison of equipment sound levels (sound levels from the US FTA manual and FHWA road construction noise model) considered in this study against the MECP limits showed that some of the proposed equipment may exceed these limits. Prior to start of construction, noise emissions of the construction equipment considered for the Project must be reviewed to confirm that they are within the NPC-115 and NPC-118 limits. If the

limits cannot be met, noise control options should be investigated and implemented to bring them into compliance.

Receptor-based construction noise and vibration impacts for the Project were assessed as per Metrolinx Environmental Guide, by establishing zone of influence (ZOI).

Project construction activities are expected to occur from 08:00 to 17:00 on weekdays; therefore, the noise ZOIs were established using noise exposure limits for weekday construction activities (e.g., 85 dBA, 80 dBA, 75 dBA, 70 dBA) for the land uses (e.g., Industrial, Commercial, Residential, and Institutional) surrounding the Project. In the absence of construction activity/phase specific work areas and equipment locations, the construction noise ZOIs were established based on the Project Footprint.

The results of the assessment indicate that some residential, commercial and institutional land uses fall within the established ZOI for the worst-case noise impact. Scheduling restrictions such as staggering of construction activities as well as mitigation and monitoring are recommended for those areas. The potential residential, commercial and institutional areas impacted by the Project construction are identified in this report. Further, for each construction activity and phase, the assessment provides the minimum setback distances for noise compliance with the applicable noise exposure limits.

Construction vibration impacts were evaluated by establishing vibration ZOI per the applicable vibration criteria provided in the Metrolinx Environmental Guide for structural damage.

The assessment identifies potential areas impacted by the construction vibration and minimum setback distances required for the most impactful construction equipment for vibration compliance. Vibration monitoring is recommended for those areas potentially impacted by construction vibration if the minimum setback distances cannot be maintained.

Additionally, monitoring requirements and best construction practices as per the Metrolinx Environmental Guide are provided in the report appendices. A thorough construction noise and vibration management plan or plans will be needed to address this topic more directly and they should be prepared by the contractor prior to the start of construction.

Operation

Project operation is expected 24 hours per day and 7 days per week, and therefore, operation noise was assessed for daytime and nighttime limits. The methodology described in Section 4.3 was used to assess Project operation noise and vibration impacts.

Noise and vibration impact from the Project rail operations were assessed by completing pre-project noise modelling and vibration measurements. The MOEE/GO Transit Draft Protocol limits (MOEE/GO Draft Protocol 1995) were used for the rail operation noise and vibration assessment.

Baseline noise and vibration data was collected for the Project between May 3 and June 2, 2021 in support of the operation noise and vibration assessment. Baseline sound levels from six representative noise monitoring locations (NM01 through NM06) were used to validate the noise model considered for this assessment. Baseline vibration data was used to assess operation vibration from the existing Canadian Pacific (CP) Rail corridor. Methodology, instrumentation, and results of the baseline noise and vibration data collection are discussed and reported in Section 5.0 of this report.

Baseline sound data collected along the CP Rail corridor and existing sound levels predicted from the model, indicate that the noise model considered for this assessment is appropriate.

Eighty-nine (89) representative Points of Reception (PORs), including future developments, were chosen within the Study Area for assessing noise impact from rail operations along the corridor. The noise effects due to Project rail operations were compared to the pre-project sound levels at the representative PORs. The analysis of the noise modeling results indicate that predicted effects resulted were above the MOEE/GO Draft Protocol limits at several PORs. Therefore, noise mitigation measures are recommended for Project rail operations in Section 6.4 of this report.

In addition to the PORs considered for the rail operation noise assessment, nine additional PORs were considered for assessing stationary noise impact from stations associated with the GO stations and the layover facility. The GO stations are expected to be developed for mixed use with potential commercial and residential use. At the time of preparing this report, no information was available for GO stations. Therefore, they are not considered as receptors for this assessment. Stantec recommends further detailed studies be conducted once the design of the GO stations is advanced to evaluate compliance with the applicable MECP noise limits.

Stationary noise sources at the GO stations and layover facility were assessed by predicting noise levels at the surrounding receptors and comparing with the applicable MECP limits. The MECP guidance document NPC-300 was considered to evaluate the impact of noise generated by the four GO stations and the layover facility.

GO station and layover facility sound levels were predicted using the methodology described in Section 4.3. The assessment indicates that the sound levels generated by GO station operations are expected to exceed daytime and nighttime limits at PORs in proximity to GO stations B2, B3, and B4 and the layover facility. Noise walls are recommended for these GO stations and the layover facility as discussed in Section 6.4 of this report. Idling locomotives at the layover facility were modeled at the east end of

the trains due to operational requirements. Idling locomotives at the west end of the trains are expected to cause exceedances at condominiums in proximity to the B4 GO station. Therefore, it is recommended that the locomotives for the trains be kept at the east end of the trains.

MOEE/GO Draft Protocol recommends a desirable objective of a maximum of 0.14 mm/s vibration levels at the receptor locations. As per the Draft Protocol, an evaluation of mitigation is required only if the vibration level exceeds the objective by 25% from the existing or a maximum value of 0.175 mm/s at any existing POR.

The proposed GO tracks are to be located south of the existing CP tracks. The Project vibration impact from rail operations was assessed using measurements from two representative locations along the corridor, for several setback distances. The future setback distances from the proposed GO rail track to the receptors were identified and pre-project measured vibration levels for that setback were used to assess potential vibration impact from the proposed GO rail operations. Based on the measured vibration levels from the existing CP Rail track, a criterion of 0.175 mm/s was considered for assessment of the Project vibration from operations. All new developments are assessed against a vibration criteria limit of 0.14 mm/s.

Vibration levels were assessed and reported in Table 6.7 under Section 6.3. Vibration levels from rail operations are expected to exceed the criteria limits at the receptors (dwellings south of the CP rail) located within 30 m of the centerline of the proposed GO track. Ballast mats are recommended as vibration mitigation for the Project as described in Section 6.4, subject to feasibility.

Stantec recommends that additional noise and vibration monitoring be conducted during the detailed design phase of the Project. These measurements should be collected to confirm that modelled ambient noise levels are a conservative estimate of existing ambient sound levels and that measured vibration levels are also representative of the existing conditions along the project corridor.

Noise and vibration monitoring may be challenging given the varying schedule and composition of the freight movements along the CP rail line.

Stantec also recommends that an additional set of validation measurements be collected after the commissioning of the Project to validate modelled sound levels.

Table of Contents

Execu	itive Summ	nary	i
Abbre	viations		xi
Gloss	ary		xii
1.0 1.1 1.2 1.3	Project Ove Backgroun	on erview d	. 1 . 1
2.0 2.1 2.2	Study Area	escription a Description	. 5
3.0 3.1	Constructio 3.1.1 F 3.1.2 F 3.1.3 N	d Regulatory Overview on Federal Context Provincial Context Municipal Context Metrolinx Context	15 15 15 16
3.2	Operation. 3.2.1 F 3.2.2 F	Federal & Municipal Context Provincial Context	19 19 19
4.0 4.1	Points of R 4.1.1 (Dgy Reception Overview Points of Reception	23 23
4.2	Constructio	on Assessment Methodology Construction Noise Construction Vibration	34 37
4.3	4.3.1 (4.3.2 (4.3.3 (al Assessment Methodology Operation Noise (Rail) Operation Vibration (Rail) Operation Noise (GO Station/Layover Facility Stationary Sources)	41 47
4.4			
5.0 5.1	Pre-Project	t Conditions (Baseline) t Sound Levels Measurement Methods	50

	5.1.2 5.1.3	Baseline Results Noise Model Validation	
	5.1.4	Pre-Project Sound Levels	
5.2	••••	,	
J.Z		ct Vibration Levels	
	5.2.1	Measurement Methods	
	5.2.2	Data Analysis	72
6.0	Potential	Effects, Mitigation and Monitoring	74
6.1	Construct	ion Assessment	74
	6.1.1	Construction Noise Assessment	74
	6.1.2	Construction Vibration Assessment	95
6.2	Construct	ion Mitigation and Monitoring	121
	6.2.1	Construction Noise	121
	6.2.2	Construction Vibration	123
6.3	Operation	is Assessment	123
	6.3.1	Operation Noise Assessment (Rail)	124
	6.3.2	Operations Noise Assessment – Rail Squeal	
	6.3.3	Operations Noise Assessment – GO Stations and Layover	
		Facility	134
	6.3.4	GO Station and Layover Facility Emergency Generator Testing	
	6.3.5	Operations Vibration Assessment (Rail)	
6.4	Operation	Nitigation	
6.5	Recomme	endations	145
7.0	Conclusi	ons	175
8.0	Referenc	es	178

List of Tables

IPC-115 and NPC-118 Noise Emission Limits	16
Permissible Construction Operating Times	16
letrolinx Environmental Guide Limits for Construction Noise	17
Ietrolinx Environmental Guide Construction Vibration Limits	18
IECP Sound Level Limits for Stationary Noise Sources	20
letrolinx Noise Criteria for Project Rail Operations	21
loise Impact Ratings and Mitigation Requirements	21
Representative Points of Reception	24
City of Oshawa Proposed Developments	29
own of Bowmanville Proposed Developments	31
own of Courtice Proposed Developments	
Project Components, Construction Phases and Equipment	
Summary	
Construction Equipment Sound Pressure Levels	37
Study Scenarios	41
lodelled Train Data	42
Road Traffic Modelling Data for Year 2021 ¹	44
Iodelled GO Station Bus Volumes	48
Ionitoring Locations and Instrumentation	50
leasured Baseline Sound Levels	59
Sound Level Comparison – Measured Vs Predicted	60
Pre-Project Sound Levels	63
OR Setback Distance to Current Alignment	69
leasured Vibration Levels	
Construction Equipment Noise Emission Assessment	74
Construction Noise ZOI	
Potentially Impacted PORs from Construction Noise	77
Construction Vibration ZOI	95
Construction Noise ZOI with Noise Barriers1	22
Pre-Project vs. Project Sound Levels1	25
O Station/Layover Facility Stationary Noise Assessment	35
SO Station/Layover Facility Emergency Generator Noise	
ssessment	38
uture Vibration Levels at Receptors Based on Vibration	
leasurements 1	41
loise Barrier Summary1	43
arrier Cost Effectiveness Summary1	
litigated Rail Operational Noise Levels1	
litigated GO Station/Layover Facility Sound Levels	73
	ermissible Construction Operating Times

List of Figures

Figure 2.1.1 to Figure 2.1.8: Project Footprint, Study Area, and Representative	
Receptors	6
Figure 5.1.1 to Figure 5.1.8: Noise and Vibration Monitoring Location Plan	51
Figure 6.1.1 to Figure 6.1.8: Construction Noise Zone of Influence for Residential	
Receptors on Weekdays During the Daytime (No Barriers)	79
Figure 6.2.1 to Figure 6.2.8: Construction Noise Assessment – Potentially Impact	
Areas	87
Figure 6.3.1 to Figure 6.3.8: Construction Vibration Zone of Influence for 5 mm/s	
(Typical Construction)	97
Figure 6.3.9 to Figure 6.3.16: Construction Vibration Zone of Influence for	
3 mm/s (Heritage Buildings)	105
Figure 6.4.1 to Figure 6.4.8: Construction Vibration – Potentially Impacted Areas	113
Figure 6.5.1 to Figure 6.5.4: TOC – Daytime Mitigated Stationary Noise Impact	
Contour Plot – 4.5 m AG	146
Figure 6.5.5 to Figure 6.5.8: TOC – Nighttime Mitigation Stationary Noise Impact	
Contour Plot – 4.5 m AG	150
Figure 6.5.9: Layover Facility – Daytime Mitigated Stationary Noise Impact	
Contour Plot – 4.5 m AG	154
Figure 6.5.10: Layover Facility – Nighttime Mitigated Stationary Noise Impact	
Contour Plot – 4.5 m AG	155
Figure 6.6.1 to Figure 6.6.3: Vibration Mitigation – Track Section Requiring	
Ballast Mats	156
Figure 6.7.1 to Figure 6.7.5: Operational Noise Mitigation – Noise Wall Locations	159

List of Appendices

Appendix A	Project Drawings and Zoning Map
Appendix B	Sample Noise Calculations and Modelling Inputs
Appendix C	Metrolinx Monitoring Requirements
Appendix D	Baseline Noise and Vibration Monitoring Data
Appendix E	Metrolinx Construction Best Practices
Appendix F	Mitigation and Monitoring Measures

Abbreviations

CADNA/A	A Noise Modeling Software
CEI	Cost Effectiveness Index
dB	Decibel
dBA	Decibel, A-weighted
DC Oshawa GO	Durham College Oshawa GO
EA	Environmental Assessment
Hz	Hertz
ISO	International Organization for Standardization
Km	Kilometre(s)
L _{eq}	Energy Equivalent Sound Level over a period of time
Leq(16)	Daytime (07:00-23:00) Energy Equivalent Sound Level
Leq(8)	Nighttime (23:00-07:00) Energy Equivalent Sound Level
Μ	Metre(s)
MECP	Ontario Ministry of the Environment, Conservation and Parks
mm/s	Millimetre(s) per second
MTM	Modified Transverse Mercator
POR	Point of reception
PPV	Peak particle velocity
RMS	Root mean square
TNM	Traffic Noise Model
US FHWA	United States Federal Highway Administration
US FTA	United States Federal Transit Administration
ZOI	Zone of influence

Glossary

Term	Definition
Ambient sound level or ambient noise	All-encompassing sound that is associated with a given environment, usually a composite of sounds from many sources near and far. Includes noise from all sources other than the sound of interest (in this case, sound that exists prior to improvements).
A-weighting	The weighting network used to account for changes in level sensitivity as a function of frequency. The A-weighting network de- emphasizes the high (i.e., 6.3 kHz and above) and low (i.e., below 1 kHz) frequencies, and emphasizes the frequencies between 1 kHz and 6.3 kHz, in an effort to simulate the relative response of the human ear. See also: frequency weighting.
baseline	The existing acoustical environment or baseline acoustical conditions. See also: existing ambient, pre-project conditions.
decibel (dB)	A logarithmic quantity of any measured physical parameter and commonly used in the measurement of sound. The decibel (dB) provides the possibility of representing a large span of sound levels in a simplified manner. The difference between the sound pressures for virtual silence versus a loud sound is a factor of 1:1,000,000 or more, therefore it is less cumbersome to use a small range of equivalent values: 0 to 130 dB. It is used for both sound pressure level as well as sound power level.

Term	Definition
decibel, A-weighted (dBA)	A-weighted decibels (dBA). Most common units for expressing sound levels approximating the response of the human ear.
energy equivalent sound level	An energy-average sound level (Leq) over a specified period that would have the same sound energy as the actual (i.e., time varying) sound over the same period. It represents the average sound pressure level encountered for the period. The period is often added as a suffix to the label (i.e., Leq(24hr) for the 24-hour equivalent sound level).
existing ambient	All sounds in a given area (i.e., includes all natural sounds as well as all mechanical, electrical and other human-caused sounds). See also: baseline and pre-project conditions.
frequency	The number of times per second that the sine wave of sound repeats itself. It can be expressed in cycles per second, or Hertz (Hz). Frequency equals speed of sound/wavelength.
frequency weighting (A, B, and C Weighting)	A method used to account for changes in sensitivity as a function of frequency. Three standard weighting networks, A, B and C, are used to account for different responses to sound pressure levels.
	Note: The absence of frequency weighting is referred to as linear response or unweighted response. Most commonly used weighting is A-weighting (see also A-weighting).
Hertz (Hz)	The unit of frequency also expressed as cycles per second.
noise	Unwanted sound.

Term	Definition	
peak particle velocity (vibration)	The peak particle velocity (PPV) is the maximum instantaneous positive or negative peak of the vibration signal. PPV is often used in construction vibration monitoring and assessment since PPV is related to the stresses experienced by buildings during construction.	
pre-project conditions	See also: baseline, existing ambient.	
point of reception (POR)	A noise-sensitive receptor such as a residence, campground, daycare, school, church, or hospital as defined in Ontario Ministry of the Environment, Conservation and Parks Publication NPC-300.	
reference sound level	Reference sound levels for road and rail sources were obtained from ORNAMENT and STEAM and was used in the model to predict noise effects at PORs. The reference sound level produced by rail with specified number of locomotives, number of cars, and train speed at a given distance.	
root mean square (vibration)	The root mean square (RMS) of a vibration velocity signal is the square root of the average of the squared velocity of the vibratory signal.	
sound level	Generally, sound level refers to the weighted sound pressure level obtained by frequency weighting, usually A-weighted for the purpose of approval in Ontario and expressed in decibels.	
sound level meter	An instrument consisting of a microphone, an amplifier, and a data logger and analyzer equipped with frequency-weighting networks that is used to measure sound levels.	
sound power level	The total sound energy radiated by a source per unit time. The unit of measurement is the Watt.	

Term	Definition
	The acoustical power radiated from a given sound source as related to a reference power level (i.e., typically 1E-12 watts, or 1 picowatt) and expressed as decibels. A sound power level of 1 watt = 120 decibels relative to a reference level of 1 picowatt.
sound pressure	The root-mean-square of the instantaneous sound pressures during a specified time interval in a stated frequency band.
sound pressure level	Logarithmic ratio of the root-mean-square sound pressure to the sound pressure at the threshold of human hearing (i.e., 20 micropascals).
vibration	Vibration is defined as an oscillatory motion of an element/particle. Because the motion is oscillatory, there is no net movement of the vibrating element/particle and the average of the motion is zero. Rail related vibration is described in terms of the velocity. The velocity represents the instantaneous speed of the element/particle.
weighting	Adjustment of sound level data to reflect receptor sensitivities. A-weighting is used to refer to average human hearing as a function of frequency.

Introduction August 24, 2023

1.0 Introduction

1.1 **Project Overview**

Stantec Consulting Ltd. (Stantec) was retained by Metrolinx, an agency of the Province of Ontario, to complete a Noise and Vibration Technical Report for the Oshawa to Bowmanville Rail Service Extension Project (the Project), formally referred to as the Oshawa to Bowmanville Rail Service Expansion Project in the 2011 Environmental Project Report (EPR), located in the City of Oshawa and the Municipality of Clarington within the Region of Durham, Ontario. A noise and vibration report was completed by AECOM as part of the EPR that was approved in 2011 to expand GO Transit rail services from Oshawa to Bowmanville. This Assessment is required to support an Addendum to the Oshawa to Bowmanville Rail Service Extension EPR. The purpose of the Project is to extend GO rail services from the existing Durham College (DC) Oshawa GO Station (formerly Oshawa GO Station) through to Bowmanville.

1.2 Background

All-day rail service currently operates on the Lakeshore East Rail Corridor between Union Station in downtown Toronto and DC Oshawa GO Station. The Lakeshore East Rail Corridor extension from Oshawa to Bowmanville was originally identified as one of 52 rapid transit improvements and expansion projects in the *MoveOntario* 2020 plan (Government of Ontario 2007), Ontario's multi-year \$17.5 billion rapid transit action plan for the Greater Toronto and Hamilton Area (GTHA). More recently, the expansion initiative was supported through the Initial Business Case Update (Metrolinx 2020) and a preferred alignment option was selected.

The Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Environmental Project Report (EPR) was completed in 2011, in accordance with the Transit Project Assessment Process (TPAP) outlined in Ontario Regulation (O. Reg.) 231/08 – Transit Projects and Metrolinx Undertakings, to assess Metrolinx's plan to expand GO Transit rail services from Oshawa to Bowmanville utilizing the CP Rail corridor.

Since the completion of the 2011 EPR, Metrolinx has advanced the design of the rail expansion project, including updates to the alignment and infrastructure needs of the project. As outlined in Section 15 (1) of O. Reg. 231/08, if a proponent wishes to make a change to a transit project that is inconsistent with a completed EPR, an addendum to the EPR must be prepared. In addition, as per Section 16 of O. Reg. 231/08, should a project not commence within 10 years of the Statement of Completion, a review of the project documentation is required. The Statement of Completion for the 2011 EPR is

Introduction August 24, 2023

dated April 13, 2011, and more than 10 years has lapsed since the filing of this document.

An EPR Addendum Report is being undertaken to document the changes to the transit project based on refinements to the design approach identified in the EPR, and to consider relevant updates to environmental conditions since the completion of the EPR in 2011.

1.3 Purpose

Metrolinx is conducting preliminary planning studies and developing a conceptual design for the Project. Potential environmental effects of the Project are being assessed to meet the requirements of the O. Reg. 231/08 and the Ontario *Environmental Assessment Act*. This Noise and Vibration Assessment is to evaluate the potential effects of noise and vibration generated by the Project construction and operation on sensitive receptors in the vicinity of the Project Footprint.

The objectives of this Technical Report are:

- To determine baseline noise and vibration levels in the Project area through monitoring;
- Assess the potential impacts of noise and vibration generated by construction activities at the sensitive receptors in the vicinity of the Project;
- Assess the potential impacts of noise and vibration generated by operation at the sensitive receptors in the vicinity of the Project;
- Identify areas where potential noise and vibration complaints could arise from construction and operation activities; and,
- Reduce potential complaints from surrounding properties by recommending operational changes to construction activities, proposing noise barriers and/or other noise and vibration mitigation options, proposing noise and vibration monitoring during construction.

The noise and vibration assessment is intended to comply with the applicable criteria during construction and operation of the Project.

Project Description August 24, 2023

2.0 **Project Description**

The Project Footprint includes the total area potentially affected by the proposed construction and operational activities. The current Project includes the extension of GO rail service from the DC Oshawa GO to Bowmanville, with four new proposed GO stations. The following Project components are proposed to be located on or adjacent to the rail corridor between DC Oshawa GO and Bowmanville Avenue in the Municipality of Clarington (i.e., GO Subdivision Mile 11.67 in the west to CP Belleville Subdivision Mile 164.8 in the east):

- Tracking and supporting track infrastructure:
 - Proposed new track within the existing GO Lakeshore East Rail Corridor at the western limit of the Project, crossing Highway 401 via the existing General Motors (GM) Spur bridge. A new bridge will be constructed adjacent to the existing GM Spur bridge for the proposed realigned CP Rail track. The new GO track will extend north to the existing CP Rail corridor, ending at Bowmanville Avenue.
 - Retaining walls and grading to support track infrastructure
- Proposed Layover Facility:
 - Proposed layover facility adjacent to the proposed Bowmanville Avenue GO station
- Proposed GO station locations in proximity to:
 - Fox Street (B1 Thornton's Corners East)
 - Front Street (B2 Ritson)
 - Courtice Road (B3 Courtice)
 - Bowmanville Avenue (B4 Bowmanville)
- New bridges at the following locations:
 - Highway 401
 - GM Spur
 - Oshawa Creek
 - Wilson Road

Project Description August 24, 2023

- Farewell Creek
- Harmony Creek
- Green Road
- New multi-use crossing (bridge or tunnel, to be determined):
 - Farewell Street
- Bridge replacements at the following locations:
 - Simcoe Street
 - Ritson Road
 - Farewell Street²
- Bridge removal at Albert Street
- Bridge expansions at the following locations:
 - DC Oshawa GO pedestrian bridge
 - Stevenson Road
 - Park Road
 - Harmony Road
 - Courtice Road
- Widening of at-grade crossings to accommodate GO track(s) at the following locations:
 - Bloor Street
 - Prestonvale Road
 - Private crossing for Dom's Auto
 - Trulls Road
 - Baseline Road (two crossings)
 - Rundle Road

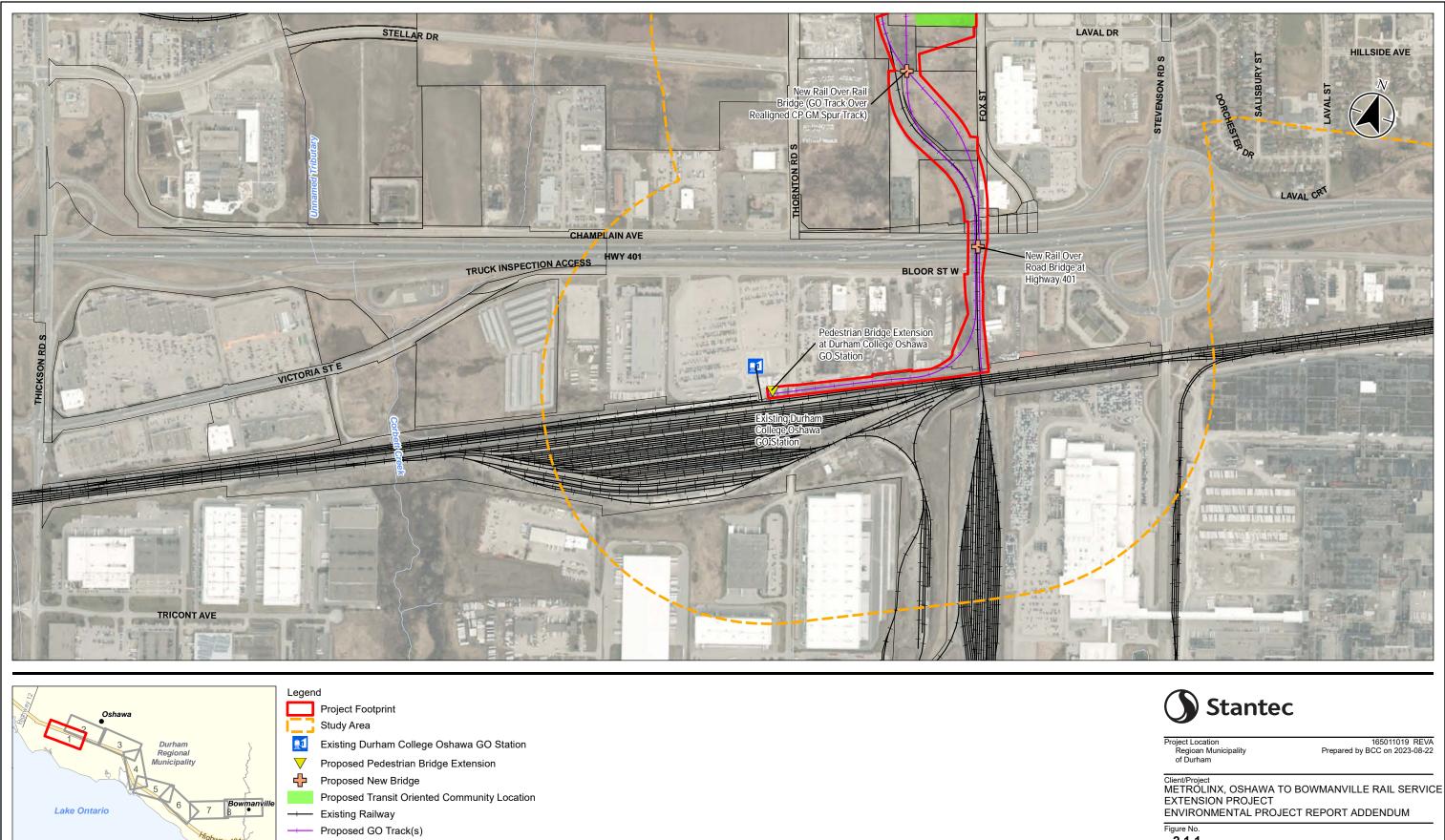
² Multi-use bridge only. Multi-use bridges can be used by pedestrians and cyclists crossing the rail corridor.

Project Description August 24, 2023

- Holt Road
- Private farm crossing west of Maple Grove Road
- Maple Grove Road

Drawings of the proposed track alignment are provided as Appendix A.

2.1 Study Area


The Study Area is defined as the region where the impacts are assessed and investigated, including areas of potential noise and vibration impacts. The Study Area for this noise and vibration assessment has been identified based on the Project Footprint.

The Project Study Area for the noise impact assessment is defined as per the Metrolinx Environmental Guide for Noise and Vibration Impact Assessment (Metrolinx, 2021), hereafter referred to as the Metrolinx Environmental Guide. The study area defines the region where impacts need to be investigated, including the areas of most-significant impact. The minimum recommended study area for impact assessments is 300 m on either side of rail or roadway for rail projects and 500 m from construction sites or stationary sources in all directions. For the purposes of this assessment, the Study Area has been defined as per the construction requirements.

The Federation of Canadian Municipalities/Railway Association of Canada (FCM/RAC 2013) proximity guideline identifies a 75 m setback as the Zone of Influence (ZOI) to assess the impact of vibration on sensitive receptors. As the 500 m Study Area setback distance established by the Metrolinx Environmental Guide for noise is greater, it will be used for both noise and vibration for this Project.

The Study Area is used to describe the pre-project (baseline) conditions in the area from a contextual perspective.

The overall Project Study Area along with the Project Footprint is shown in Figure 2.1.1 through Figure 2.1.8. Drawings showing the location of the proposed GO rail track within the existing rail corridor are provided in Appendix A.

Notes
1. Coordinate System: NAD 1983 CSRS MTM 10
2. Base features produced under license with the Ontario Ministry of Natural Resources and
Forestry © Queen's Printer for Ontario, 2018.
3. Orthoimagery © First Base Solutions, 2021. Imagery Date, 2019.

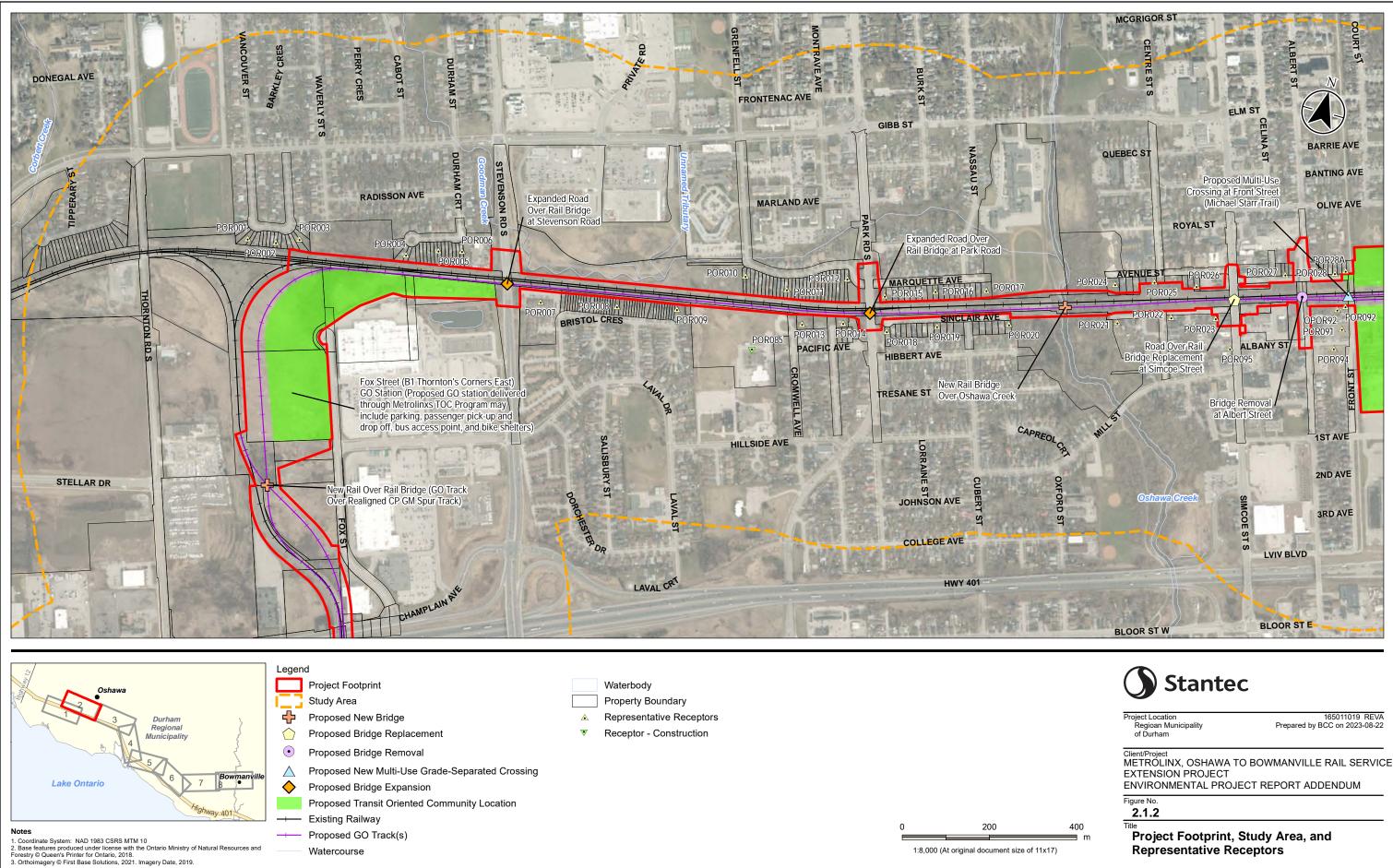
Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Watercourse

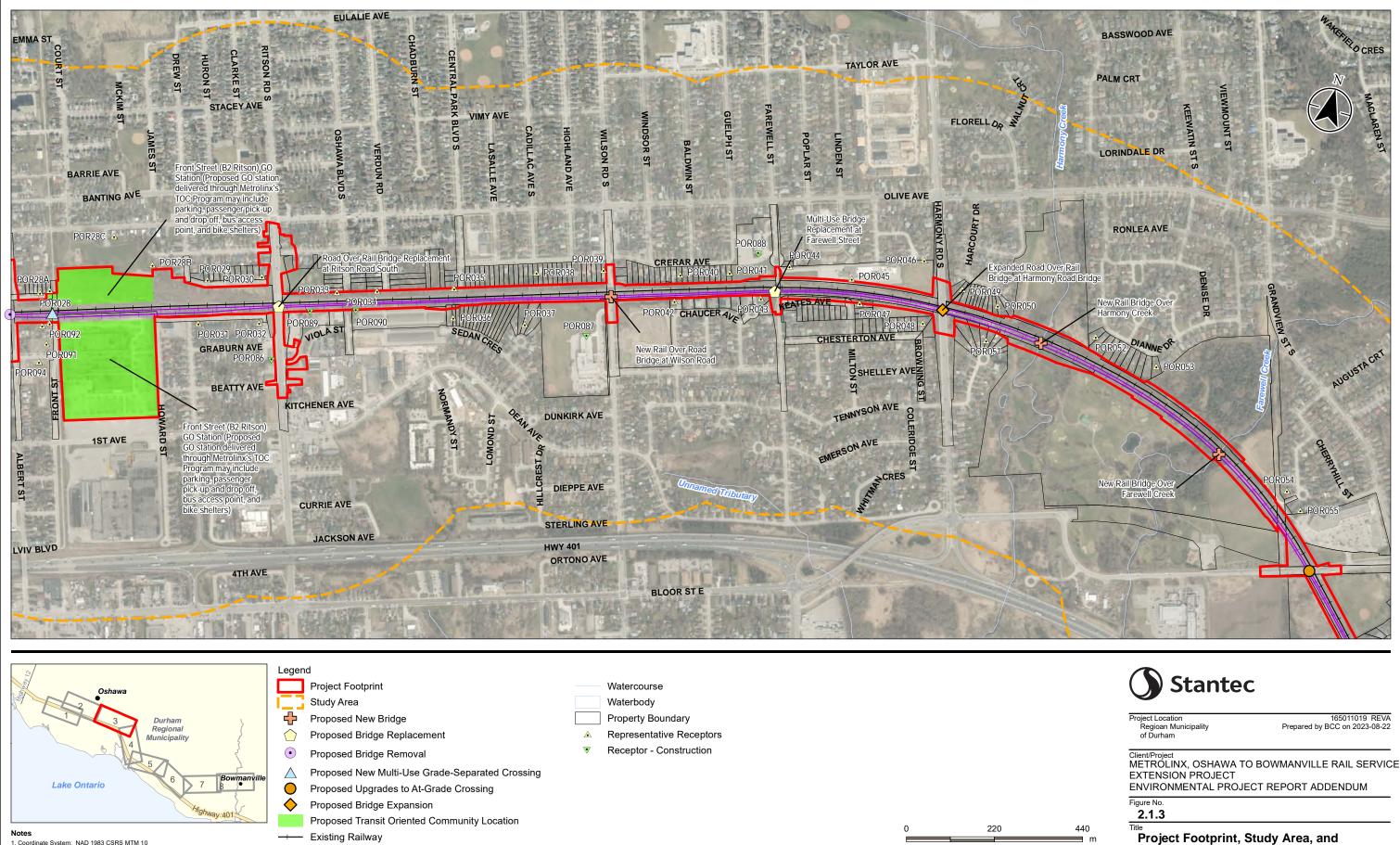
Property Boundary

Waterbody

1:8,000 (At original document size of 11x17)


200

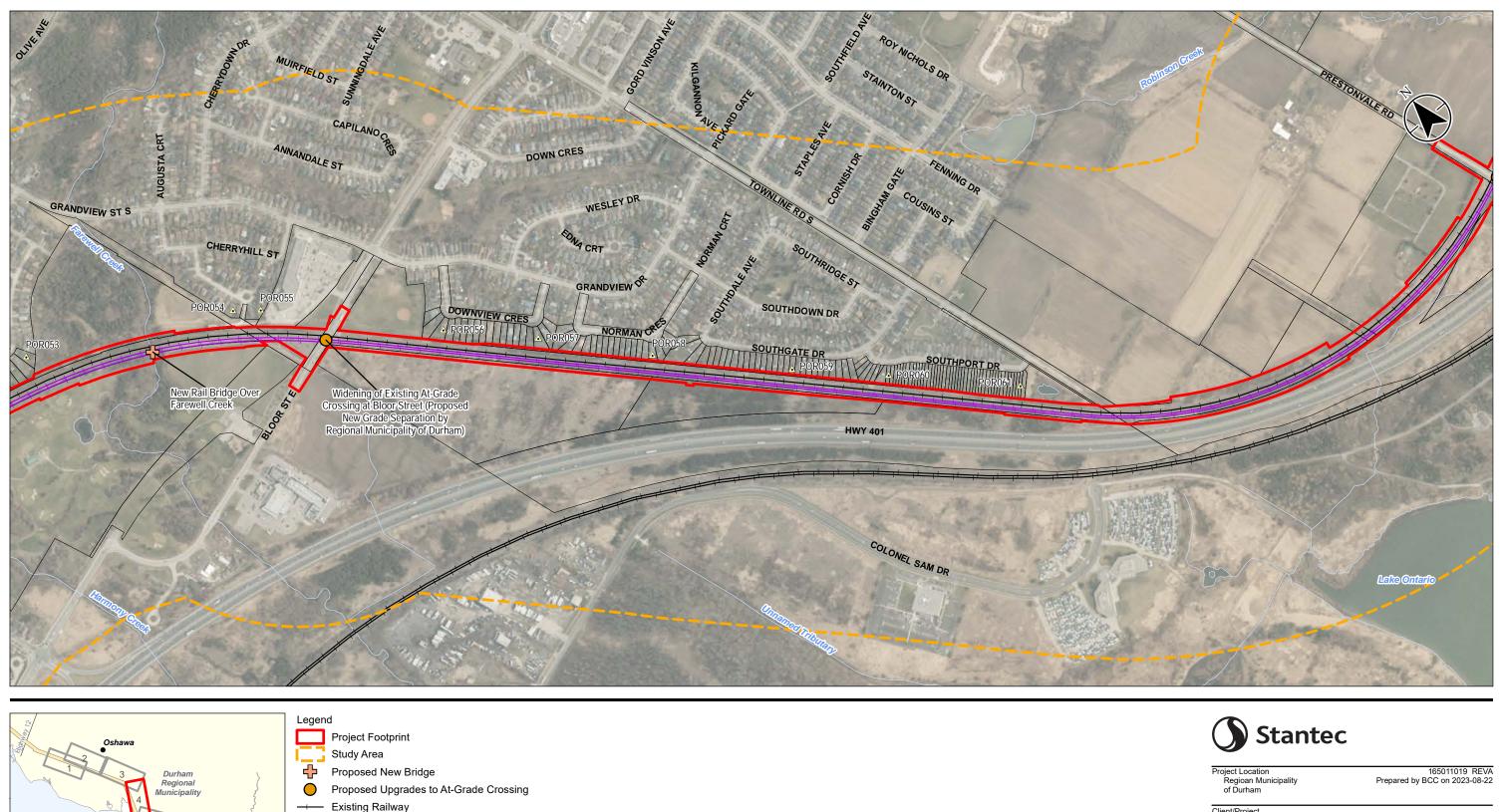
2.1.1 Title

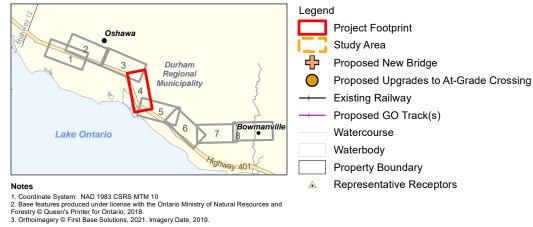

400

7)

Project Footprint, Study Area, and Representative Receptors

claimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.


1. Coordinate System: NAD 1983 CSRS MTM 10 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2018. 3. Orthoimagery © First Base Solutions, 2021. Imagery Date, 2019.


sclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Proposed GO Track(s)

1:8,750 (At original document size of 11x17)

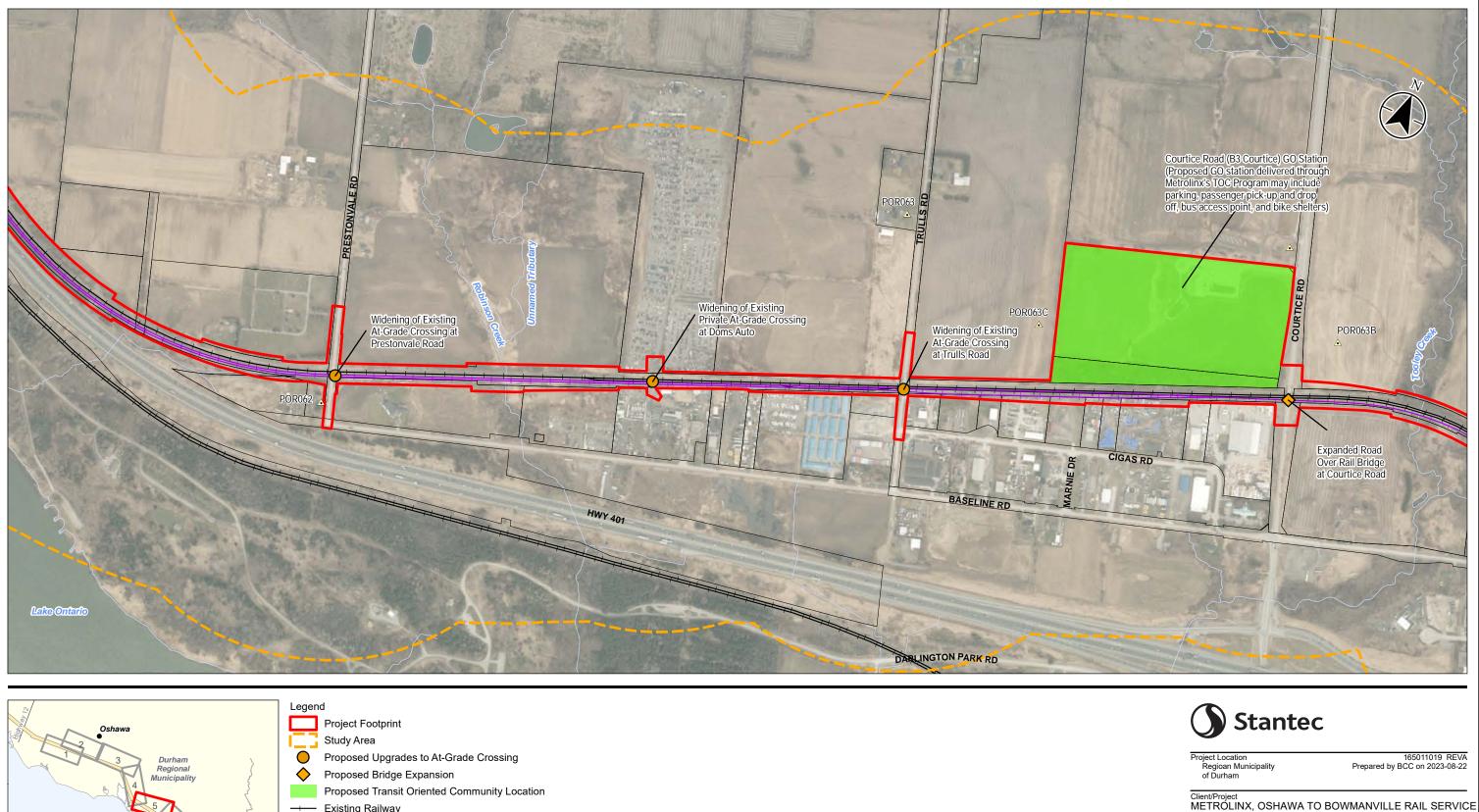
Representative Receptors

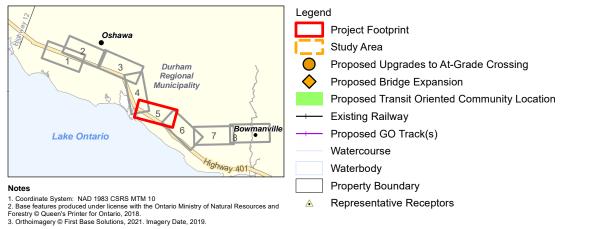
Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1:8,000 (At original document size of 11x17)

200

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.


2.1.4

Title

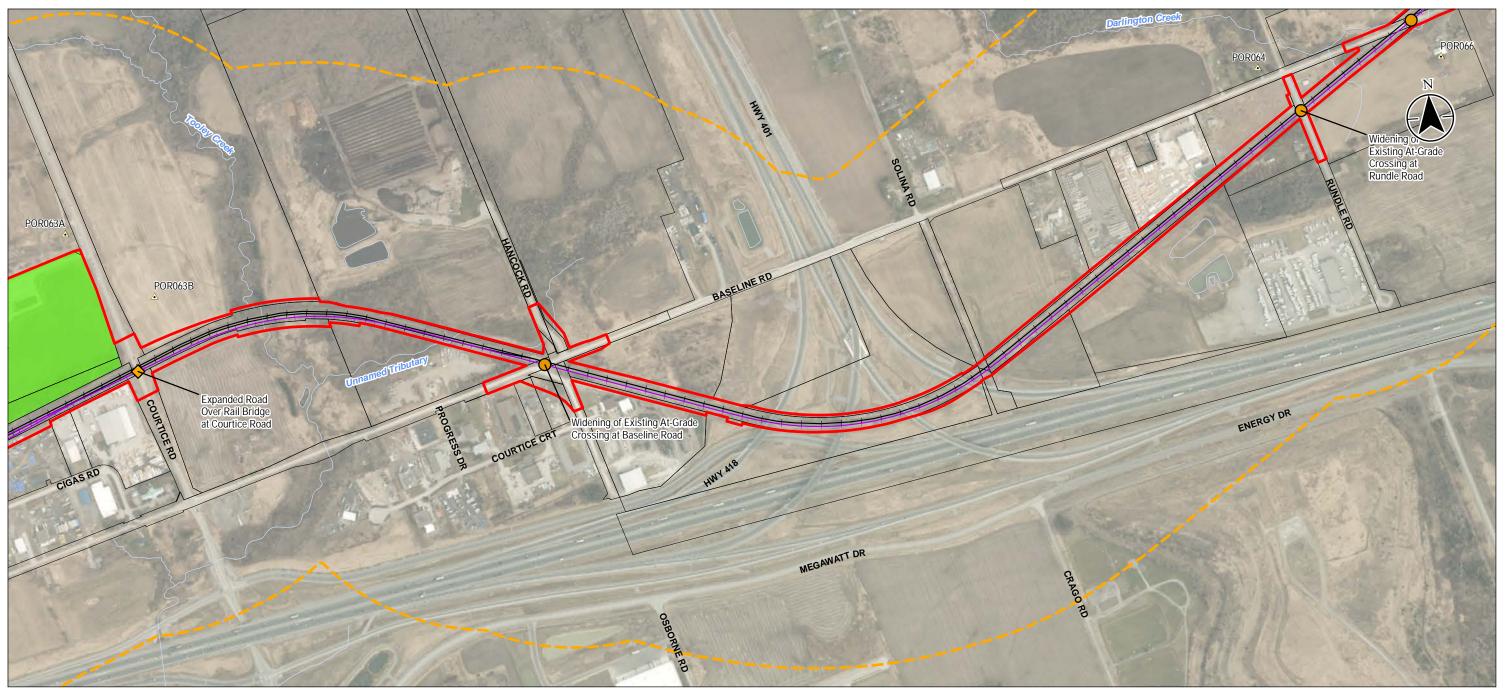
400

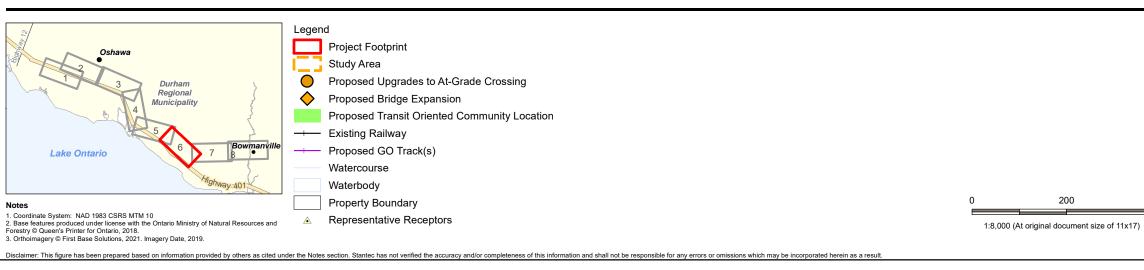
Project Footprint, Study Area, and Representative Receptors

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1:8,000 (At original document size of 11x17)

200


EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

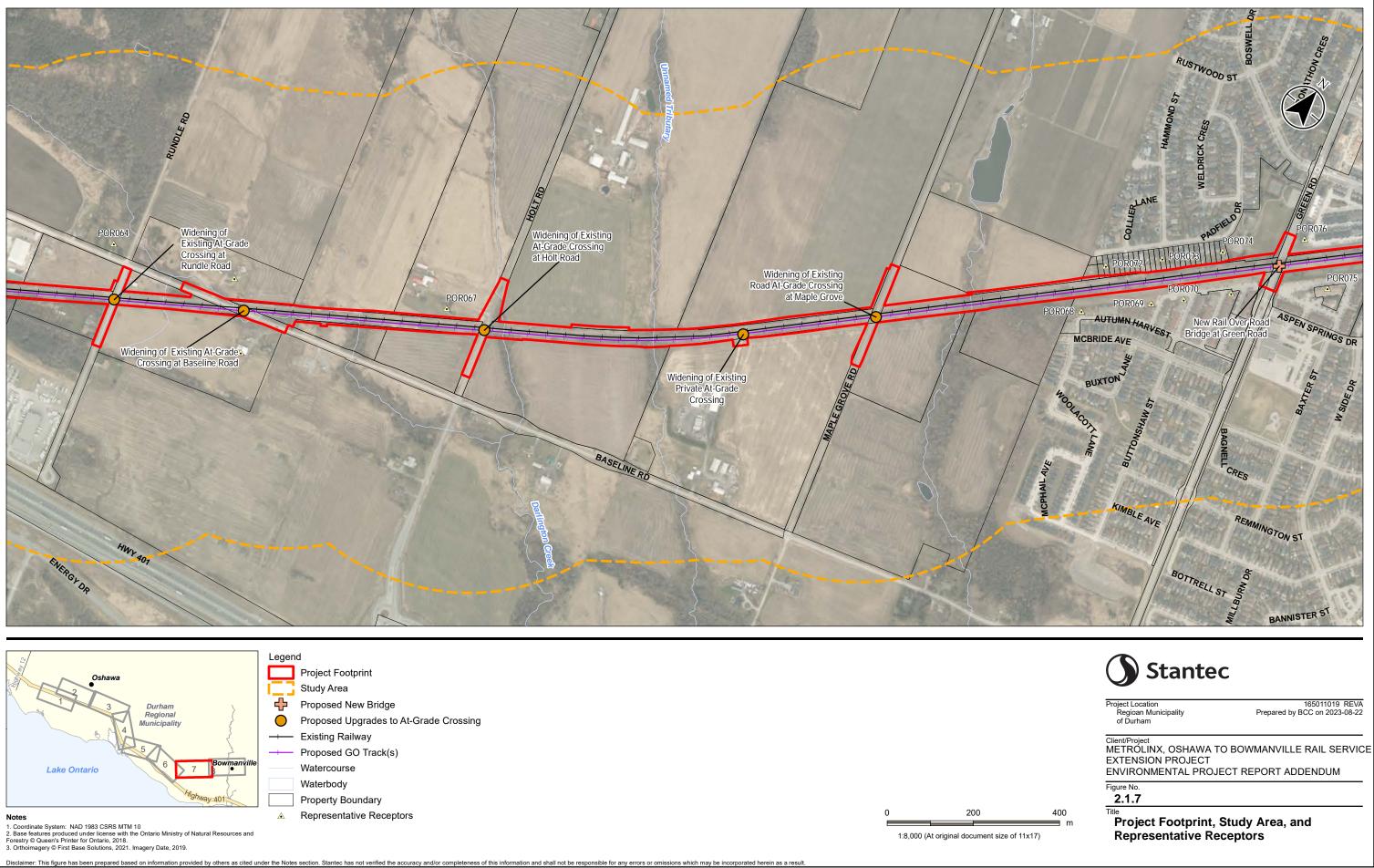

Figure No.

2.1.5

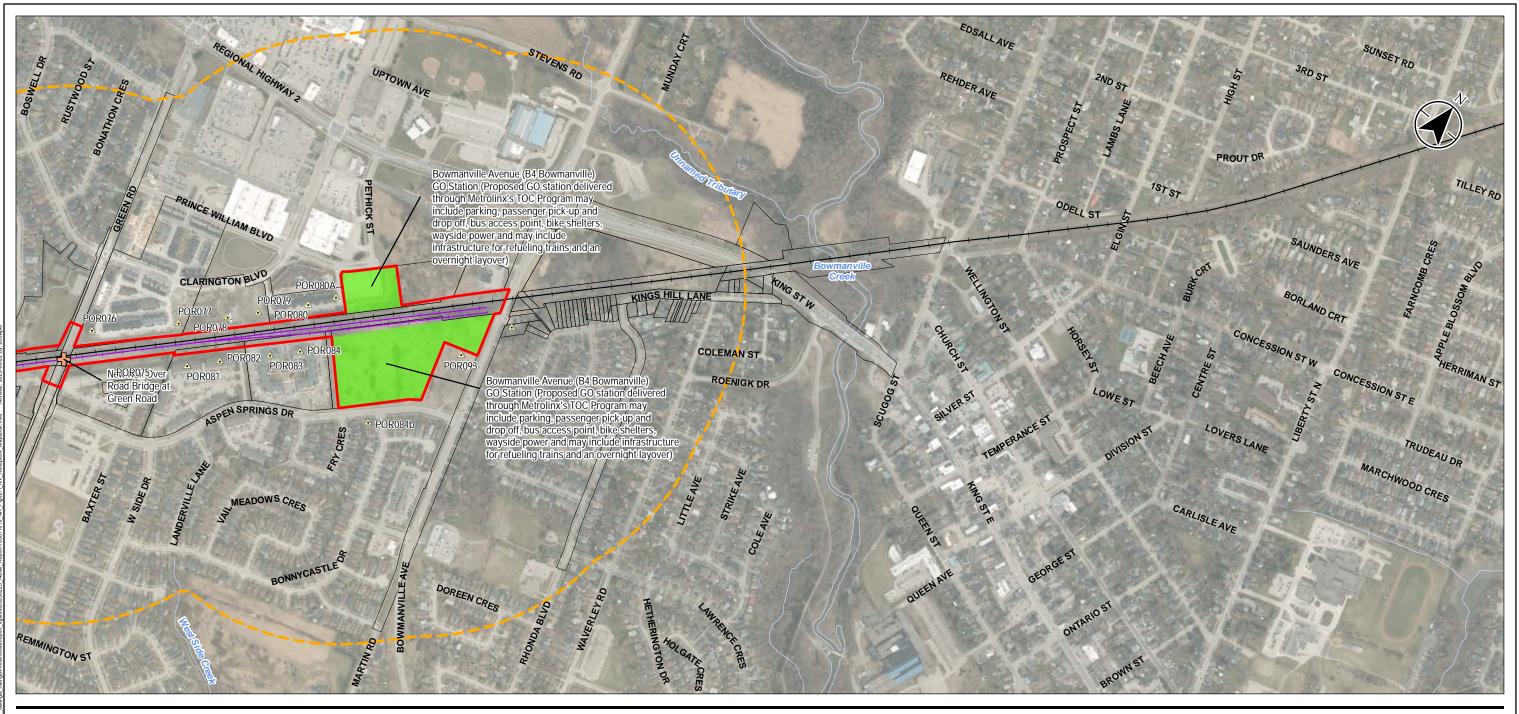
400 ∎ m

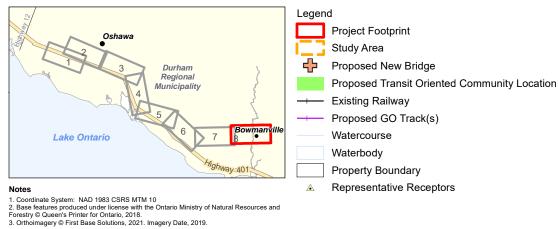
Title Project Footprint, Study Area, and **Representative Receptors**

Project Location Regioan Municipality of Durham


165011019 REVA Prepared by BCC on 2023-08-22

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.


2.1.6

400 ∎ m Title Project Footprint, Study Area, and **Representative Receptors**

laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1:8,000 (At original document size of 11x17)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-08-22

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

2.1.8

Title

400 m

Project Footprint, Study Area, and **Representative Receptors**

Project Description August 24, 2023

2.2 Land Use Description

The area surrounding the Study Area serves diverse purposes. It consists of a mix of varying densities of residential developments, commercial, industrial, transportation, and agricultural land uses. The proposed new GO rail track shares the rail corridor with a main CP Rail track and interfaces with a Canadian National (CN) Railway track directly after the existing DC Oshawa GO Station. The Project initially crosses Highway 401, west of Stevenson Road before turning east and running parallel to Highway 401. The rail corridor passes underneath the Highway 401/418 interchange where it begins to head northeast away from Highway 401.

Residential dwellings are located at various distances from the existing right-of-way (ROW) with the closest being approximately 20 m from the center of the closest track. There are several institutional buildings including schools and churches adjacent to the existing ROW approximately 20 m from the center of the closest track.

The acoustical environment at the western edge of the Study Area between Stevenson Road and Prestonvale Road in Oshawa is dominated by traffic noise generated by the surrounding roadway and the existing rail network. The acoustical environment between Prestonvale Road and Maple Grove Road in the Study Area is a combination of traffic noise generated by the surrounding roadway and rail network as well as farming and light industrial activities. The acoustical environment between Maple Grove Road and Martin Road at the eastern edge of the Study Area is dominated by traffic noise generated by the surrounding roadway and the existing rail network.

Zoning maps for the Study Area are included in Appendix A.

Policy and Regulatory Overview August 24, 2023

3.0 Policy and Regulatory Overview

The applicable noise and vibration criteria for the Project construction and operation are discussed in detail in this section.

The following categories of noise and vibration sources have been identified as part of the Project:

- 1. Noise and vibration generated by construction activities
- 2. Noise and vibration generated by the operation of trains along the Project ROW
- 3. Noise and vibration generated by the operation of stationary sources including bus service at the GO stations
- 4. Noise and vibration generated by the proposed layover facility
- 5. Noise from emergency generator testing and maintenance activities at the GO stations

3.1 Construction

Noise and vibration impact from Project construction is a concern as it may cause annoyance and structural damage. Sections 3.1.1 through 3.1.4 discuss applicable guidelines and noise and vibration limits for the construction phase of the Project.

3.1.1 Federal Context

As a provincial agency, Metrolinx construction projects are not governed by federal noise guidelines such as Health Canada Noise Guidance (HC 2017). Therefore, other applicable guidance and criteria such as provincial guidelines, municipal by-laws, and Metrolinx criteria are considered for this assessment.

3.1.2 Provincial Context

The Ministry of the Environment, Conservation and Parks (MECP) Publication Noise Pollution Control (NPC)-115 "Model Municipal Noise Control By-law" (MECP August 1978) and NPC-118 "Motorized Conveyances" (MECP August 1982) are the applicable Provincial noise guidelines for construction of the Project. Both NPC-115 and NPC-118 limit noise emissions from construction equipment in Ontario and are considered the criteria for this assessment. These NPC publications provide sound emission limits for various types of construction equipment. They stipulate noise limits on individual pieces of equipment rather than a site-wide combined performance limits or sound level at nearby receptors. These criteria are summarized in Table 3.1.

Policy and Regulatory Overview August 24, 2023

Type of Equipment	Maximum Sound Pressure Level (dBA)	
Excavation equipment, bulldozers, loaders,	83 (for Power Rating less than 75 kW) at 15 m	
backhoes or other equipment or other equipment capable of being used for a similar application ¹	85 (for Power Rating 75 kW and greater) at 15 m	
Pneumatic Pavement Breakers ²	85 at 7 m	
Portable Air Compressors ³	76 at 7 m	
Track Drills ¹	100 at 15 m	
Heavy Vehicle with Governed Diesel Engines ³	95 at 15 m	

Table 3.1: NPC-115 and NPC-118 Noise Emission Limits

Notes:

¹ Maximum Sound Level (dBA) determined per Publication NPC-103 - Procedures, Section 6.

² Maximum Sound Level (dBA) determined per Publication NPC-103 - Procedures, Section 7.

³ Maximum Sound Level (dBA) determined per Publication NPC-103 - Procedures, Section 9.

If the sound levels are expected to exceed the limits, noise control options should be investigated and implemented for compliance.

3.1.3 Municipal Context

A range of municipal permits and approvals may be required for the Project, particularly pertaining to municipally owned lands and infrastructure. Metrolinx will obtain all required permits and approvals. However, Metrolinx, as a Crown Agency of the Province of Ontario, is exempt from certain municipal processes and requirements. In these instances, Metrolinx, on a voluntary basis, will engage with the municipalities to incorporate municipal requirements as a best practice where practical, and may consult with or seek consensus from permitting agencies on certain project activities in keeping with the requirements as outlined in the by-law or legislation.

Municipal noise by-laws for the City of Oshawa (By-law 112-82) and the Municipality of Clarington (By-law 2007-071) only outline permissible operating times for construction activities. Neither provides criteria noise and vibration limits for construction activities. The permitted hours of operation based on day of the week for the City of Oshawa and Municipality of Clarington are outlined in Table 3.2.

Table 3.2: Permissible Construction Operating Times

City/Municipality	Weekday Permitted Hours	Saturday Permitted Hours	Sunday Permitted Hours
Clarington	07:00-21:00	07:00-21:00	10:00-16:00
Oshawa	07:00-19:00	07:00-19:00	07:00-17:00

Note: Any construction activities are forbidden on statutory holidays

Policy and Regulatory Overview August 24, 2023

A noise by-law exemption for the Project is not required since Metrolinx is a Crown Agency of Ontario.

3.1.4 Metrolinx Context

Metrolinx has construction noise exposure limits, which are referenced in its Environmental Guide. Construction noise is assessed by pre-construction modelling during planning and is crucial to identify noise sensitive areas that need monitoring during the construction phase.

The Metrolinx Environmental Guide proposes receptor-based noise limits for assessing potential noise from construction. The construction noise limits provided in the Metrolinx Environmental Guide are adapted from the US Federal Highway Administration (US FHWA) guidance and they are provided in Table 3.3.

Land Use	L _{eq (Day, Night)} ^{1,2} Sound Levels (dBA)		L _{eq (15-minute)} Sound Levels (dBA)		L _{max} ³ Sound Levels (dBA)	
	Day	Night	Day	Night	Day	Night
Residential – Weekday	Louder of 75 or Baseline+5	Louder of 65 or Baseline+5	85	75	90	80
Residential – Weekend ⁴ & Holiday	Louder of 70 or Baseline+5	Louder of 60 or Baseline+5	75	65	90	80
Institutional ⁵	Louder of 70 or Baseline+5	Louder of 60 or Baseline+5	75	65	90	80
Commercial	Louder of 80 or Baseline+5	None	None	None	None	None
Industrial	Louder of 85 or Baseline+5	None	None	None	None	None

Table 3.3:	Metrolinx Environmental Guide Limits for Construction Noise

Notes:

- ¹ L_{eq} (day) is the average energy equivalent noise level for 16 hours (7:00 23:00), hours adjusted to match Provincial daytime period.
- ² L_{eq} (night) is the average energy equivalent noise level for 8 hours (23:00 07:00), hours adjusted to match Provincial nighttime period.
- 3 L_{max} represents the maximum allowable noise level, typically used for compliance.
- ⁴ The weekend starts at 23:00 on Friday and ends at 07:00 on Monday as per Metrolinx Environmental Guide.
- ⁵ Institutional receptors include schools, universities, child daycare centres, hospitals, old age homes, churches, etc.

Policy and Regulatory Overview August 24, 2023

Only weekday limits are applicable for the Project construction as the construction is expected from 8:00 through 17:00 on weekdays. Other metrics, such as $L_{eq (15 min)}$ and L_{max} are to be applied only for monitoring during construction.

The Metrolinx Environmental Guide (Metrolinx 2021) includes limits for construction vibration that are based on the City of Toronto's By-law 514-2008, the United States Federal Transit Administration (US FTA) Noise and Vibration Impact Assessment Manual (FTA 2018) and the MOEE/GO Transit Draft Protocol for Noise and Vibration Assessment (MOEE/GO Protocol 1995). The Metrolinx Environmental Guide is intended to reduce potential damage to the structure of buildings and annoyance to the public.

The FTA Manual is a comprehensive railway-specific guidance that is widely used and accepted in North America for railway transit projects. The FTA Manual provides vibration limits for various types of building structures, including heritage buildings.

The MOEE/GO Protocol provides a vibration limit of 0.14 mm/s Root-Mean-Square (RMS) for human perception (annoyance) from ground-borne vibration (GBV). The MOEE/GO protocol's vibration limit is not specifically for construction activities; however, the limit was adopted by the Metrolinx Environmental Guide for construction vibration. The vibration velocity of 0.14 mm/s Root-Mean-Square (RMS) is used for assessing continuous vibration from activities such as tunneling. Vibration limits for structural damage are provided in Peak Particle Velocity (PPV). Vibration criteria for assessing structural damage from construction, as provided in Metrolinx Guide are presented in Table 3.4.

Category	Metric	Frequency (Hz)	Vibration Limit (mm/s)
Construction Vibration	Peak Particle Velocity	Less than 4	8
Damage Levels	(PPV)	4 to 10	15
		More than 10	25
Potential Annoyance Vibration Levels	Root Mean Square (RMS)	All frequencies	0.14

Table 3.4:	Metrolinx Environmental Guide Construction Vibration Limits
------------	---

The vibration limits provided in Table 3.4 are maximum thresholds, on a frequency basis, not to be exceeded during construction monitoring. In addition to the prohibition limit of vibration in the table above, the Metrolinx Environmental Guide provides vibration limit for buildings or structures that are potentially impacted by vibrations from construction activities. The ZOI vibration limit is PPV (measured or estimated) which is equal to or greater than 5 mm/s regardless of frequency. This construction vibration assessment is based on the vibration ZOI limit of 5 mm/s.

Policy and Regulatory Overview August 24, 2023

Stricter criteria of 3 mm/s, as defined by the US FTA, is recommended for fragile heritage buildings, and is used for heritage structures identified within the study area.

3.2 Operation

This section of the report provides details regarding reference documents for determining noise limits during operations of the Project. The operational assessment includes the noise emissions from stationary sources such as operations at the stations as well as from the movement of the trains. Section 3.2.1 through Section 3.2.3 provide the applicable criteria (noise limits) for construction of the Project.

3.2.1 Federal & Municipal Context

As a provincial agency, Metrolinx operations are not governed by federal noise guidelines such as Health Canada Noise Guidance (HC 2017). Operational noise from rail movements and stationary noise sources is not governed by the municipalities.

Therefore, other applicable guidance and criteria such as provincial guidelines and Metrolinx criteria are considered for this assessment.

3.2.2 Provincial Context

MECP NPC-300 Environmental Noise Guideline – Stationary and Transportation Sources – Approval and Planning (MECP August 2013) is applicable for the Project stationary noise sources associated with GO station operations and layover sites. The MECP limits are based on the surrounding land use and classification.

Stationary noise sources are assessed against minimum background sound levels, based on a predictable worst-case scenario. As per NPC-300, the sound level limit is assessed at noise-sensitive Points of Reception (PORs) and expressed in terms of a one-hour equivalent sound level (1-hr L_{eq}). The limit is defined as the higher of the applicable exclusion limit or the minimum existing background sound level for that point of reception.

The Project Study Area surrounding the GO stations (stationary noise sources) is defined as Class 1, as per the MECP guidance, which is typical of a major population centre where the background sound level is dominated by the activities of people or "urban hum".

Applicable sound level limits for stationary sources of noise are presented in Table 3.5. Note that nighttime limits are lower than those for daytime.

Policy and Regulatory Overview August 24, 2023

Time Period	Exclusion Limit for C	Class 1 Area (dBA) *
	Plane of Window to Noise Sensitive Spaces ¹	Outdoor Points of Reception ¹
Daytime (0700-1900)	50 or background	50 or background
Evening (1900-2300)	50 or background	50 or background
Nighttime (2300-0700)	45 or background	n/a

Table 3.5: MECP Sound Level Limits for Stationary Noise Sources

Note:

¹ The plane of window is typically the most exposed upper-storey window to a noise sensitive indoor space, such as a bedroom. The outdoor point of reception is typically an outdoor space intended for the quiet enjoyment of the outdoors, such as a private backyard or shared outdoor amenity (e.g., outdoor barbecue area).

Emergency equipment operating in emergency situations is excluded from compliance with provincial sound level limits. However, planned non-emergency operation (e.g., during testing) must comply with provincial sound level limits. The MECP states that emergency sources are to be assessed separately from non-emergency equipment and are allowed a sound level limit that is 5 dB higher than the associated limit for non-emergency equipment.

Per NPC-300, the sound level limit for the layover facility is assessed at noise-sensitive PORs with a one-hour equivalent sound level $(1-hr L_{eq})$ limit of 55 dBA limit for daytime and nighttime. The NPC-300 criteria of 55 dBA was used for the assessment of noise from the layover facility just east of the Bowmanville GO Station.

MECP recently published the guidelines for prediction methods used for assessing road and rail traffic; Methods to Determine Sound Levels Due to Road and Rail Traffic NPC-306, dated December 2021, and is currently in draft. The draft guideline NPC-306 is to ensure that proponents use up to date noise prediction methods when determining sound levels caused by road and rail traffic. The preferred methods for assessing noise from road and rail are identified in the guidelines. NPC-306 recommends using the following noise models:

- United States Federal Transit Administration (US FTA) method or any software with FTA algorithms for rail noise assessment; and
- the most current version of the United States Federal Highway Administration (FHWA) Traffic Noise Model (TNM) for roads.

These recommended noise models are used for predicting ambient and project noise levels at the receptors.

Policy and Regulatory Overview August 24, 2023

3.2.3 Metrolinx Context

The Metrolinx Guide recommends the desirable objective for the Project rail noise assessment. The daytime (07:00 - 23:00) sound level ($L_{eq(16hr)}$) produced by the rail corridor should not exceed the higher of the ambient (pre-project) sound level, combined with the sound level from existing rail activity, or 55 dBA, at the modelled receptors as defined in the MOEE/GO Draft Protocol (Draft Protocol 1995). Similarly, the nighttime (23:00 - 07:00) sound level ($L_{eq(8hr)}$) from the rail corridor should not exceed the higher of the ambient sound level, combined with the sound level from existing rail activity or 55 dBA, at the modelled receptors as defined in the MOEE/GO Draft Protocol (Draft Protocol 1995). Similarly, the nighttime (23:00 - 07:00) sound level ($L_{eq(8hr)}$) from the rail corridor should not exceed the higher of the ambient sound level, combined with the sound level from existing rail service, or 50 dBA, at the receptors.

It is further stipulated that the Impact Assessment Method shall be based on the Adjusted Noise Impact. The Adjusted Noise Impact is the difference between:

- Pre-project noise, which is the combination of the ambient noise and the existing rail noise (determined based on a combination of measurements and modelling); and
- Project noise, which is the combination of the ambient noise and project rail noise (determined through predictive modelling).

It is further stated that where pre-project noise is less than 55 dBA L_{eq} during daytime hours or 50 dBA L_{eq} during nighttime hours for a POR, the pre-project noise shall be taken as 55 dBA L_{eq} daytime or 50 dBA L_{eq} nighttime, respectively (referred to herein as 'the Adjusted Pre-Project L_{eq} '). Metrolinx sound level limits are summarized in Table 3.6.

Table 3.6: Metrolinx Noise Criteria for Project Rail Operations

Time Period	Limit
Daytime Adjusted Noise Impact	5 dB relative to the higher of: pre-Project sound levels or 55 dBA
Nighttime Adjusted Noise Impact	5 dB relative to the higher of: pre-Project sound levels or 50 dBA

Based on the MOEE/GO Draft Protocol, noise impacts are to be rated with respect to the objectives and the need for noise mitigation are presented in Table 3.7.

Table 3.7: Noise Impact Ratings and Mitigation Requirements

Adjusted Impact Level	Impact Rating	Mitigation Requirements
0 - 2.99 dBA	Insignificant	No Mitigation Required
3 - 4.99 dBA	Noticeable	No Mitigation Required
5 - 9.99 dBA	Significant	Investigation of Mitigation Required
10+ dBA	Very Significant	Investigation of Mitigation Required

Policy and Regulatory Overview August 24, 2023

If a 'significant' or 'very significant' impact is predicted at any POR (i.e., a predicted change in sound level of 5 dBA or more), the potential to mitigate the noise effects due to the Project should be evaluated based on administrative, operational, economic, and technical feasibility.

Under MOEE/GO Draft Protocol, the desirable objective of a rail vibration assessment is a maximum of 0.14 mm/s at receptor locations. The Protocol also provides the following vibration criteria limits when assessing vibration at the receptors adjacent to the existing corridors:

- If the current levels exceed 0.14 mm/s at any receptor location, the desirable objective is not to exceed the existing vibration level; and
- If the vibration velocity exceeds the objective by 25% at any point of reception, the requirement to mitigate will be evaluated based on administrative, operational, economic, and technical feasibility.

The vibration impact of a rail project shall be assessed using field measurements of vibration velocities.

Methodology August 24, 2023

4.0 Methodology

The impact of noise and vibration from construction and operational are assessed separately as required by the applicable guidelines, and the assessment methodology, including identification of PORs for operation assessment, is discussed in this section.

4.1 Points of Reception

4.1.1 Overview

Properties with noise sensitive land uses such as residential dwellings, hotels, schools, retirements homes or places of worship are considered for the Project operation noise assessment. Construction noise is assessed by establishing a ZOI. The location (within the noise sensitive land parcel) where noise is assessed is defined as a POR. PORs were selected by reviewing land uses within the Study Area and comparing them to POR selection criteria defined by the Metrolinx Environmental Guide and MOEE/GO Draft Protocol for rail operations and by the MECP NPC-300 for the GO station and layover operations. Selected PORs are chosen for the assessment of vibration impact from rail operations.

As stipulated by the Metrolinx Environmental Guide and Draft Protocol, sensitive noise receptors for rail operations are assessed at the plane of window (POW) and outdoor living area (OLA) which is located at 3 m away from the building façade. Sound levels are typically assessed at the highest window of a dwelling. The exception being high rises or condominiums. For residential buildings such as apartment buildings or condominiums consisting of multiple floors, the Metrolinx Environmental Guide stipulates that daytime and nighttime noise impacts must be evaluated at the floor most impacted by the Project noise. For multi-storey buildings the worst-case noise impact is determined via a building noise evaluation and a receptor height is selected based on the worst-case noise impact level. OLAs are assessed at 1.5m above grade in the backyard, side yard, or common amenity area. Noise impact at POWs is assessed during daytime and nighttime hours as applicable and at OLAs is assessed for daytime hours only as they are assumed to be unoccupied during nighttime. Daytime hours are defined as 07:00 - 23:00, and nighttime hours are defined as 23:00 - 07:00.

The noise impact for institutions (e.g., churches, schools, etc.) are assessed at the POW at a height representative of the building's use for daytime hours as they typically operate during daytime hours.

Methodology August 24, 2023

The receptor location considered for stationary noise assessment of the GO stations as per MECP NPC-300 is given below.

- Receptor location at 4.5 m above ground for the POW PORs for the two storey dwellings (i.e., highest window level); and
- Receptor location at 1.5 m above ground within 30 m of a facade of a dwelling for the Outdoor POR (OPOR) associated with a dwelling.

4.1.2 Points of Reception

Representative PORs, including future developments, were chosen within the Study Area for the assessment of noise impact from operations, 89 receptors were selected for the rail corridor assessment and nine additional receptors were selected to evaluate stationary noise sources at GO stations and layover facility with fueling capability. Six additional receptors were selected to evaluate the impact of construction activities. Both POW receptors and OLAs were considered for this assessment. The POW receptors were considered for daytime and nighttime operations, and OLAs were considered for daytime only, as per the guidelines. The representative PORs considered for this assessment are summarized in Table 4.1.

POR Description	POR ID	MTM Cod	ordinates ¹	Approximate
		Easting	Northing	Distance to Nearest Track (m)
Two Storey Dwelling at 332 Vancouver Crescent	POR001	354111	4860489	31
Two Storey Dwelling at 352 Vancouver Crescent	POR002	354175	4860499	30
Two Storey Dwelling at 368 Vancouver Crescent	POR003	354226	4860521	43
Two Storey Residence at 389 Durham Court	POR004	354471	4860552	30
Two Storey Residence at 363 Durham Court	POR005	354540	4860581	47
Two Storey Residence at 345 Durham Court	POR006	354592	4860595	51
Two Storey Residence at 420 Bristol Crescent	POR007	354797	4860532	33
Two Storey Residence at 372 Bristol Crescent	POR008	354969	4860568	30
Two Storey Residence at 334 Sheffield Court	POR009	355103	4860600	23
Two Storey Residence at 460 Grenfell Street	POR010	355234	4860716	57
Two Storey Residence at 492 Grenfell Street	POR011	355334	4860711	35
Two Storey Residence at 540 Grenfell Street	POR012	355461	4860772	69
Two Storey Residence at 413 Cromwell Avenue	POR013	355389	4860644	30
Two Storey Residence at 431 Montrave Avenue	POR014	355479	4860671	22

Table 4.1: Representative Points of Reception

POR Description	POR ID	MTM Cod	ordinates ¹	Approximate
		Easting	Northing	Distance to Nearest Track (m)
Two Storey Residence at 257 Marquette Avenue	POR015	355554	4860757	28
Two Storey Residence at 213 Marquette Avenue	POR016	355663	4860799	36
Two Storey Residence at 181 Marquette Avenue	POR017	355775	4860832	34
Two Storey Residence at 257 Sinclair Avenue	POR018	355581	4860680	40
One Storey Residence at 215 Sinclair Avenue	POR019	355689	4860722	32
One Storey Residence at 167 Sinclair Avenue	POR020	355846	4860771	33
Two Storey Residence at 85 Hall Street	POR021	356085	4860842	38
One Storey Residence at 423 Centre Street South	POR022	356200	4860887	34
Two Storey Residence at 11 Hall Street	POR023	356299	4860912	41
Two Storey Residence at 83 Avenue Street	POR024	356056	4860925	38
Two Storey Residence at 394 Centre Street South	POR025	356141	4860955	41
One Storey Residence at 25 Avenue Street	POR026	356237	4860972	28
Two Storey Residence at 38 Fisher Street	POR027	356426	4861052	47
Two Storey Residence at 74 Fisher Street	POR028	356535	4861086	47
One Storey Residence at 214 George Street	POR028A ²	356551	4861104	65
One Storey Residence at 258 George Street	POR028B ²	356790	4861226	69
Two Storey Residence at 419 Drew Street	POR028C ²	356676	4861268	27
Two Storey Residence at 249 Edward Avenue	POR029	356929	4861229	37
One Storey Residence at 396 Oshawa Boulevard South	POR030	357058	4861274	23
One Storey Residence at 398 Verdun Road	POR031	356937	4861118	23
One Storey Residence at 400 Central Park Boulevard South	POR032	357082	4861159	23
One Storey Residence at 410 Sedan Crescent	POR033	357249	4861286	40
One Storey Residence at 446 Brest Crescent	POR034	357345	4861316	62
One Storey Residence at 485 Crerar Avenue	POR035	357528	4861374	55
One Storey Residence at 541 Crerar Avenue	POR036	357545	4861303	56
One Storey Residence at 603 Crerar Avenue	POR037	357722	4861335	38
One Storey Residence at 641 Crerar Avenue	POR038	357715	4861467	39
Three Storey Residence at 596 Chaucer Avenue	POR039	357875	4861519	16
Three Storey Residence at 424 Austen Court	POR040	358063	4861559	17

POR Description	POR ID	MTM Cod	ordinates ¹	Approximate
		Easting	Northing	Distance to Nearest Track (m)
One Storey Residence at 393 Farewell Street	POR041	358180	4861597	52
Two Storey Place of Worship at 399 Elmridge Street	POR042	358067	4861491	30
One Storey Residence on Wicklow Court	POR043	358273	4861557	103
Two Storey Residence at 429 Milton Street	POR044	358320	4861653	18
Two Storey Residence at 791 Chesterton Avenue	POR045	358478	4861664	39
Two Storey Residence at 420 Harcourt Drive	POR046	358640	4861758	53
Two Storey Residence at 452 Harcourt Drive	POR047	358514	4861611	38
One Storey Residence at 464 Tennyson Court	POR048	358679	4861606	37
Two Storey Residence at 446 Dianne Drive	POR049	358751	4861714	58
Two Storey Residence at 486 Dianne Drive	POR050	358847	4861698	65
Two Storey Residence at 1094 Saint Andrews Court	POR051	358843	4861607	52
Two Storey Residence at 1082 Street Andrews. Court	POR052	359103	4861690	50
Two Storey Residence at 1094 Saint Andrews Court	POR053	359270	4861658	39
Two Storey Residence at 762 Downview Crescent	POR054	359667	4861448	41
Two Storey Residence at 1113 Norman Crescent	POR055	359712	4861410	30
Two Storey Residence at 924 Southgate Drive	POR056	359980	4861126	29
Two Storey Residence at 984 Southport Drive	POR057	360122	4860982	37
Two Storey Residence at 1074 Southport Drive	POR058	360282	4860796	42
Two Storey Residence at 1018 Prestonvale Road	POR059	360488	4860580	55
Two Storey Residence at 1218 Trulls Road	POR060	360636	4860438	371
One Storey Residence at 2048 Baseline Road West	POR061	360833	4860239	125
One Storey Residence at 2074 Baseline Road West	POR062	361885	4859851	67
Two Storey Residence at 2091 Baseline Road West	POR063	362876	4860736	98
Two Storey Residence at 1108 Holt Road	POR063A ²	363660	4861006	38
Vacant Lot Receiver	POR063B ²	363232	4860634	137

POR Description	POR ID	MTM Cod	ordinates ¹	Approximate
		Easting	Northing	Distance to Nearest Track (m)
Vacant Lot Receiver	POR063C ²	363838	4860860	137
Two Storey Residence at 34 Autumn Harvest Road	POR064	366203	4861168	46
Two Storey Residence at 34 Dykstra Lane	POR065	366470	4861286	49
Two Storey Residence at 56 Dykstra Lane	POR066	366592	4861163	49
Two Storey Residence at 95 Dykstra Lane	POR067	366892	4861549	49
Two Storey Residence at 187 Padfield Drive	POR068	368026	4862491	44
Two Storey Residence at 143 Padfield Drive	POR069	368139	4862608	45
Two Storey Residence at 95 Padfield Drive	POR070	368190	4862664	44
Four Storey Apartment Building at 128 Aspen Springs Drive	POR071	368266	4862745	65
Future Three Storey Residence at 1423 Green Road	POR072	368002	4862607	48
Future Three Storey Residence at 2 Lord Elgin Lane	POR073	368092	4862705	40
Future Three Storey Residence at 57 Clarington Boulevard	POR074	368188	4862808	40
Future Three Storey Residence at 55 Clarington Boulevard	POR075	368430	4862899	42
Three Storey Residence at 61 Clarington Boulevard	POR076	368316	4862952	45
Three Storey Residence at 94 Aspen Springs Drive	POR077	368447	4863082	45
Three Storey Residence at 90 Aspen Springs Drive	POR078	368522	4863155	43
Four Storey Residence at 84 Aspen Springs Drive	POR079	368564	4863205	39
Four Storey Residence at 80 Aspen Springs Drive	POR080	368632	4863288	35
Two Storey Dwelling at 332 Vancouver Crescent	POR080A ²	368669	4863340	31
Two Storey Dwelling at 352 Vancouver Crescent	POR081	368519	4863024	30
Two Storey Dwelling at 368 Vancouver Crescent	POR082	368566	4863076	43
Two Storey Residence at 389 Durham Court	POR083	368639	4863153	30
Two Storey Residence at 363 Durham Court	POR084	368683	4863201	47

Methodology August 24, 2023

POR Description	POR ID	MTM Coc	ordinates ¹	Approximate
		Easting	Northing	Distance to Nearest Track (m)
Single Storey Residence at 1775 Bowmanville Avenue	POR084A ²	368993	4863528	58
Two Storey Residence at 126 Bonniecastle Drive	POR084B ²	368890	4863179	199
School at 400 Pacific Avenue	POR0853	355296	4860554	67
Place of Worship at 464 Ritson Road South	POR0863	357139	4861078	102
School at 460 Wilson Road South	POR0873	357881	4861348	132
Place of Worship at 374 Farewell Street	POR0883	358238	4861661	95
Commercial Brewhouse at 439 Ritson Road South	POR089 ³	357199	4861221	82
Commercial Storage Facility at 421 Storngo Boulevard	POR090 ³	357309	4861253	7
11 Storey Apartment Residence at 64 Albany Street	POR091	356585	4860966	63
One Storey Residence at 418 Front Street	POR092	356579	4861018	12
25 Storey Apartment Residence at 10 Aspen Springs Drive	POR093	368949	4863414	76
4 Storey Apartment Residence at 63 Albany Street	POR094	356579	4860918	100
5 Storey Apartment Residence at 446 Simcoe Street	POR095	356349	4860855	102

¹ MTM Reference Zone 16T

² PORS only applicable to the stationary noise assessment

³ PORS only applicable to the construction assessment.

PORs are modelled for daytime and nighttime sound levels at representative POW receptors as listed in Table 4.1. OLAs for the corridor operation noise and OPORs for GO station stationary noise assessments are considered where applicable.

GO stations are expected to be developed for mixed use with potential commercial and residential use. At the time of preparing this report, no information was available for GO stations. In the absence of information about the proposed GO stations, they are not considered as receptors in this assessment.

Stantec has reviewed all current development applications submitted to the City of Oshawa, Bowmanville, Courtice, Newcastle, and Newtonville. A list of known developments identified for this assessment is included as Table 4.2 for Oshawa, Table 4.3 for Bowmanville, and Table 4.4 for Courtice. Some developments were not included in this assessment given their large setback distance to the Project.

Methodology August 24, 2023

Developments included in the assessment are noted in the respective tables. Developments identified in Newcastle and Newtonville are outside of the project area, and therefore are not discussed further in this report.

ID	Street Number	Street Name	Application Type	Notes
1	N/A	Dean Avenue opposite Normandy Street	88 stacked townhouses	130 m south of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences. A closer representative POR has been included in the Study area.
2	N/A	NW Corner Stevenson Road South & Champlain Avenue	Parking lot for the storage of new vehicles	Non noise sensitive land use
3	39	McGrigor Street	33-unit apartment building	600 m north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the Study area.
4	63	Albany Street	6 storey, 99-unit apartment building	112 m south of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences A closer representative POR has been included in this assessment.
5	64	Albany Street	11-storey, 100-unit apartment building	Included in the assessment (POR091)
6	426	Front Street	11-storey, 100-unit apartment building	Part of same development identified as 64 Albany Street. 426 Front Street will be amalgamated with 64 Albany Street considered as POR091 in this assessment
7	135	Bruce Street	Rezoning to permit 2,145 apartments, 96 townhouses & limited commercial uses	600 m north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance Development is located outside of the study area.

Table 4.2: City of Oshawa Proposed Developments

ID	Street Number	Street Name	Application Type	Notes
8	223	Albert Street	New 10-unit apartment building	500 m north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance Development is located outside of the study area.
9	227	Simcoe Street South	New commercial development including an office, retail & soup kitchen	Non noise sensitive land use
10	250	Harmony Road South	212 townhouses	3-storey townhouse development 300m north of the project. A closer representative receptor has been included in the assessment
11	255	Tresane Street	New 4-unit apartment building	Permit for a multi-unit apartment building 200 m south of project. A closer representative receptor has been included in the assessment
12	446	Simcoe Street South	New 50-unit apartment building	5 Storey apartment building approximately 100 m south of the project. A closer representative receptor has been included in the assessment.
13	480, 484, 490, 506	Ritson Road South	40 stacked townhouses	3-storey stacked townhouses approximately 200 m south of project. A closer representative receptor has been included in the assessment
14	485	Normandy Street	50 stacked townhouses	3-storey stacked townhouses approximately 200 m south of project. A closer representative receptor has been included in the assessment
15	505	Simcoe Street South	Create a severed lot to the east, retaining lands with apartment building to the west	No information available. Closer representative PORs are included in the assessment
16	642	Champlain Avenue	New self-storage facility	Non noise sensitive land use
17	883	Thornton Road South	New 40, 877 m ² warehouse building	Non noise sensitive land use
18	63	Albany Street	New 99-unit apartment building	112 m south of the project corridor. Impact from project estimated to be insignificant due to setback distance. A closer representative POR has been included in this assessment.

Methodology August 24, 2023

ID	Street Number	Street Name	Application Type	Notes
1	-	Brookhill Boulevard Southeast of Boswell Drive and Brookhill Boulevard	88 unit six storey apartment	1 km northwest of Bowmanville Station. Impact from project estimated to be insignificant due to screening from existing residences and setback distance
2	2345	Highway 2	Two 11-storey buildings	550 m northwest of project area. Impact from project estimated to be insignificant due to screening from existing residences and setback distance Development is located outside of the study area.
3	505	Lake Road	Industrial Development	Non noise sensitive use
4	10	Aspen Springs Drive	Two 25-storey buildings	Directly southeast of Bowmanville GO Station. Included as POR093
5	922	Green Road	69 townhouse units	Townhouse development 700 m to the southeast of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance Development is located outside of the study area.
6	2400	Green Road	53 detached, and 36 townhouse units	Development more than 1km northwest of site. Noise impact assumed to be insignificant Development is located outside of the study area.
7	2020	Lambs Road	13 single detached and 9 medium and high density	Development more than 1 km east of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance Development is located outside of the study area.
8	NA	Mearns Avenue and Ireland	5 lots	Development more than 1 km east of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance Development is located outside of the study area.

Table 4.3: Town of Bowmanville Proposed Developments

Methodology August 24, 2023

ID	Street Number	Street Name	Application Type	Notes
9	46	Stevens Road	10-storey multiunit retirement residence	500 m northwest of right-of-way. Impact from project estimated to be insignificant due to screening from existing residences and setback distance Development is located outside of the study area.
10	1558	Green Road	3-storey condos	260 m northwest of project corridor. Closer representative PORs are included in the assessment

Table 4.4: Town of Courtice Proposed Developments

ID	Street Number	Street Name	Application Type	Notes
1	1588	Bloor Steet	32 semi-detached and 68 townhouses	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
2	1824	Nash Road	six single-detached	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
3	2212	Trulls Road	12 semi-detached and 21 townhouse	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
4	2350	Courtice Road	140 residential detached and semi- detached units	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
5		Bloor Street and Trulls Road	524 residential units including detached and townhouses	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.

ID	Street Number	Street Name	Application Type	Notes
6		Nash Road and Hancock Road	78 townhouse units	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
7	1668	Nash Road	17 townhouses	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
8		Bloor Street and Hancock Road	318 single detached houses	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
9	3105	Courtice Road	80 residential townhouse units	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance.
10	1440	Gord Vinson Avenue	Unknown	Development 700 m north east of THE PROJECT CORRIDOR. Closer representative receptor included in the assessment. Development is located outside of the study area.
11	3	Lawson Road	28 Townhouse units	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
12	1828	Nash Road	151 residential lots detached and townhouses	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.

Methodology August 24, 2023

ID	Street Number	Street Name	Application Type	Notes
13	1640	Nash Road	21 townhouses	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.
14	2591	Trulls Road	10 freehold townhouses	Development more than 1 km north of the project corridor. Impact from project estimated to be insignificant due to screening from existing residences and setback distance. Development is located outside of the study area.

Representative PORs considered in the assessment are shown in Figures 2.1.1 through 2.1.8.

4.2 Construction Assessment Methodology

Project construction involves construction of the Project components in multiple phases. Each phase will have multiple equipment and various types of equipment. A summary of the Project components, construction phases and equipment considered in this assessment is provided in Table 4.5.

Project	Construction Phase	Type Construction Equipment and Quantities														
Components for Construction		Asphalt spreader	Backhoe	Ballast regulator	Bobcat	Boom Truck	Caisson auger	Compactor	Concrete Breaker	Concrete pump	Concrete saw	Concrete truck	Crane	Drill	Dump Truck	Dynamic stabilizer
Track and Grading	Track	-	-	2	1	-	-	-	-	-	-	-	1	-	2	1
	Grading	-	2	-	-	-	-	2	-	-	-	4	1	-	4	-
Bridge Replacement	Utility Relocation and Road Closure	-	1	-	1	1	-	1	-	-	-	-	-	-	2	-
	Demolition of Existing Bridge	-	2	-	1	-	-	-	2	-	-	-	1	-	2	-
	Abutment Construction	-	2	-	-	-	-	-	-	1	-	2	-	-	1	-
	Span construction	-	-	-	-	1	-	-	-	1	-	2	-	-	-	-
	Road Reinstatement	1	-	-	-	1	-	1	-	-	-	-	-	-	2	-
	Site Cleanup	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-
New Bridge	Utility Relocation and Road Closure	-	1	-	1	1	-	1	-	-	-	-	-	-	2	-
	Abutment Construction	-	2	-	-	-	-	-	-	1	-	2	-	-	1	-
	Span construction	-	-	-	-	1	-	-	-	1	-	2	-	-	-	-
	Road Reinstatement	1	-	-	-	1	-	1	-	-	-	-	-	-	2	-
	Site Cleanup	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-
Modified Bridge	Removals and Site Preparation	-	1	-	1	-	-	-	1	-	1	-	-	-	2	-
	Abutment Underpinning	-	1	-	-	1	-	-	-	1	-	2	-	1	1	-
	Site Cleanup	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-
Stations/Layover	Clearing	-	1	-	-	-	-	-	-	-	-	-	-	-	2	-
Facility	Parking Construction	1	1	-	-	-	-	1	-	-	-	1	1	-	2	-
	Building/Platform Construction	-	1	-	1	-	1	1	-	-	-	1	1	-	1	-
Crossing Widening	Removals and Reconstruction	-	1	-	1	1	-	1	-	-	1	1	-	-	2	-

Methodology August 24, 2023

Project	Construction Phase						Туре	Construct	ion Equipi	nent an	d Quant	ities					
Components for Construction		Earth Scraper	Flatbed truck	Front- end loader	Grader	Pavement Roller	Pavement Saw	Pile auger	Pile driver	Rail drill	Rail saw	Speed Swing	Spike machine	Track liner/tamper	Water Truck	Welder	Zoom Boom
Track and Grading	Track	-	1	1	-	-	-	-	-	1	1	1	1	2	1	1	1
	Grading	-	1	2	2	-	-	-	-	-	-	-	-	-	1	-	-
Bridge Replacement	Utility Relocation and Road Closure	-	-	-	-	1	1	-	-	-	-	-	-	-	1	-	-
	Demolition of Existing Bridge	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
	Abutment Construction	-	1	-	-	-	-	1	1	-	-	-	-	-	1	-	-
	Span construction	-	1	-	-	-	-	-	-	-	-	-	-	-	1	-	1
	Road Reinstatement	-	-	-	-	1	-	-	-	-	-	-	-	-	1	-	-
	Site Cleanup	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
New Bridge	Utility Relocation and Road Closure	-	-	-	-	1	1	-	-	-	-	-	-	-	1	-	-
	Abutment Construction	-	1	-	-	-	-	1	1	-	-	-	-	-	1	-	-
	Span construction	-	1	-	-	-	-	-	-	-	-	-	-	-	1	-	1
	Road Reinstatement	-	-	-	-	1	-	-	-	-	-	-	-	-	1	-	-
	Site Cleanup	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Modified Bridge	Removals and Site Preparation	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
	Abutment Underpinning	-	1	-	-	-	-	1	1	-	-	-	-	-	1	1	1
	Site Cleanup	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Stations/Layover	Clearing	1	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Facility	Parking Construction	-	1	1	1	2	-	-	-	-	-	-	-	-	1	-	-
	Building/Platform Construction	-	1	-	-	-	-	-	-	-	-	-	-	-	1	1	1
Crossing Widening	Removals and Reconstruction	-	-	-	-	1	1	-	-	-	-	-	-	-	1	-	-

Methodology August 24, 2023

The activities at the staging and laydown areas such as storing material/equipment and assembly are expected to be lighter than the other construction activities occurring within the Project Footprint, hence expected to be less impactful. All laydown and staging areas for the Project are assumed to be within the Project Footprint, and are therefore, not separately considered further in this assessment.

The construction noise and vibration assessment methodologies are discussed in detail in the following subsections.

4.2.1 Construction Noise

Construction noise for the Project is assessed in two methods as required by the guidelines and are discussed below.

- Emission-based assessment comparing the reference sound levels for the equipment listed in Table 4.5 against the applicable sound level limits in MECP NPC-115 and NPC-118 (Table 3.1) to identify the need for additional noise control during construction phases.
- 2. Receptor-based assessment establishing a construction ZOI for noise based on the noise limit established in Metrolinx Guide to identify surrounding areas that may be impacted during each construction phase and identify mitigation and monitoring requirements.

The US FTA Manual and FHWA Roadway Construction Noise Model User's Guide (FHWA 2006) provide typical construction equipment reference sound levels and they are used in this assessment. Construction equipment reference sound levels used in the assessment are listed in Table 4.6.

Equipment Type	Sound Pressure Level at 15 m (dBA) ¹
Asphalt spreader	85
Backhoe	80
Ballast regulator	82
Bobcat	80
Boom Truck	80
Caisson auger	85
Compactor	82
Concrete Breaker	85
Concrete pump	82
Concrete saw	90

Table 4.6: Construction Equipment Sound Pressure Levels

Methodology August 24, 2023

Equipment Type	Sound Pressure Level at 15 m (dBA) ¹
Concrete truck	85
Crane	83
Drill	85
Dump Truck	84
Dynamic stabilizer	82
Earth Scraper	85
Flatbed truck	84
Front-end loader	80
Grader	85
Pavement Roller	85
Pavement Saw	90
Pile auger	85
Pile driver	101
Rail drill	85
Rail saw	90
Speed Swing	80
Spike machine	80
Track liner/tamper	82
Water Truck	84
Welder	73
Zoom Boom	80

¹ Reference sound pressure levels for the listed equipment were obtained from the US FTA Manual and FHWA Roadway Construction Noise Model User's Guide documents

ZOI for construction noise is defined as the land in or adjacent to a construction site, which is potentially impacted by construction noise equal to or greater than the criteria.

Construction noise ZOI is calculated based on the following geometric spreading calculation as provided in the Metrolinx Environmental Guide, adopted from the US FTA Manual:

LEQ (point of reception) = SPLequipment- 20* log (Dpoint of reception / Dref) +10 * log (D.C.)

Methodology August 24, 2023

Where:

- L_{EQ (point of reception)} = sound level of the piece of equipment at the point of reception (dBA)
- *SPL_{equipment}* = sound pressure level of the equipment at a reference distance (usually 15 m)
- *D*_{point of reception} = straight line distance from equipment to point of reception (m)
- *D_{ref}* = reference distance provided in *SPL_{equipment}* (m
- *D.C.* = fraction of time, or duty cycle, that a piece of equipment usually operates

Construction noise ZOI is calculated for each construction phase based on the type and quantity of construction equipment, and reference sound levels for the equipment. As a conservative approach, it is assumed that the associated construction equipment to be operating simultaneously during the construction period (i.e., weekdays 08:00 - 17:00) with the loudest piece of equipment located at the closest Project boundary to the receptor. The remaining equipment for each phase was evenly distributed conservatively along the Project boundary on either side of the loudest equipment with a minimum 25 m between each piece of equipment.

The duty cycle for each piece of equipment was calculated to account for the fraction of time the equipment is expected to operate during the construction period as well as the fraction of time the equipment is expected to operate at its loudest condition (acoustical usage factor). The acoustical usage factors used in this assessment are taken from the US FHWA Roadway Construction Noise Model User's Guide (RCNM).

A noise barrier that breaks the line-of-sight between the source and receptor will typically provide about 6-8 dB attenuation. A 7 dB reduction is considered to establish ZOI with noise barrier scenario.

4.2.2 Construction Vibration

Construction vibration impacts are evaluated by establishing the construction vibration ZOI. Construction vibration ZOIs are calculated based on the applicable vibration limits for building damage as provided in Table 3.4. This assessment considers a vibration limit of 5 mm/s for typical construction (e.g., non-engineered timber and masonry buildings) and 3 mm/s for heritage structures.

Methodology August 24, 2023

Construction vibration ZOI is calculated based on the following vibration propagation equation as provided in the Metrolinx Environmental Guide, adopted from the US FTA Manual:

PPV (point of reception) = PPV (point of reception) * $(D_{ref}/D_{point of reception})^{1.5}$

Where:

- PPV (point of reception) = the vibration level of the piece of equipment at the point of reception (mm/s)
- PPV (point of reception) = the vibration level of the piece of equipment at a reference distance (mm/s)
- *D_{ref}* = the reference distance provided in PPV_{ref} (m); and
- *D*_{point of reception} = the straight-line distance from the equipment to the point of reception (m).

In line with the Metrolinx Environmental Guide, this assessment establishes construction vibration ZOI for the worst-case vibration event for each Project component. In other words, for each construction element, vibration ZOI is established for the equipment expected to generate the highest vibration level. The equipment reference vibration levels as provided in the FTA Manual is used in this assessment to calculate vibration ZOI.

4.3 Operational Assessment Methodology

Based on the Metrolinx Environmental Guide, study scenarios are required for both the assessment of noise and vibration generated by heavy rail projects and new sources of stationary sound such as the stations associated with the GO stations. A summary of the required scenarios and assessment criteria are provided in Table 4.7.

Methodology August 24, 2023

Table 4.7:Study Scenarios

Project Component	Assessment Criteria	Study Scenarios	Description
Rail	Change (Sound or Vibration) Per MOEE/GO Draft	Pre-Project	Sound and vibration levels prior to the undertaking. Represented by the levels of rail activity prior to the project
	Protocol	Post- Project	Sound and vibration levels after the undertaking. Represented by the maximum level of rail activity enabled by the project (potentially 10 to 20 years in the future).
Stationary sources of sound associated with GO stations	Absolute Limit (Sound only) Per MECP NPC-300	Post- Project	Sound levels after the undertaking. Represented by the maximum level associated with the project GO stations.
Stationary and rail sources associated with Layover site	hary and Absolute Limit Pos urces (Sound only) Per Pro fated with MECP NPC-300		Sound levels after the undertaking. Represented by the maximum level associated with the project Layover site.
Emergency Power Generators associated with GO stations	Absolute Limit (Sound only) Per MECP NPC-300	Post- Project	Sound levels after the undertaking. Represented by the maximum level associated with the emergency generator testing for the project GO stations.

4.3.1 Operation Noise (Rail)

The Metrolinx Environmental Guide recommends assessing both pre-project and postproject operation noise at the receptors for daytime (07:00 - 23:00) and nighttime (23:00 - 07:00) periods in accordance with the MOEE/GO Draft Protocol (Draft Protocol 1995).

The following approach was used to assess the impact of noise generated sources from the proposed rail expansion:

- Identify representative PORs within the Study Area
- Establish pre-project noise levels at the receptors due to existing rails
- Predict post-project noise levels at the receptors from the existing and proposed rails
- Assess the effect of noise based on the impact ratings and determine if noise mitigation is required

Methodology August 24, 2023

Train idling at the GO stations is included as part of the post-project rail operations. Trains are expected to idle at GO stations for about 90 seconds and at the layover facility for about an hour. Therefore, time-weighting for train idling is included in the assessment.

Train horn and whistle noise at-grade road-rail crossings is included as part of the existing and post-project rail operations. Trains are expected to obey the Transport Canada Canadian Railway Operating Rules (May 2022) which mandate the use of horns and whistles. Horns and whistles have been considered for all at-grade crossings within the Project Footprint. Sound power levels for horn/whistle noise for trains has been assumed to be 96 dBA at 30 meters based on the Transport Canada Locomotives Design Requirements (Part II) Section 11.2.

Current sound levels (baseline) from the existing roads and rail are also calculated to compare with the monitored sound levels at the calibration points to validate the noise model. The daytime and nighttime sound levels at the PORs due to rail activities are calculated using CADNA/A, an acoustic modelling software published by Datakustik GmbH and configured to implement the ISO 9613-2 environmental sound propagation algorithms. CADNA/A implements US FTA methods for rail noise. Road noise from the surrounding roads and highways are modelled with the most current version of the US FHWA Traffic Noise Model (TNM). The predicted levels from rail and road are combined for both Pre-Project and Project scenarios.

The Metrolinx Environmental Guide provides modeling parameters to be used for noise and vibration assessments for rail projects. Train counts for the existing and future rail lines for daytime and nighttime periods, along with the number of locomotives and rail cars for each train type train are summarized in Table 4.8.

Train Type and Description	Number of Trains Daytime (07:00-23:00)	Number of Trains Nighttime (23:00-07:00)	Maximum Train Speed Within Project Footprint (km/hr)
CP Main Line (3 locomotives - 85 cars)	5	4	90
CP Spur Line (1 locomotive - 6 cars)	3	-	90
CP Spur Line (CP - CN connecting line - GM Plant) (1 locomotive - 6 cars)	3	-	40
GO (Proposed) (2 locomotives - 12 cars)	42 ¹	12 ¹	90

Table 4.8: Modelled Train Data

¹ Train volumes include both revenue and non-revenue trips

Methodology August 24, 2023

Annual Average Daily Traffic (AADT) data and commercial vehicle percentages for significant roads in the area were reviewed to establish baseline sound levels. Speed limits used for the analysis were obtained from street view. A summary of the traffic data used for the current year in the assessment is provided in Table 4.9.

Methodology August 24, 2023

Segment	Available AADT	2021 AADT	Daytime Volume	Nighttime Volume	Cars (%)	Medium Trucks	Heavy Trucks	Commercial Vehicle (%)	Traffic Speed (km/hr)
	Year	Estimate				(%)	(%)		
Highway 401 Ramps at	Stevenson F	Road South							
Ramp E-N/S (Westbound Off-Ramp)	2019	8,400	7,560	840	82%	7%	11%	18%	60
Stevenson Road South	, North of Hig	ghway 401							
Between Gibb Street and Laval Drive	2019	33,000	29,700	3,300	86%	5%	9%	14%	60
Between Laval Drive and Highway 401	2019	23,100	20,790	2,310	86%	5%	9%	14%	60
Park Road South, North of Highway 401	2019	12,800	11,520	1,280	98%	1%	1%	2%	60
Simcoe Street South, North of Highway 401	2019	26,300	23,670	2,630	96%	2%	2%	4%	60
Ritson Road South, No	rth of Highwa	ay 401							
North of Toronto Avenue	2018	22,000	19,800	2,200	97%	1%	2%	3%	60
South of Toronto Avenue	2018	19,400	17,460	1,940	97%	1%	2%	3%	60
Wilson Road South, North of Highway 401	2019	13,800	12,420	1,380	97%	1%	2%	3%	50
Bloor Street East betwe	en Harmony	Road Sout	h and Townl	ine Road Sout	h				
Between Harmony Road South and Grandview S Street	2019	20,500	18,450	2,050	98%	1%	1%	2%	50

Table 4.9: Road Traffic Modelling Data for Year 2021¹

Segment	Available AADT Year	2021 AADT Estimate	Daytime Volume	Nighttime Volume	Cars (%)	Medium Trucks (%)	Heavy Trucks (%)	Commercial Vehicle (%)	Traffic Speed (km/hr)
Between Grandview S Street and Townline Road South	2019	14,800	13,320	1,480	98%	1%	1%	2%	50
Harmony Road South, North of Highway 401	2019	21,400	19,260	2,140	98%	1%	1%	2%	50
Courtice Road North of Highway 401	2019	8,500	7,650	850	79%	8%	13%	21%	80
Highway 401 between Harmony Road South and Courtice Road	2016	108,800	97,920	10,880	89%	4%	7%	11%	100
Highway 401									
Between Waverly Road to Holt Road	2016	99,000	89,100	9,900	90%	4%	6%	10%	100
Between Holt Road to Courtice Road	2016	108,200	97,380	10,820	89%	4%	6%	11%	100
Baseline Road West (west of Courtice Road)	2019	3,100	2,790	310	69%	12%	19%	31%	60
Martin Road south of K	ing Street W	est							
Between King Street W and Hartwell Avenue	2019	16,300	14,670	1,630	81%	7%	12%	19%	60
Between Hartwell Avenue and Baseline Road West	2019	18,100	16,290	1,810	81%	7%	12%	19%	60

Methodology August 24, 2023

Segment	Available AADT Year	2021 AADT Estimate	Daytime Volume	Nighttime Volume	Cars (%)	Medium Trucks (%)	Heavy Trucks (%)	Commercial Vehicle (%)	Traffic Speed (km/hr)
King Street West (Regional Highway 2) at Martin Road									
Between Clarington Boulevard and Martin Road	2019	27,200	24,480	2,720	85%	6%	9%	15%	60
West of Clarington Boulevard	2019	24,400	21,960	2,440	85%	6%	9%	15%	60

¹ Traffic data provided by the transportation team and volumes estimated based on a 2% growth rate applied to existing AADT counts for roadways

Methodology August 24, 2023

Rail squeal noise occurs when the gauge of the track varies, and a train runs over it. The resulting sizing difference generates a grinding and squealing noise which is both a nuisance and a maintenance issue as reduces the lifetime of track. Typically, rail squeal occurs at track curvatures when the radii is less than 305m. As the problem is exacerbated by unpredictable factors such as installation, train types and weight, and track conditions predicting its occurrence is difficult as the phenomenon is extremely complex. Rail squeal noise has been modelled along the curved track segement at the beginning of the project corridor in Oshawa. Passenger train locomotive noise has been modelled at height of 2.5m and passenger cars at a height of 0.3m. A 5 dB penalty has been added to passenger car noise along this segment of track.

Additional parameters used in the noise model include topographical information and ground absorption. Topographical information for the rail corridors was provided by a LiDAR topographical data study. A global ground absorption coefficient of 0.5 was used for the Study Area representing a ground surface that is made up of an even combination of reflective and absorptive surfaces. In addition, a conservative reflection order of 2 was used for modelling. A summary of modelling parameters used in this assessment is provided in Appendix B.

4.3.2 Operation Vibration (Rail)

Under the Metrolinx Environmental Guide and Draft Protocol, potential impacts from rail vibration are assessed using modelling and field measurements. The Root Mean Square (RMS) vibration velocity, measured in units of millimeters per second (mm/s), is defined as the appropriate descriptor for vibration level for assessing annoyance.

The following approach was used to assess the potential vibration impact from rail:

- Identify representative measurement locations in the Study Area
- Conduct ground-borne vibration measurements for a minimum of 3 to 5 train passby events where possible
- Complete an assessment of vibration at the closest receptor and recommend mitigation measures, if necessary

4.3.3 Operation Noise (GO Station/Layover Facility Stationary Sources)

Sound levels are predicted at the receptors using the Cadna/A noise model and assessed with the MECP NPC-300 limits. Daytime, evening, and nighttime sound levels are predicted based on the noise sources operating at the GO stations and layover facility. Daytime hours are defined as 07:00 - 19:00, evening hours are defined as 19:00 - 23:00, and nighttime hours are defined as 23:00 - 07:00.

Methodology August 24, 2023

Four GO stations are proposed for this Project, and they are located at:

- 1. Fox Street (B1 Thornton's Corners East)
- 2. Front Street (B2 Ritson)
- 3. Courtice Road (B3 Courtice)
- 4. Bowmanville Avenue (B4 Bowmanville)

The following stationary noise sources are expected at each GO station:

- Emergency power generator
- Heating, Ventilation and Air-conditioning (HVAC) units
- PA System
- Idling buses
- Bus loop

Bus idling is included near bus shelters within the GO station area. The number of buses considered for this assessment are summarized in Table 4.10. A time-weighting of 3 minutes is considered in the model for bus idling.

Table 4.10: Modelled GO Station Bus Volumes

Station ID	Daytime Peak Hour Volume	Nighttime Peak Hour Volume		
B1 - Thornton's Corners East	6	3		
B2 - Ritson	6	3		
B3 - Courtice	6	3		
B4 - Bowmanville	6	2		

The emergency power generators are modelled separately as required by the guideline for GO stations and layover facility.

HVAC units and passenger announcement systems are modelled at the station platforms. Measured sound levels from typical GO station PA systems were used in the assessment. HVAC units were modelled using representative sound power levels from Stantec's noise database. A time weighting was applied for PA system based on typical operating times observed during site visits to GO stations. A 60 minute daytime hour and 30 minute nighttime hour time weighting was applied to HVAC sources.

Other sources such as exhaust fans and boilers at the GO stations are considered to be insignificant sources of noise as they are typically not audible and quieter than the significant noise sources such as bus loops and idling buses. Idling trains are assessed as part of the rail noise assessment as required by the guidelines.

Methodology August 24, 2023

An assessment of vibration is not required for the stationary sources as they are insignificant source of vibration and assumed to have negligible impact on nearby sensitive receptors.

The proposed layover facility, including a fueling station, is located just east of the Bowmanville GO Station. Two idling trains with two locomotives on the east end of the trains and an air compressor are modeled as significant noise sources. The layover facility also includes indoor fuel pumps and fuel storage tank exhausts which are considered to be insignificant sources based on their sizes, capacities, and locations. The noise impact of the two emergency generators is assessed separately as required by the NPC-300 guideline.

4.4 Monitoring

Monitoring is recommended to reduce public complaints and for investigating complaints during construction phase of the Project. Metrolinx Environmental Guidance document identifies two types of projects for construction monitoring:

Type 1 Projects

These are projects that are largely localized and "stationary", and they expose the same receptors to noise for an extended period of time. Examples of Type 1 projects include the construction of grade separation structures (bridges or tunnels), train stations, and rail maintenance facilities, as well as construction staging and laydown sites.

Type 2 Projects

Projects that are geographically "mobile" and do not expose the same receptors to noise for an extended period of time. These types of projects include rail track improvements.

The Bowmanville Rail Service Extension Project includes both Type1 and Type 2 project activities. Monitoring requirements, as recommended in the Metrolinx document are provided in Appendix C.

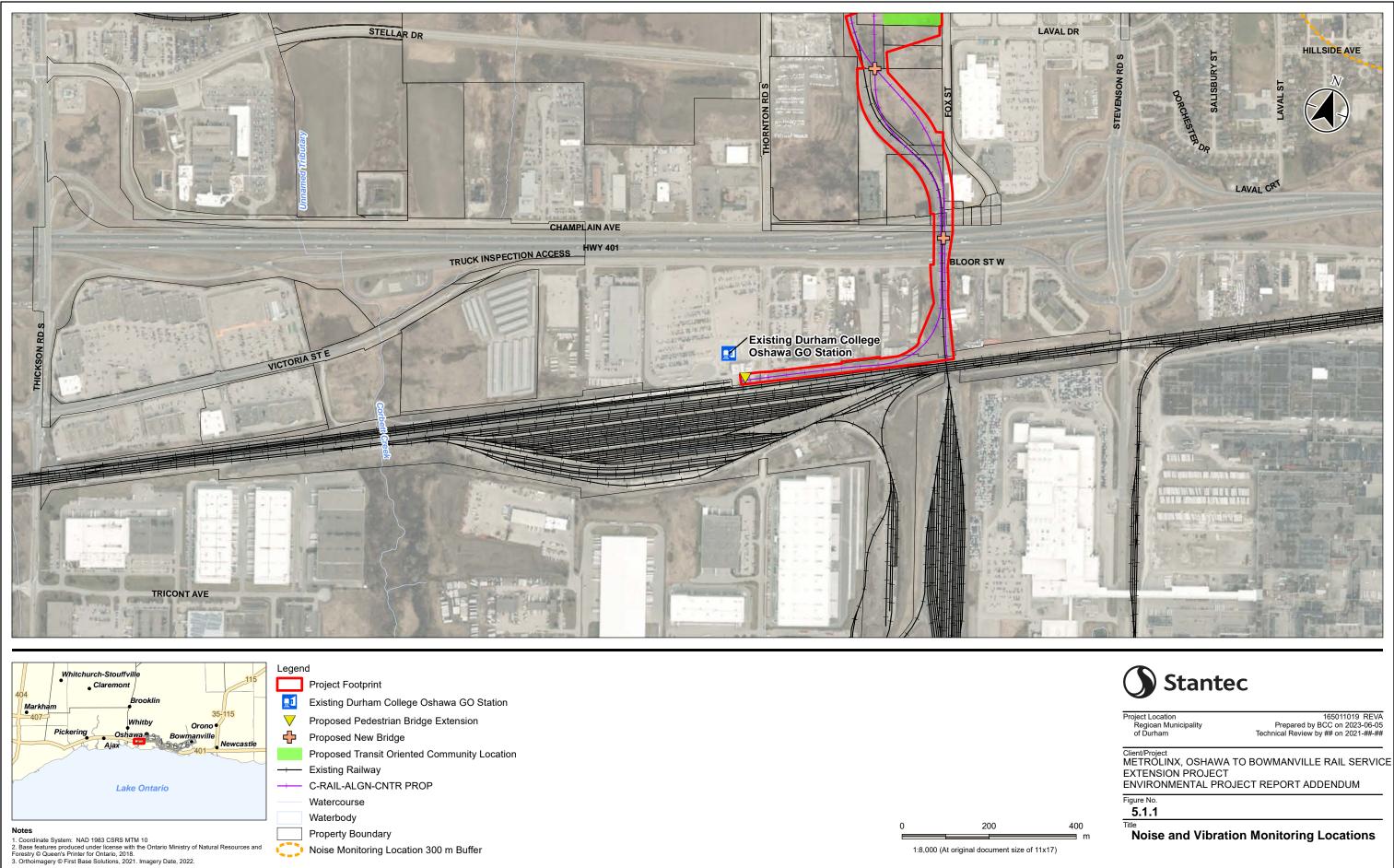
Pre-Project Conditions (Baseline) August 24, 2023

5.0 **Pre-Project Conditions (Baseline)**

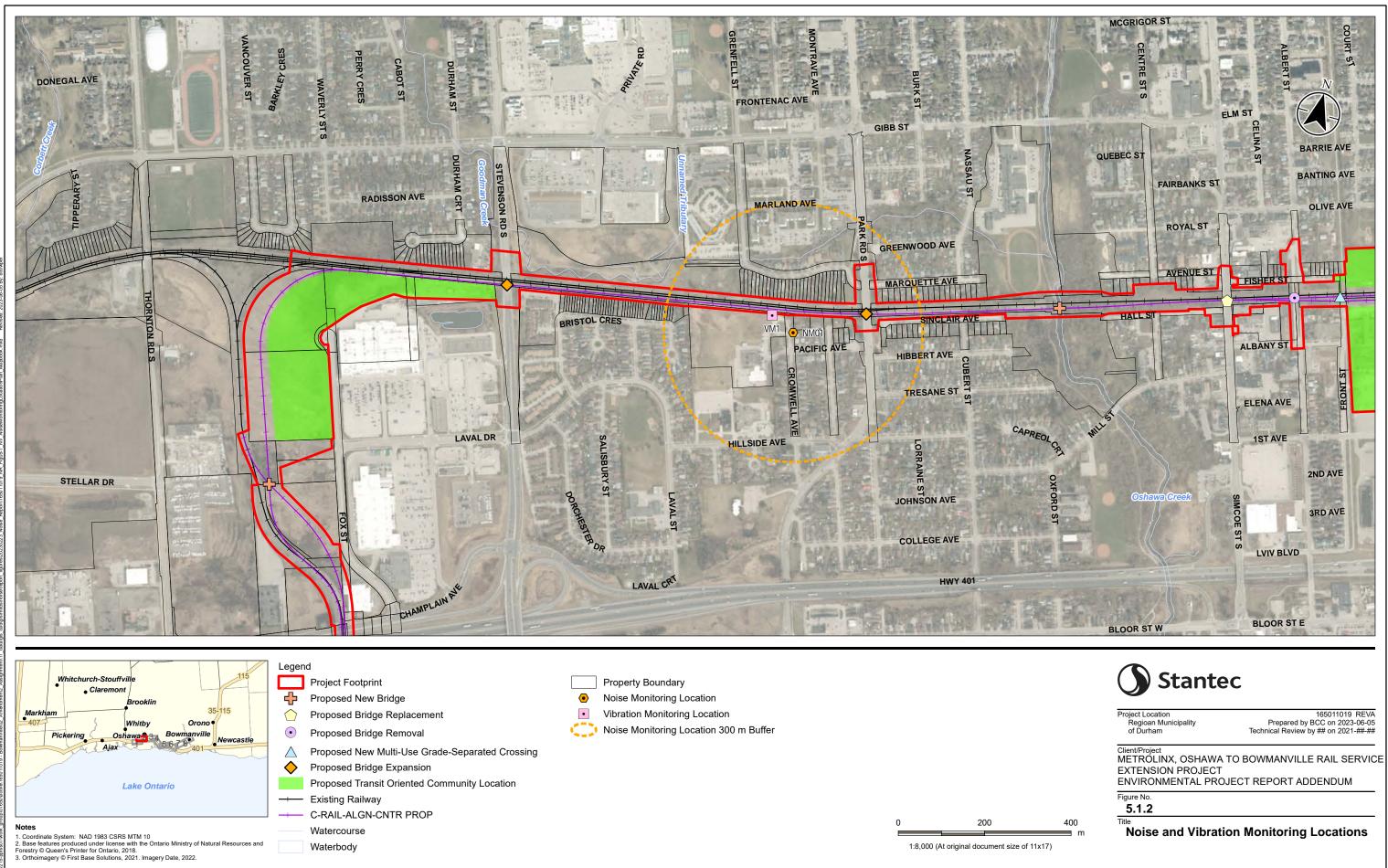
Baseline noise and vibration data was collected for the Project between May 3, 2021 and June 2, 2021. The following subsections discuss methodology, instrumentation, and results of the baseline noise and vibration data collection.

5.1 **Pre-Project Sound Levels**

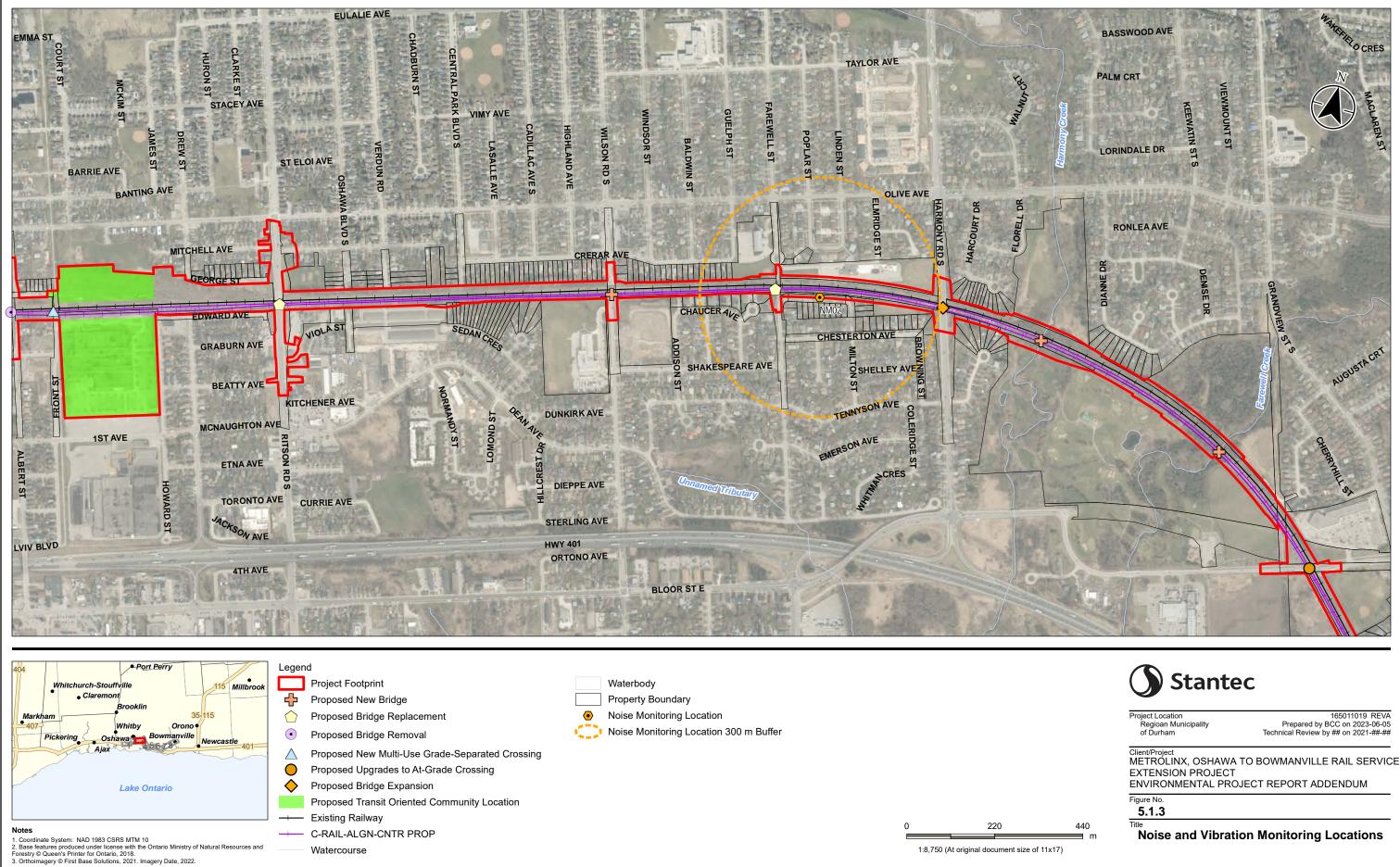
5.1.1 Measurement Methods

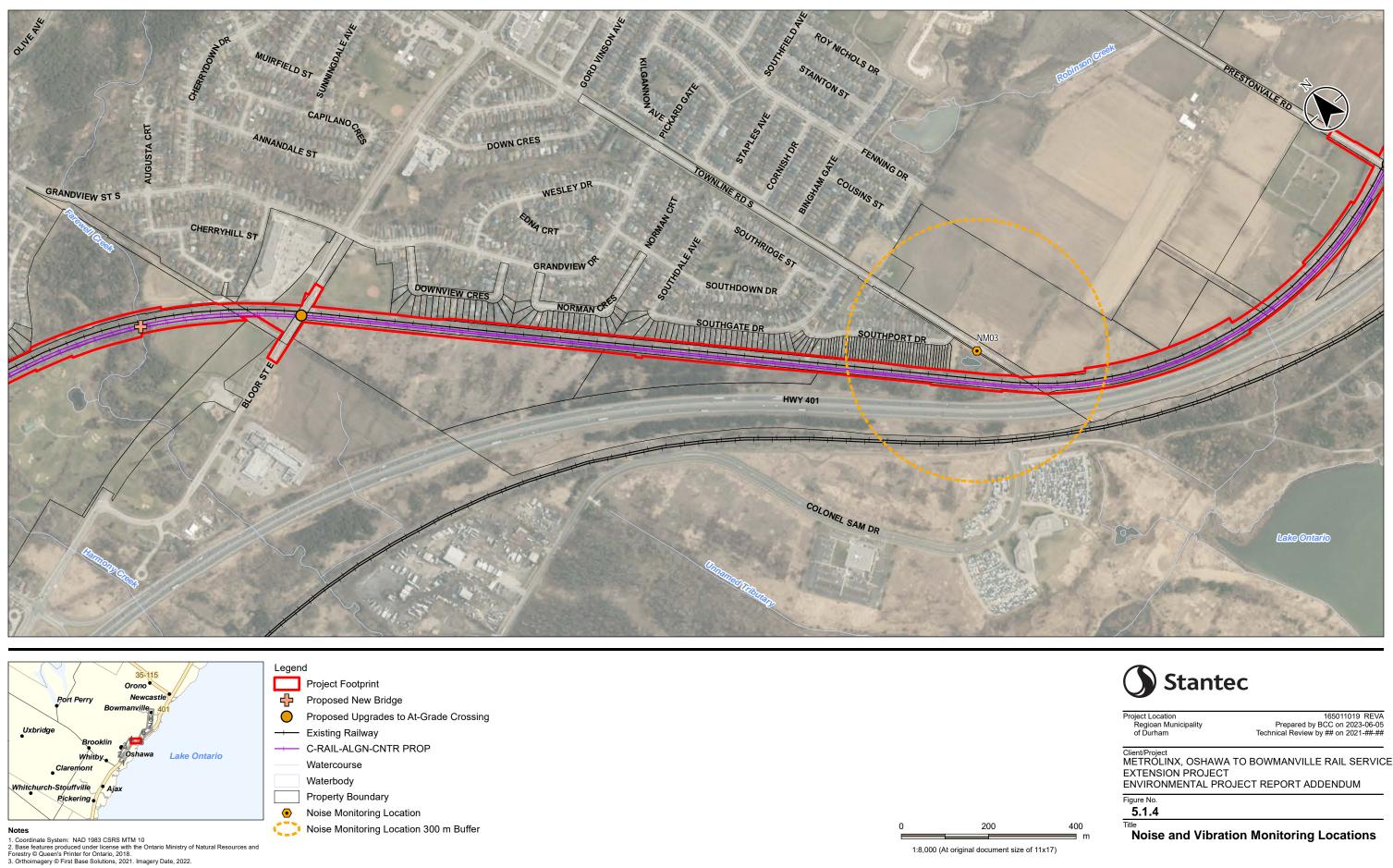

Baseline noise measurements were conducted at six locations representative locations within the Study Area. The baseline monitoring locations are shown in Figures 5.1.1 through 5.1.8. Measurements were completed using Type 1 sound level meters that were field calibrated before and after the measurements). A summary of the monitors, monitoring locations and equipment used is provided in Table 5.1.

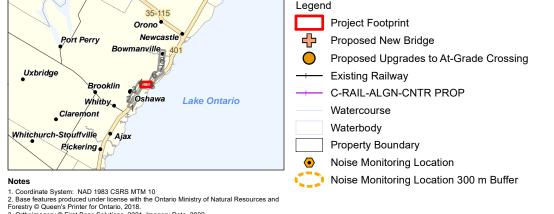
Monitor	Description	MTM Co	ordinates ¹	Monitor	Monitor	Serial Number
ID		Easting	Northing	Make	Model	
NM01	Cromwell Avenue South of ROW approximately 4 m above grade	355382	4860622	Larson Davis	LXT	4604
NM02	Keates Avenue South of ROW approximately 4 m above grade	358415	4861593	Larson Davis	LXT	4572
NM03	Southport Road North of ROW approximately 4 m above grade	360899	4860203	Convergence	NSRT-mk3	NSNUNIT3
NM04	Courtice Road North of ROW approximately 4 m above grade	363738	4860888	Convergence	NSRT-mk3	NSNUNIT6
NM05	Holt Road adjacent to South of ROW approximately 4 m above grade	366991	4861542	Convergence	NSRT-mk3	NSNUNIT2
NM06	Bowmanville Carpool Lot North of ROW approximately 4 m above grade	368735	48633397	Convergence	NSRT-mk3	NSNUNITA


Table 5.1: Monitoring Locations and Instrumentation

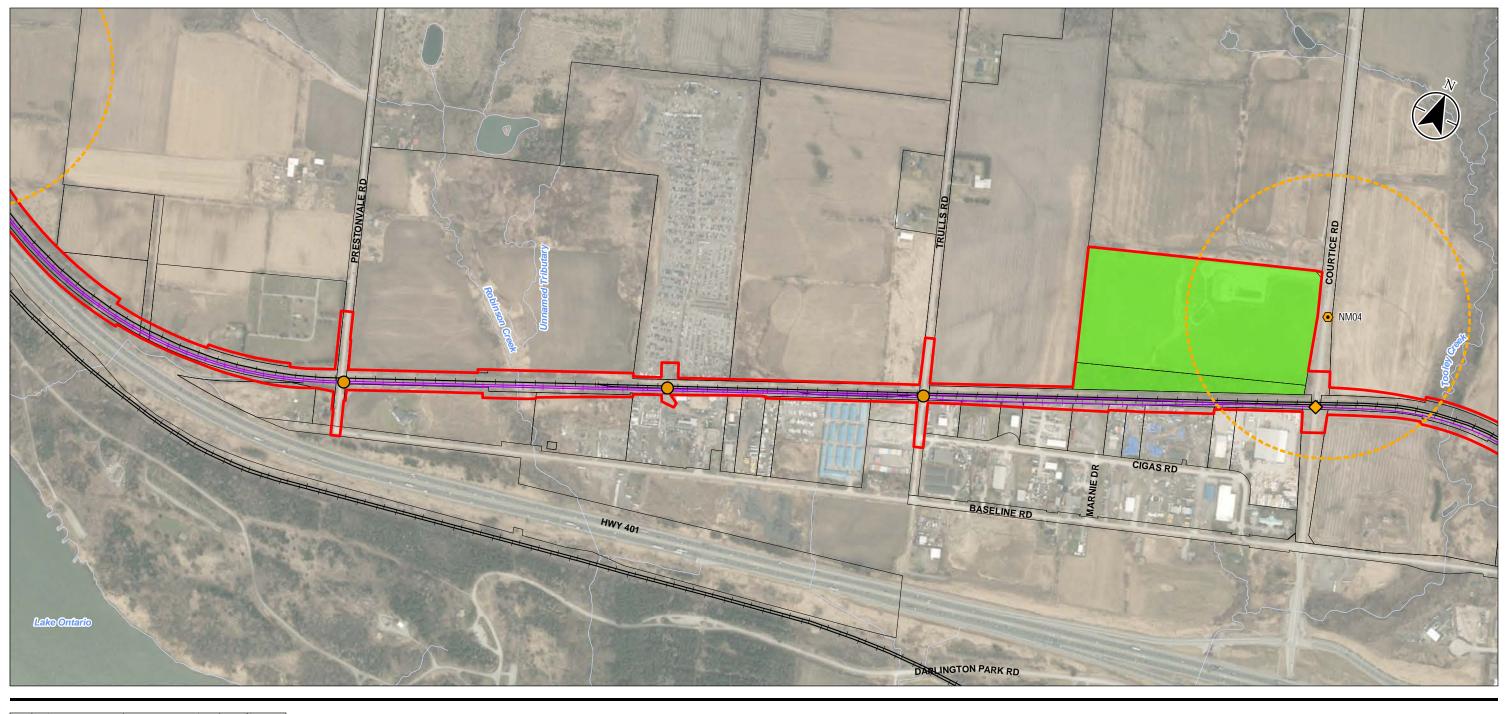
¹ MTM Reference Zone 16T

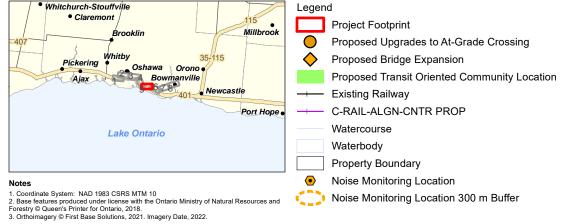



laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.



Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.




claimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

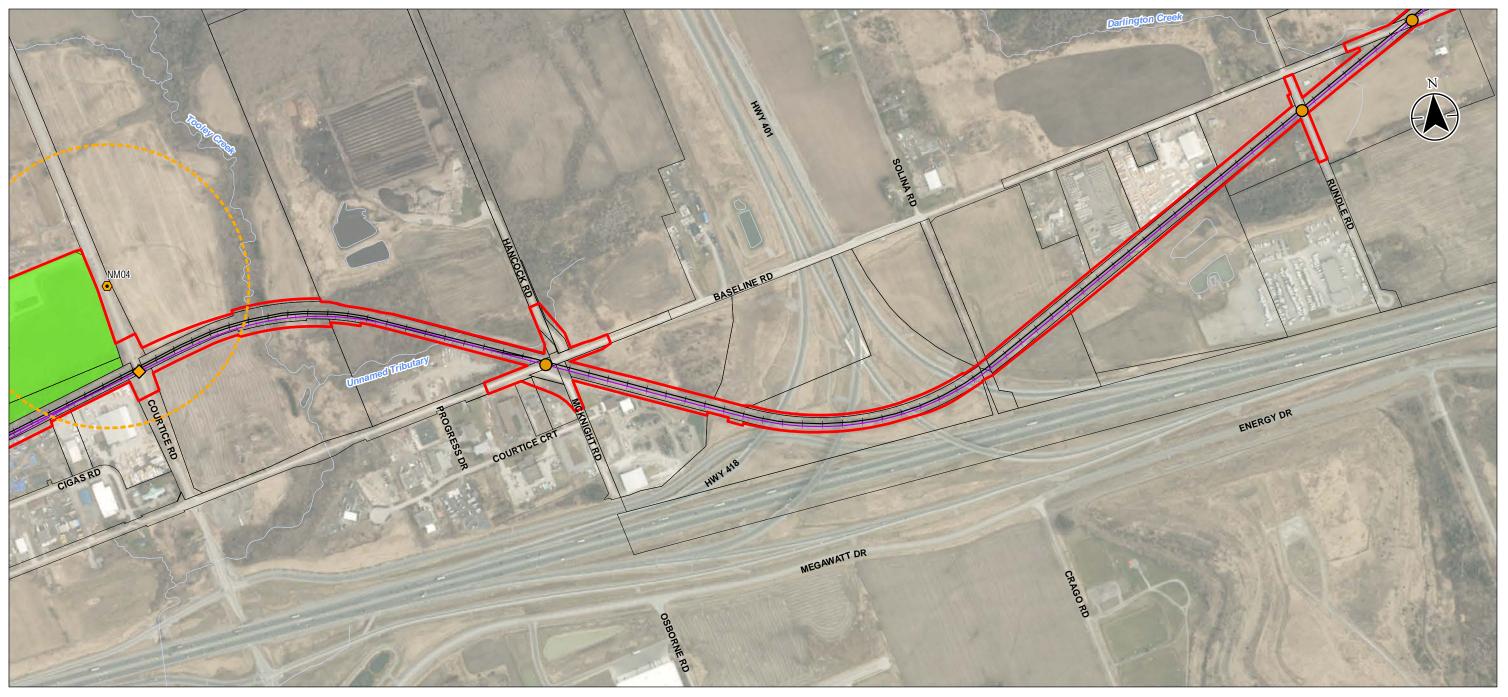
isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

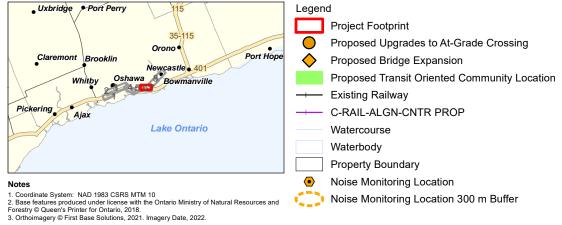
1:8,000 (At original document size of 11x17)

200

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##


Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

5.1.5 Title

400 ∎ m

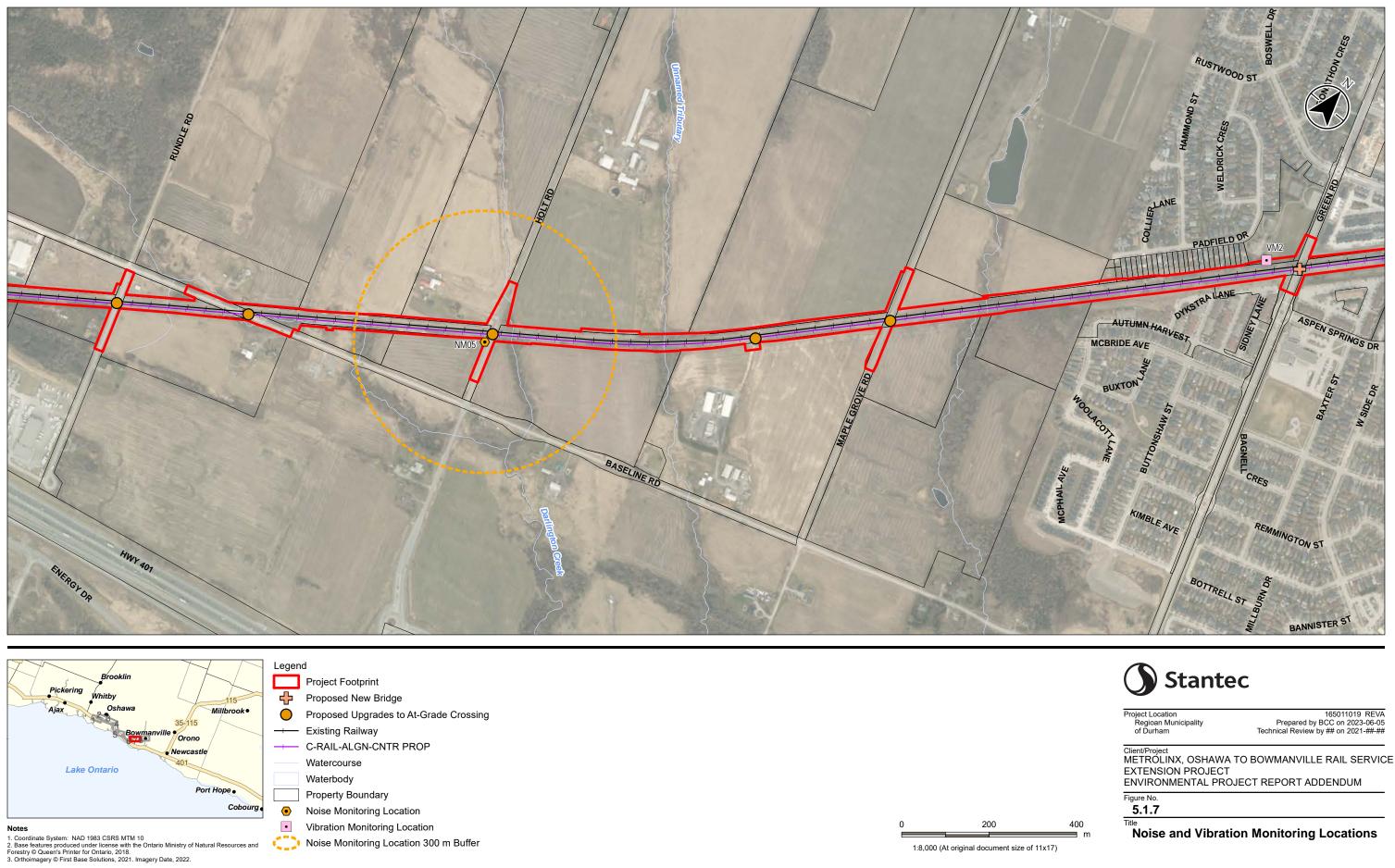
Noise and Vibration Monitoring Locations

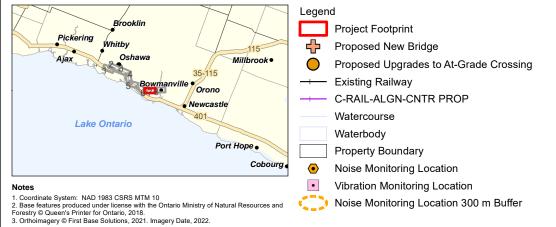
Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

200

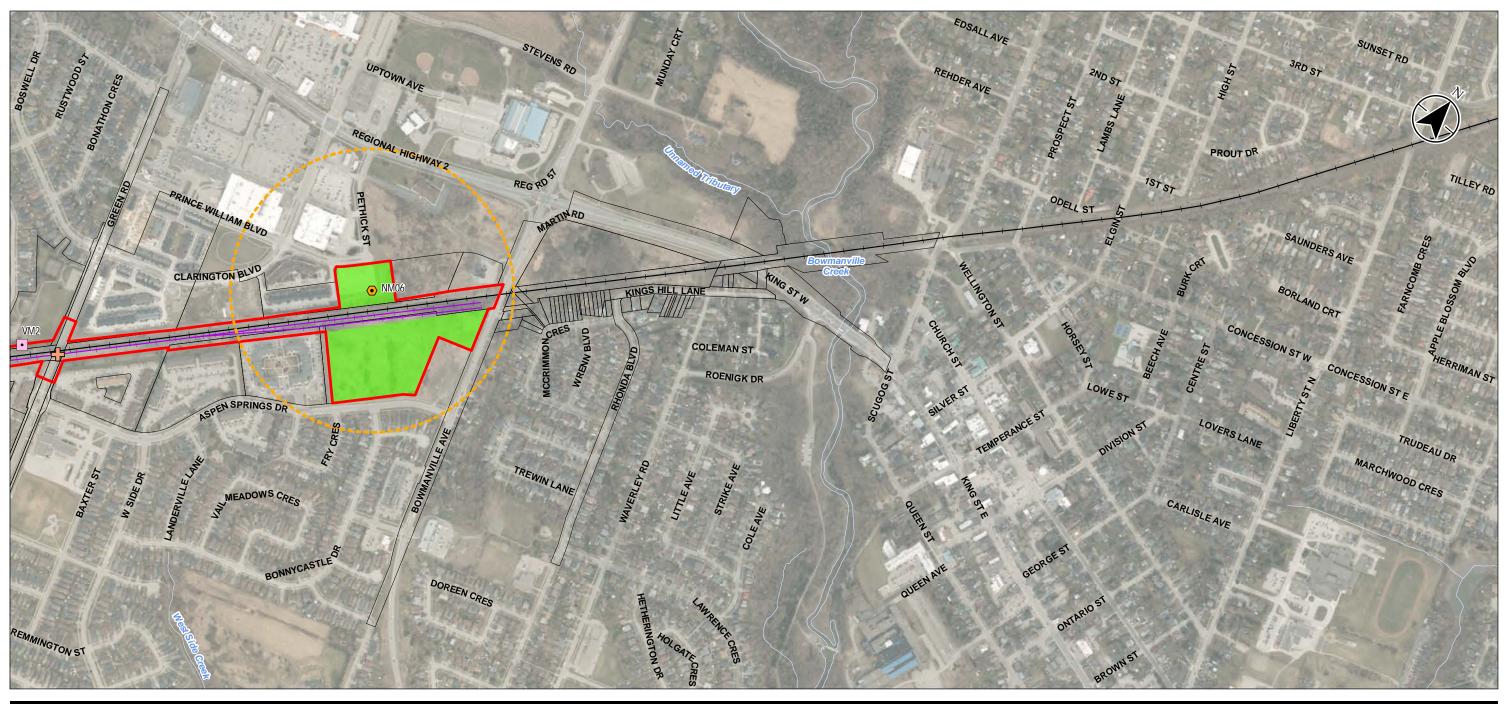
Project Location Regioan Municipality of Durham 165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.


5.1.6

400


Noise and Vibration Monitoring Locations

1:8,000 (At original document size of 11x17)

claimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

200

1:8,000 (At original document size of 11x17)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

5.1.8 Title

400 m

Noise and Vibration Monitoring Locations

Pre-Project Conditions (Baseline) August 24, 2023

5.1.2 Baseline Results

Measured sound levels were analyzed to exclude baseline noise data collected during inclement weather conditions, based on the criteria outline in MECP guideline NPC-103 "Procedures".

Inclement weather included the following conditions:

- Wind speeds greater than 20 km/hr
- Relative humidity greater than 90%
- Periods of precipitation
- Temperature less than -10°C or greater than 50°C

Measured sound levels are presented in Table 5.2. The data presented in this report excludes the baseline noise data collected during inclement weather conditions.

Monitor ID	Monitor Location and Description	Measured Daytime Sound Levels (L _{eq} (16)) (dBA)	Measured Nighttime Sound Levels (L _{eq} (8)) (dBA)	Measurement Notes
NM01	Cromwell Avenue South of ROW, approximately 4 m above grade	58	58	Elevated sound levels were due to proximity to
NM02	Keates Avenue South of ROW, approximately 4 m above grade	61	60	Highway 401, other major roadways, and the existing freight line
NM03	Southport Road North of ROW, approximately 4 m above grade	69	67	
NM04	Courtice Road North of ROW, approximately 4 m above grade	75	70	
NM05	Holt Road adjacent to South of ROW, approximately 4 m above grade	69	70	
NM06	Bowmanville Carpool Lot North of ROW, approximately 4 m above grade	60	58	

 Table 5.2:
 Measured Baseline Sound Levels

The sound levels reported in Table 5.2 were used to validate the noise model used for the Project. They are further discussed in the following section.

Pre-Project Conditions (Baseline) August 24, 2023

Hourly sound levels monitored at these locations are presented graphically in Appendix D.

5.1.3 Noise Model Validation

This section presents predicted existing sound levels at the monitoring locations and compared with the measured sound levels.

The acoustic model used road and rail traffic data detailed in Section 4.3 to predict existing sound levels. The existing daytime sound level ($L_{eq(16hr)}$) and the nighttime sound level ($L_{eq(8hr)}$) for the six noise monitoring locations were predicted and they are compared with the monitored sound levels in Table 5.3.

Monitor ID	Height (m)	Measured Daytime/ Nighttime Sound Levels (dBA)	Predicted Daytime/ Nighttime Sound Levels (dBA)	Difference in Sound Levels Day/Night (dB)	Rationale
NM01	4	58/58	63/63	5/5	Measured sound levels at NM01 are primarily driven by existing rail traffic noise. The justification behind measured sound levels being lower than predicted levels is likely due to fewer, smaller, and slower trains passing by during monitoring periods.
NM02	4	61/60	66/67	5/7	Measured sound levels at NM02 are primarily driven by existing rail traffic noise. The justification behind measured sound levels being lower than predicted levels is likely due to fewer, smaller, and slower trains passing by during monitoring periods.
NM03 ¹	4	69/67	70/68	1/1	Measured sound levels at NM03 are in reasonable agreement with modelled sound levels. Measured and modelled levels are high; however, this is due to the combined noise impact of consistent highway noise from Highway 401 and rail traffic along the CP corridor.

Table 5.3: Sound Level Comparison – Measured Vs Predicted

Pre-Project Conditions (Baseline) August 24, 2023

Monitor ID	Height (m)	Measured Daytime/ Nighttime Sound Levels (dBA)	Predicted Daytime/ Nighttime Sound Levels (dBA)	Difference in Sound Levels Day/Night (dB)	Rationale
NM04 ¹	4	75/70	72/66	-3/-4	Measured sound levels at NM04 are above modelled sound levels. The justification behind this difference is due to increased road traffic noise from Trulls Road. During the installation of monitoring equipment at NM04 Stantec staff noticed that vehicle acceleration noise was dominant at this location due to the speed limit increasing from 50 km/hr to 80 km/hr northbound along Trulls Road. TNM modelling for Trulls Road considers steady road traffic noise as there is no intersection nearby the monitoring location.
NM05 ¹	4	69/70	66/67	-3/-3	Measured sound levels at NM05 are above modelled sound levels. The justification behind this difference is due to Holt Road not being included in the TNM road traffic noise model due to insufficient road traffic data. Further, the monitoring location was adjacent to a rail crossing. During the installation of the monitor, Stantec staff observed that noise was generated from vehicles traversing the grade crossing resulting in additional noise impacts.
NM06	4	60/58	63/64	3/6	Measured sound levels at NM01 are primarily driven by existing rail traffic noise. The justification behind measured sound levels being lower than predicted levels is likely due to fewer, smaller, and slower trains passing by during monitoring periods.

¹ Higher sound levels measured from heavy road traffic and vehicle acceleration at this location.

Pre-Project Conditions (Baseline) August 24, 2023

Measured daytime and nighttime sound levels at NM01 are 5 dBA lower than the modelled sound levels while that at NM02 are 5-7 dBA lower than modelled sound levels. Based on field observations, this difference may be explained by slower train speeds and lower train volumes than modelled in this assessment. Trains at these locations (NM01 and NM02) were observed to be travelling at speeds of approximately 40-60 km/hr whilst trains were modelled at a maximum speed of 90 km/hr. Other factors such as less road traffic due to the COVID-19 pandemic may have contributed to the sound level difference at NM01 and NM02.

Measured daytime and nighttime sound levels at NM03 are 1 dBA lower than modelled levels. The modelled noise impact is considered within the range of acceptable tolerance.

Measured daytime and nighttime sound levels are approximately 3-4 dBA above modelled levels at NM04. Stantec observed vehicle acceleration noise was high at this location as the traffic speed increases from 50 km/hr to 80 km/hr south of the monitoring location. In addition, NM04 was located adjacent to the roadway that was used by a high volume of medium and heavy trucks.

Measured daytime and nighttime sound levels are 3 dBA above modelled levels at NM05. Road traffic noise from the adjacent roadway was not modelled due to a lack of traffic data. Considering this, the modelled noise impact is considered to be within the range of tolerance.

Measured daytime and nighttime sound levels are 3-6 dBA below modeled levels at NM06. Based on field observations, this difference may be explained by slower train speeds and lower train volumes than modelled.

The predicted sound levels are conservative in comparison with measured sound levels at NM01, NM02, NM03, and NM06. These areas are critical as they are located within the city limits of Oshawa and Bowmanville and are extensively developed areas surrounded by residences. Predicted sound levels at NM04 are below measured levels; however, they are considered acceptable given externalities such as acceleration noise specific to the measurements location as discussed above. Predicted sound levels at NM05 are considered to be in reasonable agreement with measured levels as they are within 3 dBA of measured sound levels and do not consider the impact of the adjacent roadway.

Based on these results, the Project noise model and the procedure followed for this assessment are considered appropriate for the purpose of determining Project sound levels. The modelled inputs, model configuration, and sample calculations are provided in Appendix B.

Pre-Project Conditions (Baseline) August 24, 2023

5.1.4 Pre-Project Sound Levels

The pre-project daytime sound levels $(L_{eq(16hr)})$ and the nighttime sound levels $(L_{eq(8hr)})$ were predicted at the representative receptor locations and are presented in Table 5.4. The predicted levels include sound levels from both road and rail traffic.

Receptor ID	Receptor Description	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16hr)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8hr)}
POR001	Two Storey Dwelling at 332 Vancouver	Façade	65	66
	Crescent	OLA	67	-
POR002	Two Storey Dwelling at 352 Vancouver Crescent	Façade	66	66
		OLA	67	-
POR003	Two Storey Dwelling at 368 Vancouver	Façade	63	63
	Crescent	OLA	65	-
POR004	Two Storey Residence at 389 Durham	Façade	66	66
	Court	OLA	67	-
POR005	Two Storey Residence at 363 Durham Court	Façade	64	64
		OLA	65	-
POR006	Two Storey Residence at 345 Durham Court	Façade	65	63
		OLA	66	-
POR007	Two Storey Residence at 420 Bristol	Façade	66	64
	Crescent	OLA	67	-
POR008	wo Storey Residence at 372 Bristol	Façade	65	65
	Crescent	OLA	66	-
POR009	Two Storey Residence at 334 Sheffield	Façade	65	66
	Court	OLA	67	-
POR010	Two Storey Residence at 460 Grenfell	Façade	63	63
	Street	OLA	66	-
POR011	Two Storey Residence at 492 Grenfell	Façade	65	66
	Street	OLA	66	-
POR012	Two Storey Residence at 540 Grenfell	Façade	63	62
	Street	OLA	64	-
POR013	Two Storey Residence at 413	Façade	65	65
	Cromwell Avenue	OLA	66	-

Table 5.4: Pre-Project Sound Levels

Receptor ID	Receptor Description	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16hr)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8hr)}
POR014	Two Storey Residence at 431	Façade	66	66
	Montrave Avenue	OLA	67	-
POR015	Two Storey Residence at 257	Façade	67	67
	Marquette Avenue	OLA	68	-
POR016	Two Storey Residence at 213	Façade	65	66
	Marquette Avenue	OLA	66	-
POR017	Two Storey Residence at 181	Façade	65	66
	Marquette Avenue	OLA	67	-
POR018	Two Storey Residence at 257 Sinclair	Façade	64	63
	Avenue	OLA	60	-
POR019	One Storey Residence at 215 Sinclair	Façade	64	64
	Avenue	OLA	60	-
POR020	One Storey Residence at 167 Sinclair Avenue	Façade	64	65
		OLA	64	-
POR021	Two Storey Residence at 85 Hall Street	Façade	64	64
		OLA	60	-
POR022	One Storey Residence at 423 Centre	Façade	64	64
	Street South	OLA	64	-
POR023	Two Storey Residence at 11 Hall	Façade	66	65
	Street	OLA	64	-
POR024	Two Storey Residence at 83 Avenue	Façade	65	65
		OLA	66	-
POR025	Two Storey Residence at 394 Centre	Façade	65	65
	Street South	OLA	66	-
POR026	One Storey Residence at 25 Avenue	Façade	67	67
		OLA	69	-
POR027	Two Storey Residence at 38 Fisher	Façade	65	64
	Street	OLA	60	-
POR028	Two Storey Residence at 74 Fisher	Façade	65	65
	Street	OLA	59	-
POR029	One Storey Residence at 214 George	Façade	63	63
	Street	OLA	59	-

Receptor ID	Receptor Description	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16hr)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8hr)}
POR030	One Storey Residence at 258 George Street	Façade	65	62
		OLA	64	-
POR031	Two Storey Residence at 419 Drew	Façade	65	65
	Street	OLA	65	-
POR032	Two Storey Residence at 249 Edward Avenue	Façade	65	64
		OLA	63	-
POR033	One Storey Residence at 396 Oshawa	Façade	67	68
	Boulevard South	OLA	66	-
POR034	One Storey Residence at 398 Verdun	Façade	67	68
	Road	OLA	66	-
POR035	One Storey Residence at 400 Central	Façade	67	67
	Park Boulevard South	OLA	64	-
POR036	One Storey Residence at 410 Sedan	Façade	63	64
	Crescent	OLA	64	-
POR037	One Storey Residence at 446 Brest	Façade	62	63
	Crescent	OLA	63	-
POR038	One Storey Residence at 485 Crerar	Façade	63	63
	Avenue	OLA	64	-
POR039	One Storey Residence at 541 Crerar	Façade	65	64
	Avenue	OLA	66	-
POR040	One Storey Residence at 603 Crerar	Façade	65	65
	Avenue	OLA	66	-
POR041	One Storey Residence at 641 Crerar	Façade	64	64
	Avenue	OLA	65	-
POR042	Three Storey Residence at 596	Façade	66	67
	Chaucer Avenue	OLA	68	-
POR043	Three Storey Residence at 424 Austen	Façade	66	67
	Court	OLA	66	-
POR044	One Storey Residence at 393 Farewell	Façade	61	61
	Street	OLA	60	-
POR045	Two Storey Place of Worship at 399	Façade	66	66
	Elmridge Street	OLA	-	-

Receptor ID	Receptor Description	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16hr)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8hr)}
POR046	One Storey Residence on Wicklow	Façade	61	59
	Court	OLA	63	-
POR047	Two Storey Residence at 429 Milton Street	Façade	66	66
		OLA	67	-
POR048	Two Storey Residence at 791	Façade	63	63
	Chesterton Avenue	OLA	64	-
POR049	Two Storey Residence at 420 Harcourt	Façade	63	62
	Drive	OLA	64	-
POR050	Two Storey Residence at 452 Harcourt	Façade	64	65
	Drive	OLA	66	-
POR051	One Storey Residence at 464	Façade	63	63
	Tennyson Court	OLA	65	-
POR052	Two Storey Residence at 446 Dianne	Façade	63	63
	Drive	OLA	64	-
POR053	Two Storey Residence at 486 Dianne	Façade	62	62
	Drive	OLA	63	-
POR054	Two Storey Residence at 1094 Street	Façade	64	64
	Andrews Court	OLA	65	-
POR055	Two Storey Residence at 1082 Street	Façade	64	64
	Andrews Court	OLA	65	-
POR056	Two Storey Residence at 1094 Street	Façade	66	66
	Andrews Court	OLA	67	-
POR057	Two Storey Residence at 762	Façade	66	66
	Downview Crescent	OLA	66	-
POR058	Two Storey Residence at 1113	Façade	68	68
	Norman Crescent	OLA	69	-
POR059	Two Storey Residence at 924	Façade	69	70
	Southgate Drive	OLA	71	-
POR060	Two Storey Residence at 984	Façade	69	69
	Southport Drive	OLA	70	-
POR061	Two Storey Residence at 1074	Façade	70	70
	Southport Drive	OLA	71	-

Receptor ID	Receptor Description	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16hr)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8hr)}
POR062	Two Storey Residence at 1018 Prestonvale Road	Façade	70	70
		OLA	71	-
POR063	Two Storey Residence at 1218 Trulls	Façade	57	57
	Road	OLA	57	-
POR064	One Storey Residence at 2048	Façade	63	61
	Baseline Road West	OLA	62	-
POR065	One Storey Residence at 2074	Façade	63	63
	Baseline Road West	OLA	64	-
POR066	Two Storey Residence at 2091	Façade	62	62
	Baseline Road West	OLA	63	-
POR067	Two Storey Residence at 1108 Holt	Façade	65	65
	Road	OLA	66	-
POR068	Two Storey Residence at 34 Autumn Harvest Road	Façade	60	61
		OLA	59	-
POR069	Two Storey Residence at 34 Dykstra Lane	Façade	61	62
		OLA	62	-
POR070	Two Storey Residence at 56 Dykstra	Façade	61	61
	Lane	OLA	61	-
POR071	Two Storey Residence at 95 Dykstra	Façade	60	61
	Lane	OLA	58	-
POR072	Two Storey Residence at 187 Padfield	Façade	63	64
	Drive	OLA	63	-
POR073	Two Storey Residence at 143 Padfield	Façade	62	63
	Drive	OLA	64	-
POR074	Two Storey Residence at 95 Padfield	Façade	62	63
	Drive	OLA	63	-
POR075	Four Storey Apartment Building at 128	Façade	61	62
	Aspen Springs Drive	OLA	53	-
POR076	Future Three Storey Residence at	Façade	62	63
	1423 Green Road	OLA	63	-
POR077	Future Three Storey Residence at 2	Façade	63	64
	Lord Elgin Lane	OLA	64	-

Pre-Project Conditions (Baseline) August 24, 2023

Receptor ID	Receptor Description	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16hr)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8hr)}
POR078	Future Three Storey Residence at 57	Façade	64	65
	Clarington Boulevard	OLA	64	-
POR079	Future Three Storey Residence at 55	Façade	63	64
	Clarington Boulevard	OLA	64	-
POR080	Three Storey Residence at 61	Façade	63	64
	Clarington Boulevard	OLA	56	-
POR081	Three Storey Residence at 94 Aspen	Façade	62	63
	Springs Drive	OLA	64	-
POR082	Three Storey Residence at 90 Aspen Springs Drive	Façade	62	63
		OLA	64	-
POR083	Four Storey Residence at 84 Aspen Springs Drive	Façade	63	64
		OLA	55	-
POR084	Four Storey Residence at 80 Aspen	Façade	63	64
	Springs Drive	OLA	56	-
POR091	11 Storey Apartment Residence at 64	Façade	64	65
	Albany Street	OLA	-	-
POR092	One Storey Residence at 418 Front	Façade	66	67
	Street	OLA	65	65
POR093	25 Storey Apartment Residence at 10	Façade	63	61
	Aspen Springs Drive	OLA	-	-
POR094	4 Storey Apartment Residence at 63	Façade	63	62
	Albany Street	OLA	-	-
POR095	5 Storey Apartment Residence at 446	Façade	62	62
	Simcoe Street	OLA	-	-

Background sound levels at all PORs within the project area are elevated due to the presence of existing traffic from major roads and rail corridor.

Sample noise calculations are provided in Appendix B.

Pre-Project Conditions (Baseline) August 24, 2023

5.2 **Pre-Project Vibration Levels**

Baseline vibration measurements were conducted by Stantec at two representative locations within the Study Area between May 25, 2021 and June 2, 2021. The measurement locations were chosen based on the proposed track alignment and they were at the northwest corner of the Cromwell Avenue roundabout in Oshawa (VM01) and southwest corner of Green Park in Bowmanville (VM02). Based on the current CP Rail track alignment, the closest existing receptor to the north of the corridor is approximately 20 m from the centerline and that to the south is approximately 30 m from the centerline. A summary of separation distances from the main CP Rail track to PORs is provided as Table 5.5. The proposed rail corridor tracks are to be installed south of the existing CP Rail track (closer the receptors south of the corridor). Drawings showing the location of the proposed GO rail track within the existing rail corridor are provided in Appendix A.

Receptor ID	Receptor Description	Approximate Separation Distance (m)
POR001	Two Storey Dwelling on Vancouver Crescent	31
POR002	Two Storey Dwelling on Vancouver Crescent	30
POR003	Two Storey Dwelling on Vancouver Crescent	43
POR004	Two Storey Residence on Durham Court	30
POR005	Two Storey Residence on Durham Court	47
POR006	Two Storey Residence on Durham Court	51
POR007	Two Storey Residence on Bristol Crescent	47
POR008	Two Storey Residence on Bristol Crescent	41
POR009	Two Storey Residence on Bristol Crescent	34
POR010	Two Storey Residence on Grenfell Street	57
POR011	Two Storey Residence on Grenfell Street	35
POR012	Two Storey Residence on Grenfell Street	69
POR013	Two Storey Residence on Cromwell Avenue	41
POR014	Two Storey Residence on Cromwell Avenue	33
POR015	Two Storey Residence on Marquette Avenue	28
POR016	Two Storey Residence on Marquette Avenue	36
POR017	Two Storey Residence on Marquette Avenue	34
POR018	Two Storey Residence on Sinclair Avenue	53
POR019	One Storey Residence on Sinclair Avenue	45

Table 5.5:	POR Setback Distance to Current Alignment
------------	---

Receptor ID	Receptor Description	Approximate Separation Distance (m)
POR020	One Storey Residence on Sinclair Avenue	46
POR021	Two Storey Residence on Hall Street	49
POR022	One Storey Residence on Hall Street	42
POR023	Two Storey Residence on Hall Street	48
POR024	Two Storey Residence on Avenue Street	38
POR025	Two Storey Residence on Avenue Street	41
POR026	One Storey Residence on Avenue Street	28
POR027	Two Storey Residence on Fisher Street	47
POR028	Two Storey Residence on Fisher Street	47
POR029	One Storey Residence on George Street	65
POR030	One Storey Residence on George Street	69
POR031	Two Storey Residence on Edward Avenue	43
POR032	Two Storey Residence on Edward Avenue	47
POR033	One Storey Residence on Oshawa Boulevard S	23
POR034	One Storey Residence on Verdun Road	23
POR035	One Storey Residence on Central Park Boulevard	23
POR036	One Storey Residence on Sedan Crescent	50
POR037	One Storey Residence on Brest Crescent	73
POR038	One Storey Residence on Crerar Avenue	55
POR039	One Storey Residence on Crerar Avenue	56
POR040	One Storey Residence on Crerar Avenue	38
POR041	One Storey Residence on Crerar Avenue	39
POR042	Three Storey Residence on Chaucer	28
POR043	Three Storey Residence on Chaucer	28
POR044	One Storey Residence on Elmridge Street	52
POR045	Two Storey Place of Worship on Elmridge Street	30
POR046	One Storey Residence on Wicklow Court	103
POR047	Two Storey Residence on Keates Avenue	29
POR048	Two Storey Residence on Chesterton Avenue	52
POR049	Two Storey Residence on Harcourt Drive	53
POR050	Two Storey Residence on Harcourt Drive	38
POR051	One Storey Residence on Tennyson Court	53
POR052	Two Storey Residence on Dianne Drive	58

Receptor ID	Receptor Description	Approximate Separation Distance (m)
POR053	Two Storey Residence on Dianne Drive	65
POR054	Two Storey Residence on Street Andrews Court	52
POR055	Two Storey Residence on Street Andrews Court	50
POR056	Two Storey Residence on Downview Crescent	39
POR057	Two Storey Residence on Downview Crescent	41
POR058	Two Storey Residence on Norman Crescent	30
POR059	Two Storey Residence on Southgate Drive	29
POR060	Two Storey Residence on Southport Drive	37
POR061	Two Storey Residence on Southport Drive	42
POR062	Two Storey Residence on Prestonvale Road	66
POR063	Two Storey Residence on Trulls Road	371
POR064	One Storey Residence on Baseline Road W	125
POR065	One Storey Residence on Baseline Road W	67
POR066	Two Storey Residence on Baseline Road W	104
POR067	Two Storey Residence on Holt Road	38
POR068	Two Storey Residence on Autumn Harvest Road	52
POR069	Two Storey Residence on Dykstra Lane	55
POR070	Two Storey Residence on Dykstra Lane	55
POR071	Two Storey Residence on Dykstra Lane	55
POR072	Two Storey Residence on Padfield Drive	44
POR073	Two Storey Residence on Padfield Drive	45
POR074	Two Storey Residence on Padfield Drive	44
POR075	Four Storey Apartment Building on Aspen Springs Drive	71
POR076	Future Three Storey Residence on Lord Elgin Drive	48
POR077	Future Three Storey Residence on Lord Elgin Drive	40
POR078	Future Three Storey Residence on Clarington Boulevard	36
POR079	Future Three Storey Residence on Clarington Boulevard	39
POR080	Three Storey Residence on Clarington Boulevard	45
POR081	Three Storey Residence on Aspen Springs Drive	51
POR082	Three Storey Residence on Aspen Springs Drive	50
POR083	Four Storey Residence on Aspen Springs Drive	52
POR084	Four Storey Residence on Aspen Springs Drive	51
POR091	11 Storey Apartment Residence at 64 Albany Street	63

Pre-Project Conditions (Baseline) August 24, 2023

Receptor ID	Receptor Description	Approximate Separation Distance (m)
POR092	One Storey Residence at 418 Front Street	12
POR093	25 Storey Apartment Residence at 10 Aspen Springs Drive	76
POR094	4 Storey Apartment Residence at 63 Albany Street	100
POR095	5 Storey Apartment Residence at 446 Simcoe Street	102

5.2.1 Measurement Methods

Based on the setbacks with the current and future alignment, measurements were taken at 15 m, 20 m, 25 m, and 30 m from the centerline of the existing CP Rail track. Baseline vibration measurement locations VM01 and VM02 are shown in Figure 5.1.2 and Figure 5.1.8.

The measurements were completed using a Crystal Instruments model CoCo-80X 8 channel Dynamic Signal Analyzer with PCB Piezotronic model 393B12 (PCB 393B31) seismic high sensitivity ICP accelerometers. Each PCB 393B31 accelerometer was connected to an aluminum plate which was fastened into the ground using ground spikes. The CoCo-80X meets the requirements of ISO 8041:2005 and is designed to measure per ISO 2631-1, 2, and 5 and ISO 5349. The PCB model 393B31 accelerometer is a high sensitivity, ceramic ICP® accelerometer with a sensitivity of 10V/g capable of measuring low vibration levels. The measurement system was factory calibrated in the last 12 months.

The ground was prepared by removing the top layer of loose soil. A flat plate was then spiked to the prepared ground surface. The sensors were connected to collected measurements vertical axis as the levels were significantly higher than other directions.

5.2.2 Data Analysis

The vibration was measured in acceleration and the data converted to velocity using a time constant of 1 second to provide real-time vibration velocity levels in millimeters per second (mm/s). The maximum observed RMS vibration levels were used as a measure of pre-project vibration levels and are presented in Table 5.6. RMS vibration velocities for each train pass-by are graphically presented in Appendix D.

Pre-Project Conditions (Baseline) August 24, 2023

Passby Event	Monitoring	Maximum Measured RMS Vibration (mm/s)					
	Location	15 m Setback	20 m Setback	25 m Setback	30 m Setback		
Passby 1		0.315	0.210	0.174	0.170		
Passby 2		0.273	0.189	0.174	0.148		
Passby 3	VM1	0.151	0.079	0.072	0.063		
Passby 4]	0.120	0.068	0.119	0.061		
Passby 5		0.136	0.095	0.077	0.061		
Passby 6		0.342	0.211	0.189	0.139		
Passby 7	-	0.279	0.188	0.134	0.093		
Passby 8	\/M2	0.366	0.161	0.178	0.121		
Passby 9	VM2	0.276	0.187	0.138	0.092		
Passby 10]	0.301	0.177	0.154	0.097		
Passby 11		0.269	0.192	0.196	0.121		
Maximum Value		0.366	0.211	0.196	0.170		

Table 5.6: Measured Vibration Levels

Vibration levels were measured for freight train passbys. Vibration levels generated by freight trains are typically higher than that those of typical passenger trains.

Criteria for operation vibration was determined based on the measured vibration levels generated by the existing CP Rail train movements. Based on the measurements, a vibration limit of 0.175 mm/s (RMS) was considered for the Project operation rail vibration assessment for the existing dwellings. All new developments are assessed with a vibration limit of 0.14 mm/s (RMS).

Potential Effects, Mitigation and Monitoring August 24, 2023

6.0 Potential Effects, Mitigation and Monitoring

6.1 Construction Assessment

Both emission-based and receptor-based noise assessments were completed for the Project construction in accordance with the MECP Publication NPC-115 and NPC-118 and the Metrolinx Environmental Guide. The construction vibration was assessed in accordance with the Metrolinx Environmental Guide and MOEE/GO Draft Protocol.

The results of the construction noise and vibration assessments are discussed in detail in the following subsections.

6.1.1 Construction Noise Assessment

An emission-based noise assessment was completed using the list of construction equipment (Table 4.1) proposed for the Project construction. The construction equipment reference sound levels were compared to the applicable sound level limits outlined in MECP NPC-115 and NPC-118. Reference sound levels for the preliminary list of equipment that considered for this assessment are compared with the NPC-115 and NPC-118 limits and presented in Table 6.1. For equipment that were not listed in the NPC-115 or NPC-118, criteria for acoustically comparable equipment was used.

Equipment	Reference Sound Pressure Level at 15 m (dBA) ¹	NPC-115/NPC-118 Sound Level Limit at 15 m (dBA)	Meets NPC- 115/NPC-118 Sound Level? (Yes/No)
Asphalt spreader	85	85	Yes
Backhoe	80	85	Yes
Ballast regulator	82	85	Yes
Bobcat	80	85	Yes
Boom truck	80	85	Yes
Caisson auger	85	100	Yes
Compactor	82	85	Yes
Concrete breaker	85	85	Yes
Concrete pump	82	85	Yes
Concrete saw	90	85	No ²
Concrete truck	85	85	Yes
Crane	83	85	Yes
Drill	85	100	Yes

 Table 6.1:
 Construction Equipment Noise Emission Assessment

Potential Effects, Mitigation and Monitoring August 24, 2023

Equipment	Reference Sound Pressure Level at 15 m (dBA) ¹	NPC-115/NPC-118 Sound Level Limit at 15 m (dBA)	Meets NPC- 115/NPC-118 Sound Level? (Yes/No)
Dump truck	84	85	Yes
Dynamic stabilizer	82	85	Yes
Earth scraper	85	85	Yes
Flatbed truck	84	85	Yes
Front-end loader	80	85	Yes
Grader	85	85	Yes
Pavement roller	85	85	Yes
Pavement saw	90	85	No ²
Pile auger	85	100	Yes
Pile driver	101	100	No ²
Rail drill	85	100	Yes
Rail saw	90	100	Yes
Speed swing	80	85	Yes
Spike machine	80	85	Yes
Track liner/tamper	82	85	Yes
Water truck	84	85	Yes
Welder	73	85	Yes
Zoom boom	80	85	Yes

Notes:

¹ Reference sound pressure levels for the listed equipment were obtained from the US FTA Manual and FHWA RCNM.

² These equipment units have potential to exceed the applicable MECP limits and precautions/noise control feasibility should be investigated if they are used near sensitive receptors.

The equipment reference sound levels presented in Table 6.1 show that most equipment can be operated in compliance with the MECP limits; however, there is the potential for higher sound levels than the permissible limits for some equipment. Once equipment and construction schedules are finalized, the equipment noise data should be reviewed prior to start of construction to confirm that noise emissions are below the permissible limits. If the sound levels are higher than the limits, noise control options should be explored and implemented for compliance.

Potential Effects, Mitigation and Monitoring August 24, 2023

The construction noise ZOI was established as part of the receptor-based construction noise assessment per the Metrolinx Environmental Guide. For each construction phase, ZOI for construction noise was calculated based on the type, quantity and duty cycle of the construction equipment listed in Table 4.5. Construction noise ZOIs were established for the receptor-based Project construction noise exposure limits, as summarized in Table 6.2 (e.g., 85 dBA, 80 dBA, 75 dBA, 70 dBA) that account for the surrounding type of land uses (e.g., Industrial, Commercial, Residential, and Institutional) and expected construction periods (i.e., daytime limits for weekdays).

The construction noise ZOIs calculated for various noise exposure limits for all known Project construction phases are summarized in Table 6.2.

Project	Construction Phases	ZOI (m)			
Components		Industrial Receptors (85 dBA)	Commercial Receptors (80 dBA)	Residential Receptors (75 dBA)	Institutional Receptors (70 dBA)
Track and	Grading	13	27	54	104
Grading	Track	9	20	44	88
Bridge Replacement	Utility Relocation and Road Closure	9	17	32	62
	Demolition of Existing Bridge	10	20	41	78
	Abutment Construction	31	56	100	179
	Span construction	4	7	15	33
	Road Re-instatement	9	16	29	56
	Site Cleanup	4	7	13	27
New Bridge	Utility Relocation and Road Closure	9	17	32	62
	Abutment Construction	31	56	100	179
	Span construction	4	7	15	33
	Road Re-instatement	9	16	31	59
	Site Cleanup	4	7	13	27
Modified Bridge	Removals and Site Preparation	9	17	32	61
	Abutment Underpinning	14	26	47	87
	Site Cleanup	4	7	13	27

Table 6.2: Construction Noise ZOI

Potential Effects, Mitigation and Monitoring August 24, 2023

Project	Construction Phases	ZOI (m)				
Components		Industrial Receptors (85 dBA)	Commercial Receptors (80 dBA)	Residential Receptors (75 dBA)	Institutional Receptors (70 dBA)	
Stations	Clearing	7	15	32	64	
	Parking Construction	7	13	28	58	
	Building/Platform Construction	6	12	23	47	
Crossing Widening	Removals and Reconstruction	5	9	19	45	

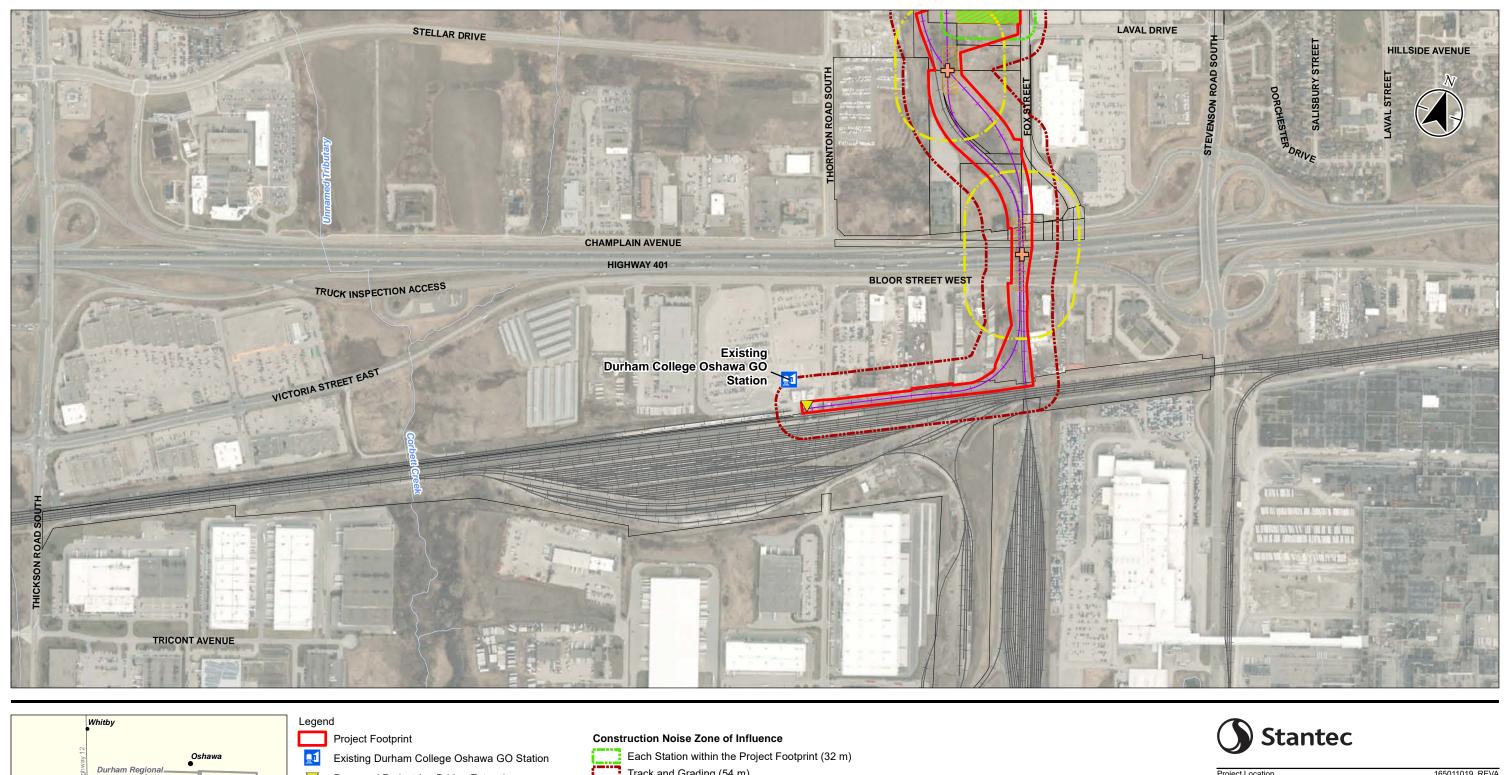
The construction noise ZOIs presented in Table 6.2 are the minimum setback distances relative to the Project components work area required to maintain noise compliance with the applicable noise exposure limits. The setback distances vary depending on the construction phase and noise exposure limits. Generally, the setback distance increases as the noise exposure limit decreases (i.e., noise limit becomes more stringent).

Depending on the construction phase, some of the residential, institutional, and commercial PORs considered in this study are within the established noise ZOI and hence be impacted. A summary of the potentially impacted residential, institutional, and commercial PORs is presented in Table 6.3. No industrial PORs were identified within the applicable noise ZOIs; therefore, no impacts are expected at the surrounding industrial PORs to the Project Footprint.

Table 6.3: Potentially Impacted PORs from Construction Noise

Land Use	Impacted PORs
Residential	All residential PORs modelled along the corridor, except POR001, POR028C, POR063, POR066, POR091, POR093, POR094, POR095
Institutional	POR045, and POR085 through POR088
Commercial	POR089 and POR090

The extent of the construction noise ZOI depends on the setback distances presented in Table 6.2 and the actual operating location of the construction equipment within the activity-specific work area. The maximum construction noise ZOI extent results from the equipment operating at the activity-specific work area boundary. In the absence of Project component construction area details, construction noise ZOIs were established relative to the Project Footprint.



Potential Effects, Mitigation and Monitoring August 24, 2023

For each construction Project component, the construction noise ZOI varies with the construction phase. The most impactful construction phase is the phase with the largest setback distance (i.e., largest noise ZOI) needed for Project compliance. To show how the noise ZOI changes as a function of the most impactful construction phase from each construction Project component, ZOI maps for the residential noise exposure limit are presented in Figure 6.1.1 through Figure 6.1.8.

Maps identifying the potentially impacted residential, institutional and commercial areas are presented in Figure 6.2.1 through Figure 6.2.8. Noise mitigation is recommended for those areas and are discussed in the mitigation section of this report.

Based on the results of the construction noise assessment, physical noise control and/or limitations on construction activity for compliance are recommended. To assist with planning, the minimum equipment setbacks for compliance, noise mitigation and monitoring are recommended and discussed in Section 6.2.

- \bigtriangledown Proposed Pedestrian Bridge Extension
- ᠿ Proposed New Bridge
 - Proposed Transit Oriented Community Location
 - Existing Railway
 - Proposed GO Track(s)
 - Watercourse
 - Waterbody
- Property Boundary
- **Construction Areas**
- A Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry @ Queen's Printer for Ontario, 2018.
 3. Orthoimagery @ First Base Solutions, 2023. Imagery Date, 2022
 4. Only the most impactful zone of influence for each construction activity is shown in this form.

Lake Ontario

Municin

Notes

Track and Grading (54 m) Bridge Replacement/New Bridge (100 m)

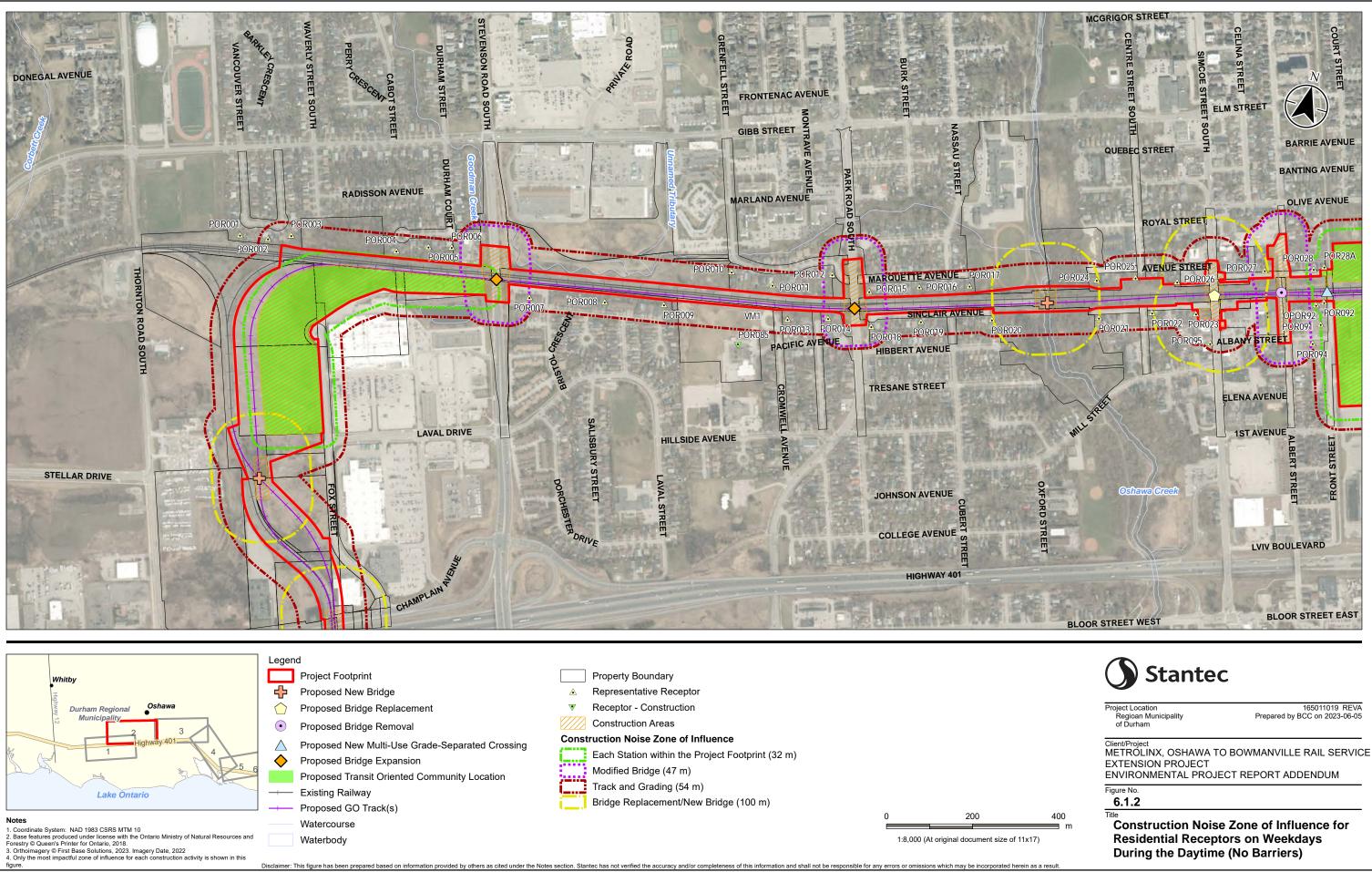
200

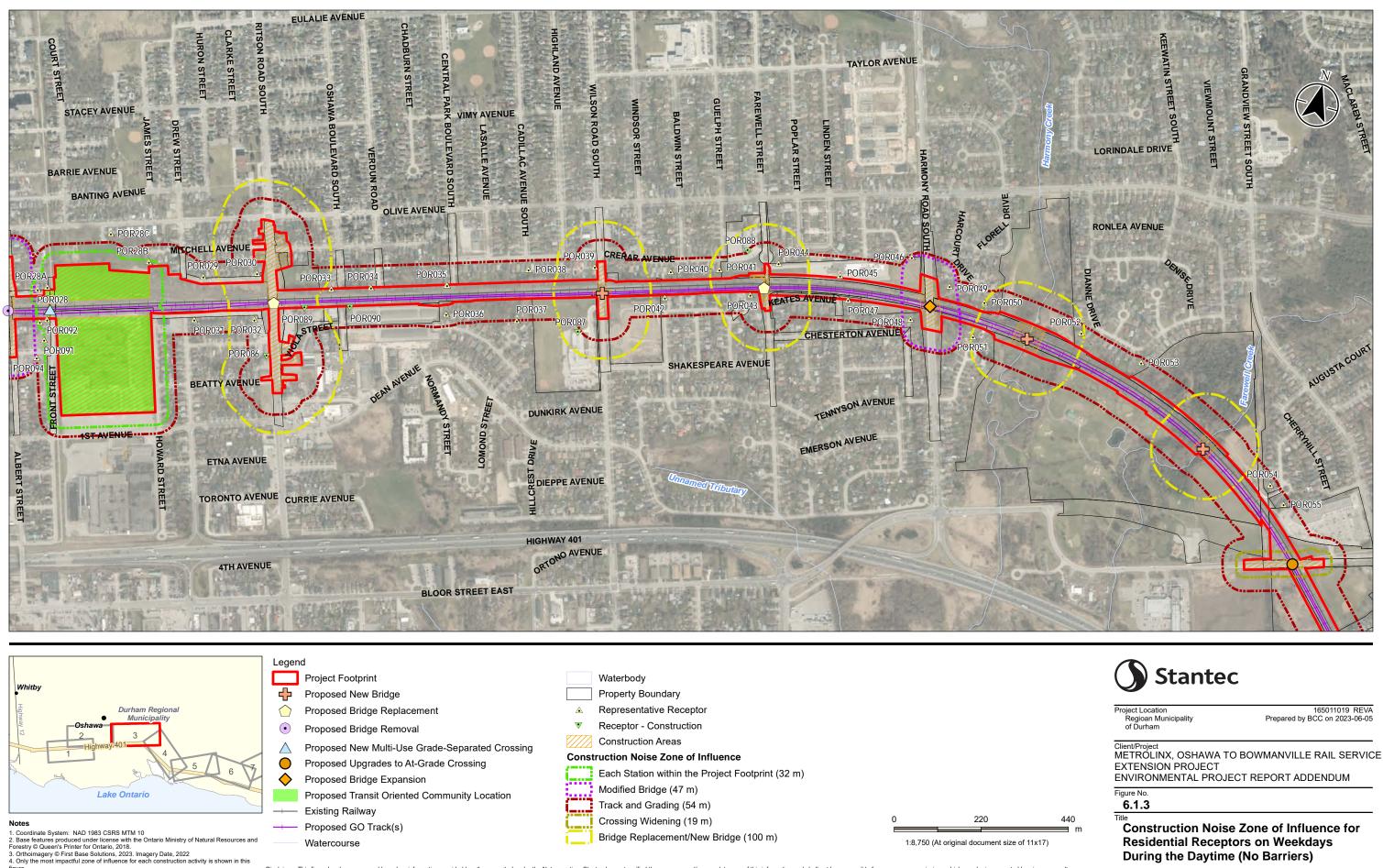
1:8,000 (At original document size of 11x17)

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Project Location Regioan Municipality of Durham

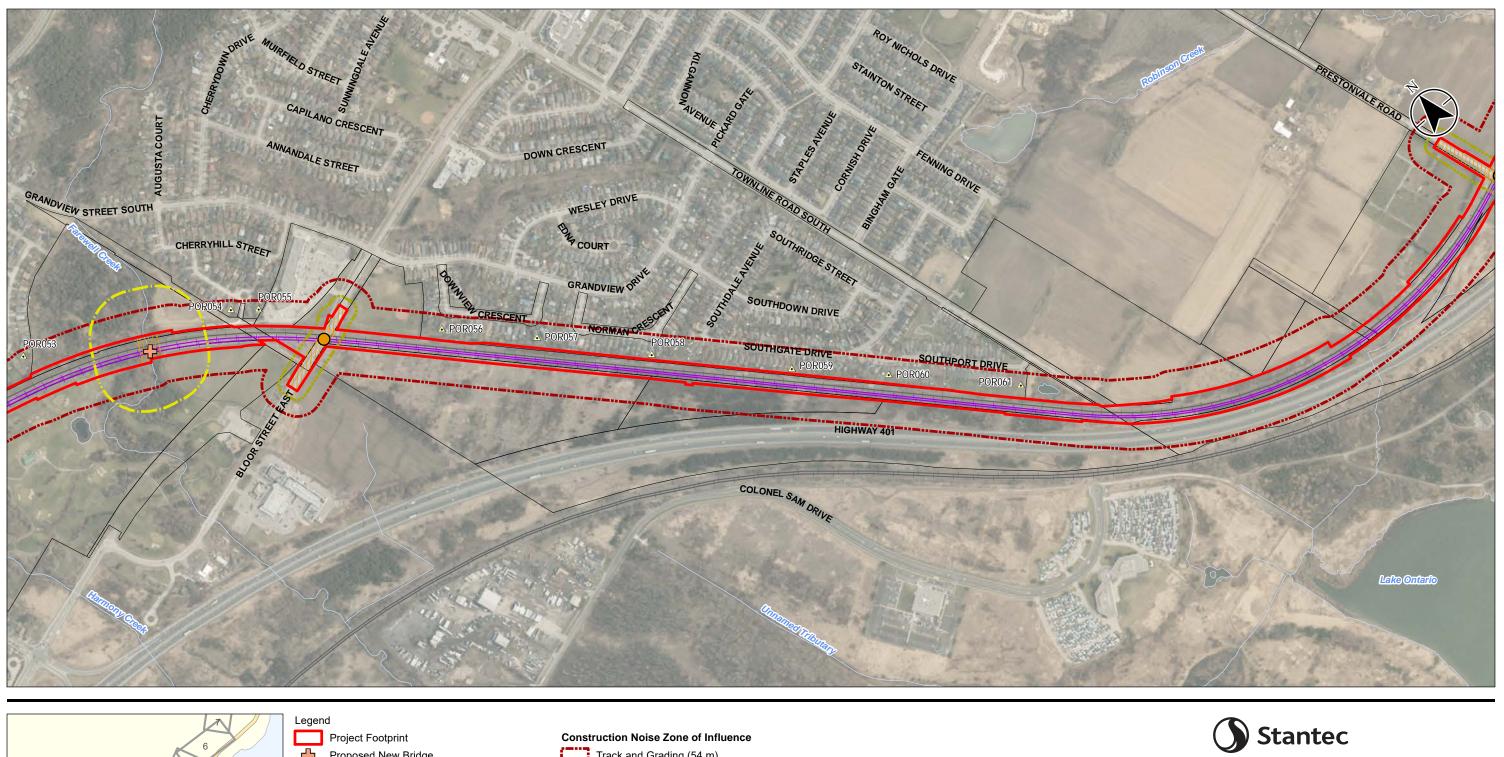
165011019 REVA Prepared by BCC on 2023-06-05

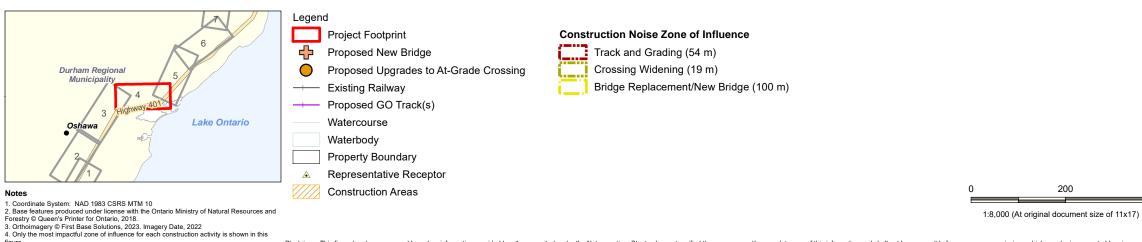

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

6.1.1

400 m


Title **Construction Noise Zone of Influence for Residential Receptors on Weekdays** During the Daytime (No Barriers)



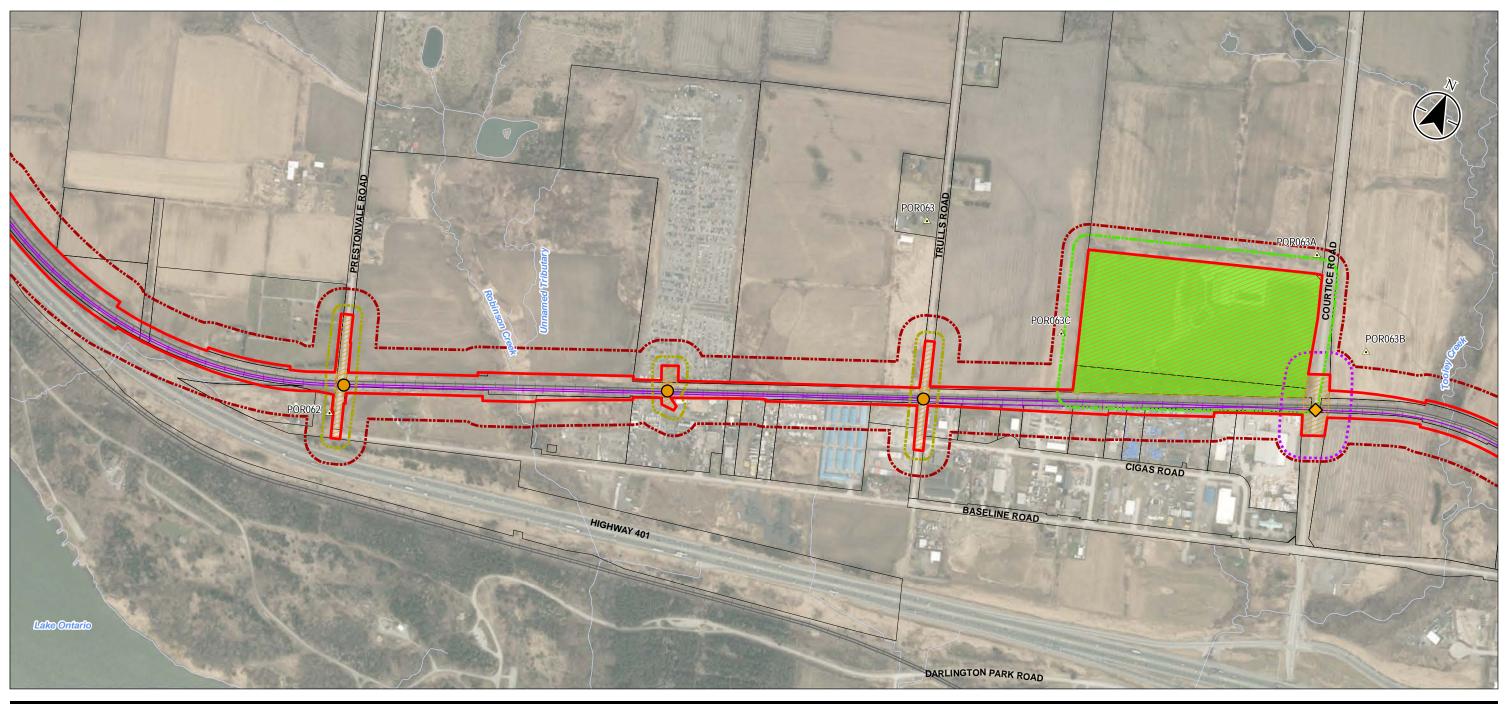
Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result

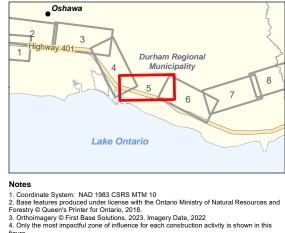
During the Daytime (No Barriers)

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05


Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

6.1.4

400 m

Title **Construction Noise Zone of Influence for Residential Receptors on Weekdays** During the Daytime (No Barriers)

Legend

- Project Footprint \bigcirc Proposed Upgrades to At-Grade Crossing
- \diamond Proposed Bridge Expansion
- Proposed Transit Oriented Community Location
- Existing Railway
- Proposed GO Track(s)
- Watercourse
- Waterbody
- Property Boundary
- ▲ Representative Receptor
- **Construction Areas**

Construction Noise Zone of Influence

- Each Station within the Project Footprint (32 m)
- Modified Bridge (47 m)
- Track and Grading (54 m)
- Crossing Widening (19 m)

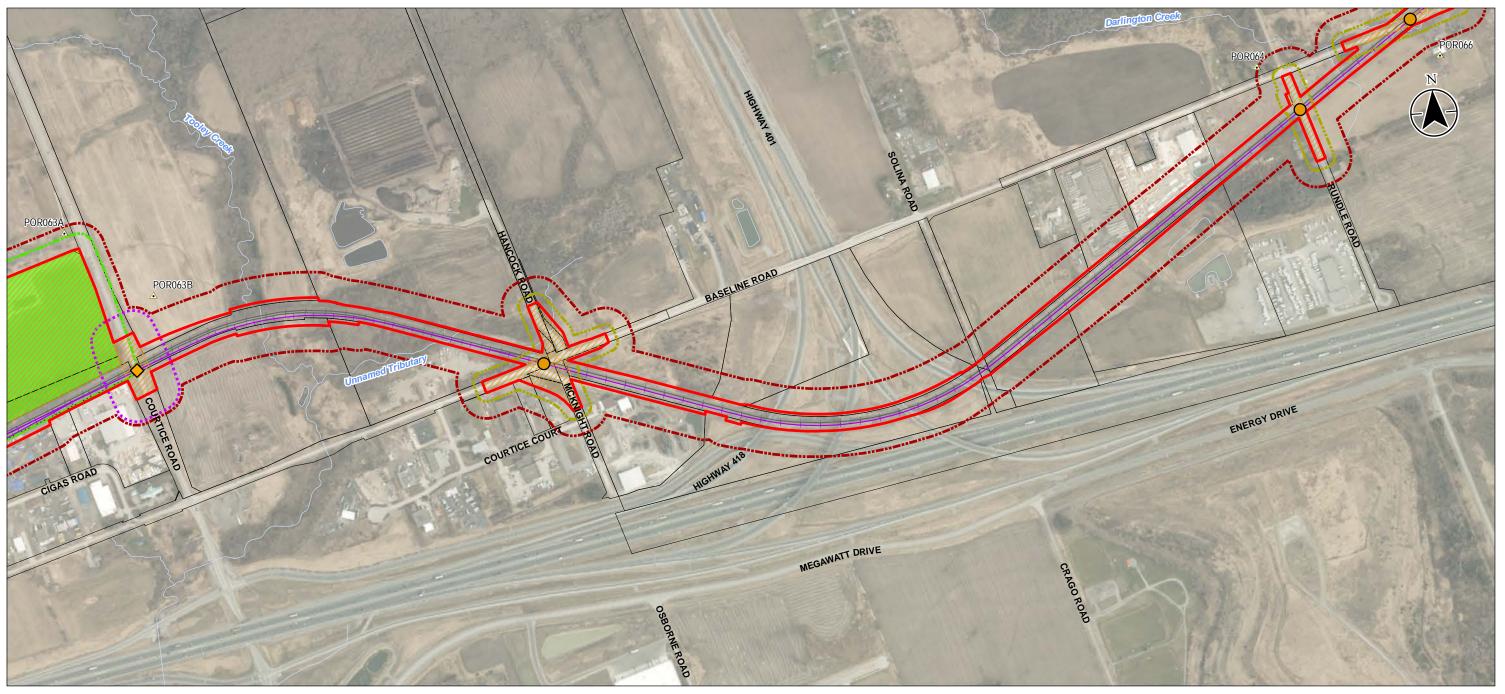
200

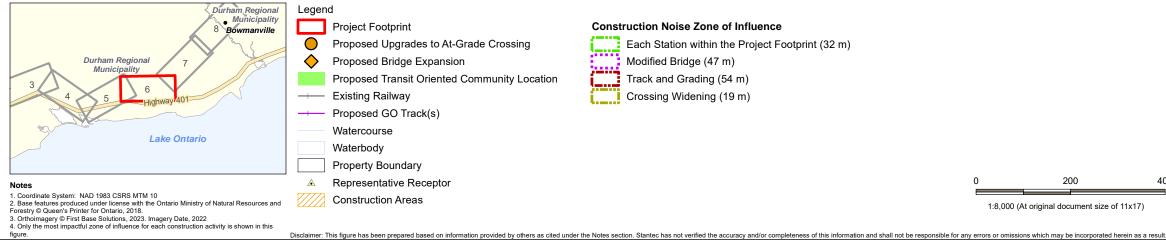
1:8,000 (At original document size of 11x17)

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05


Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

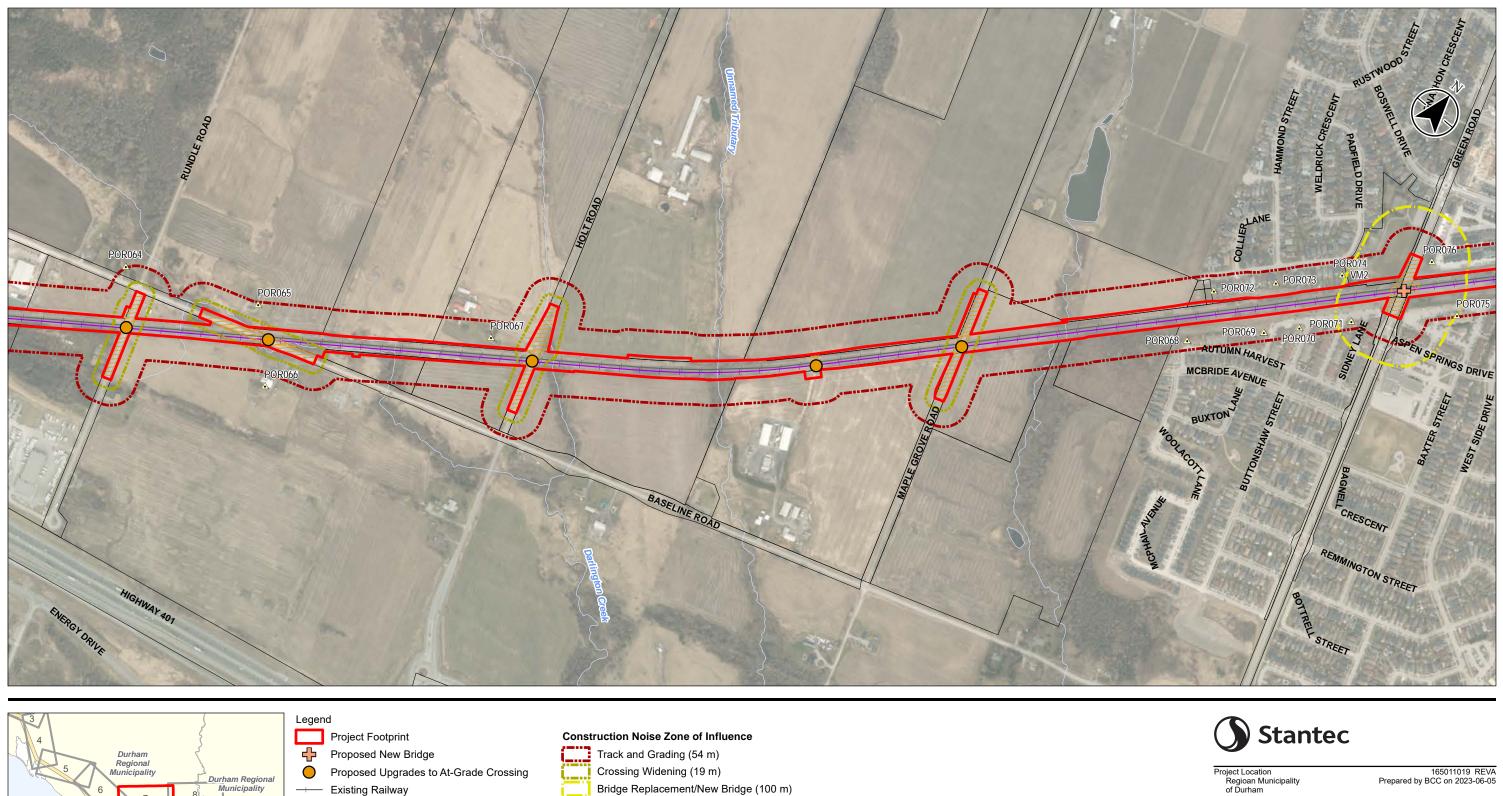
6.1.5 Title

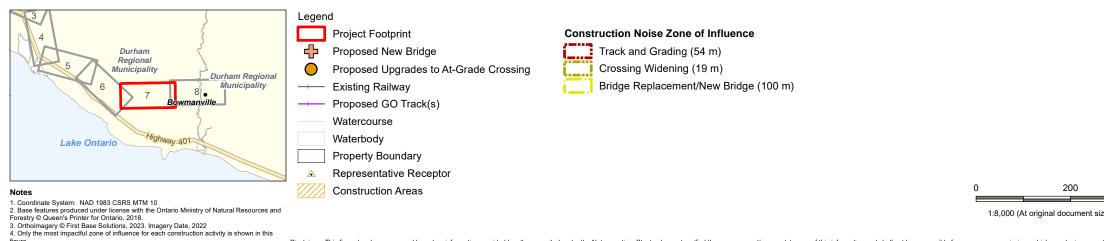
400 m

Construction Noise Zone of Influence for **Residential Receptors on Weekdays** During the Daytime (No Barriers)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05


Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

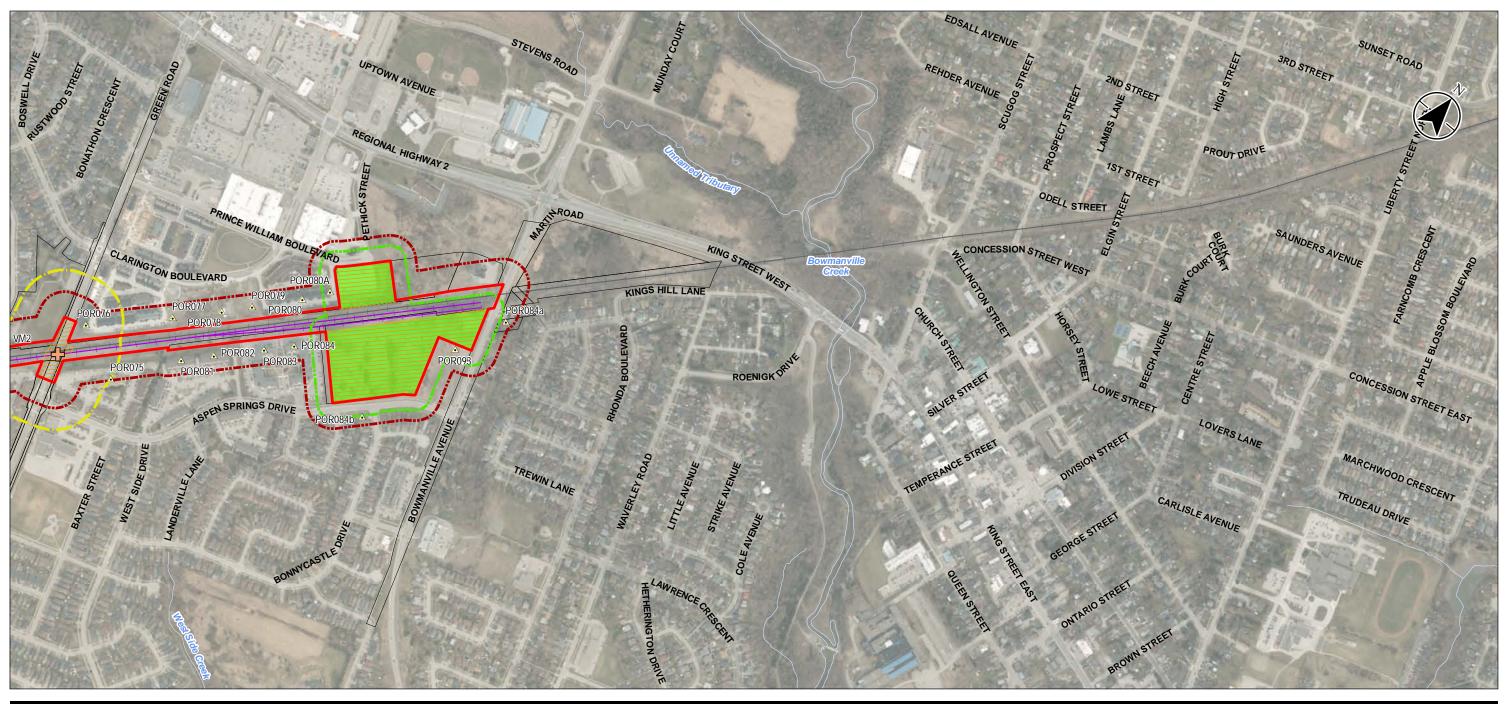
6.1.6

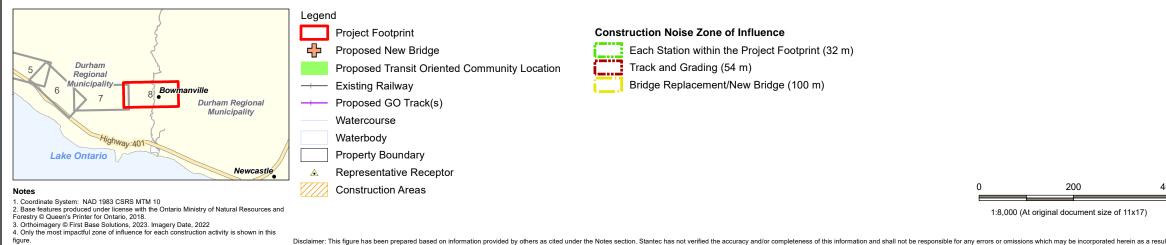
400 m

Title Construction Noise Zone of Influence for **Residential Receptors on Weekdays** During the Daytime (No Barriers)

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1:8,000 (At original document size of 11x17)


Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

6.1.7 Title

400 m

Construction Noise Zone of Influence for Residential Receptors on Weekdays During the Daytime (No Barriers)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05

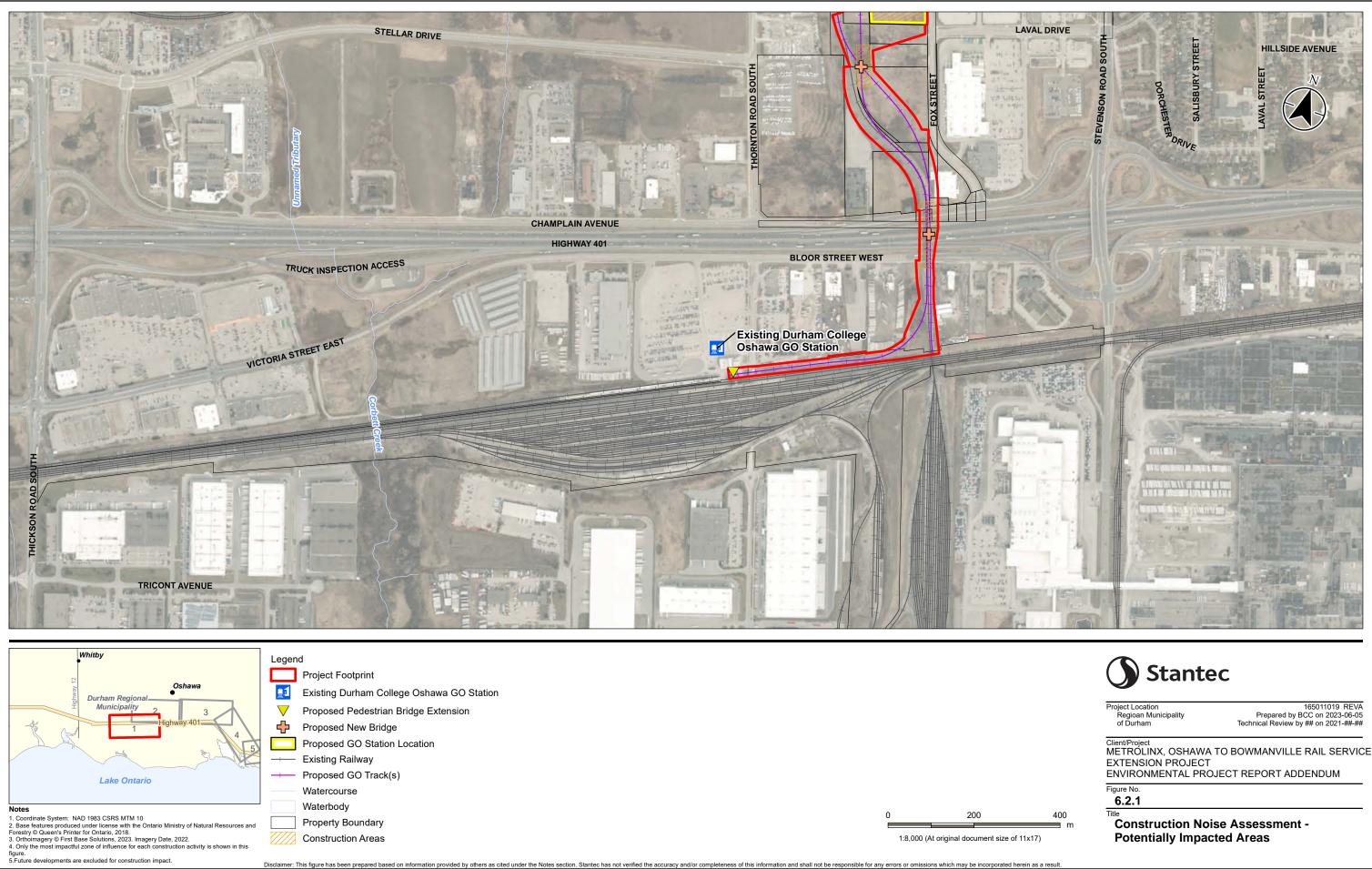
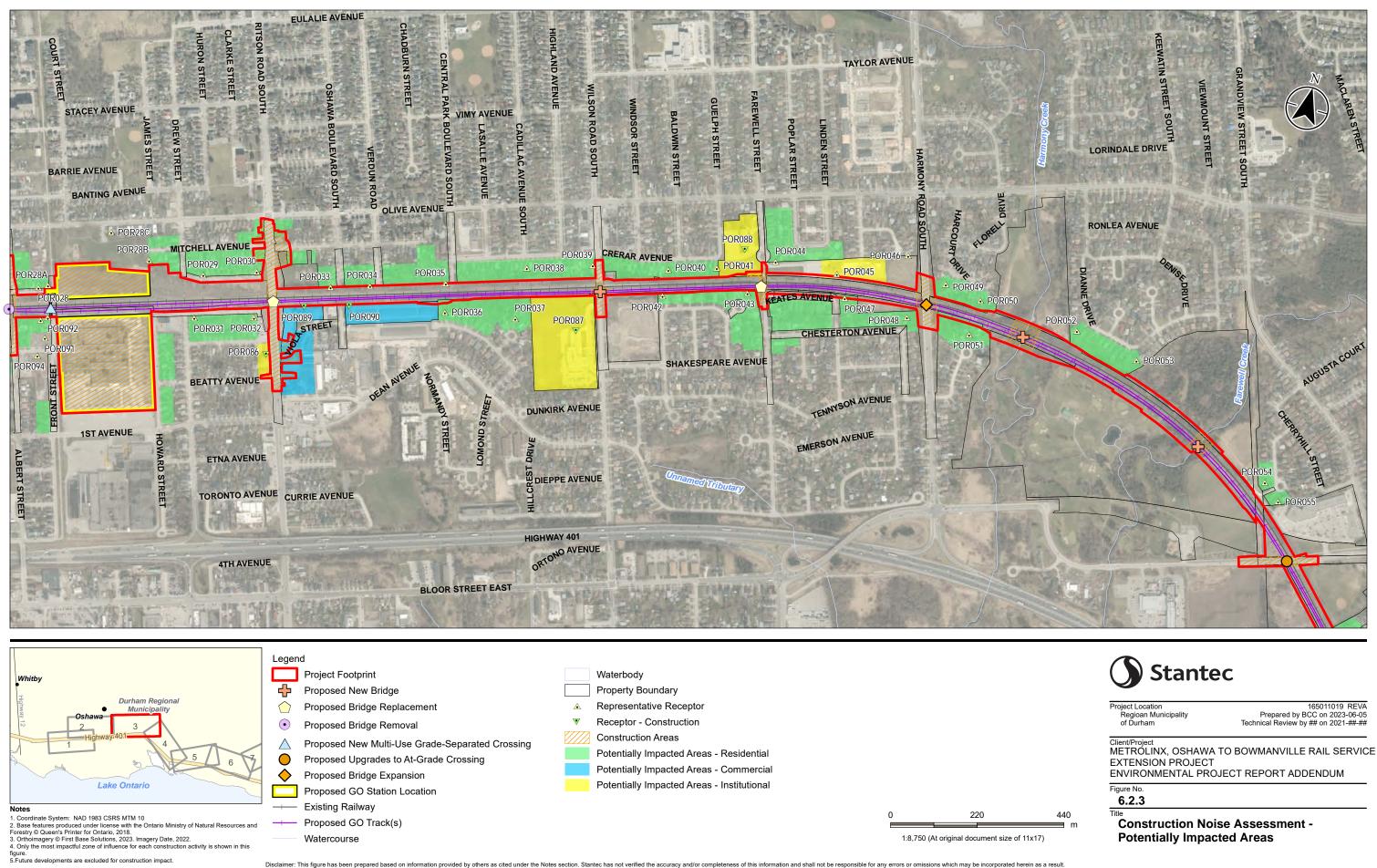
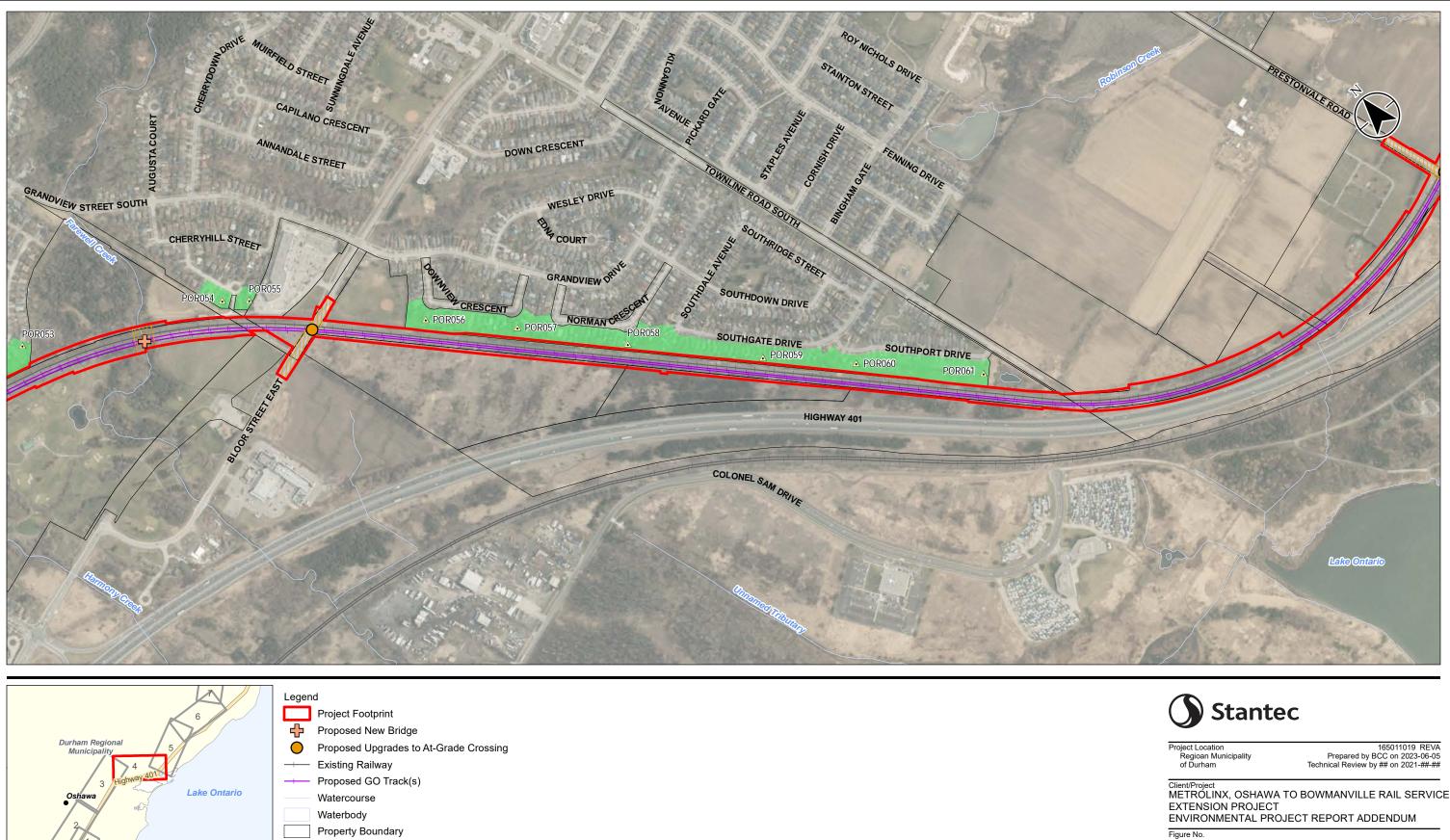
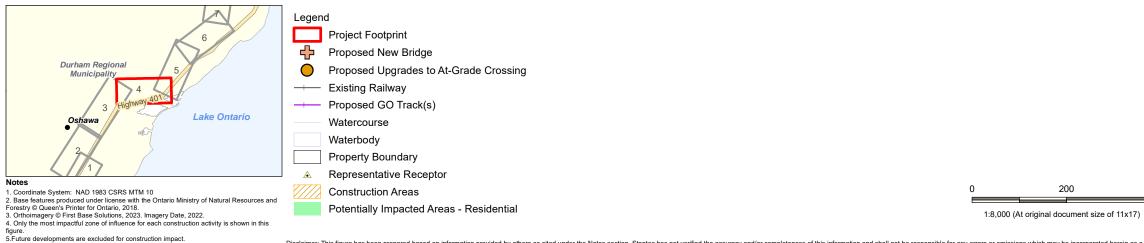
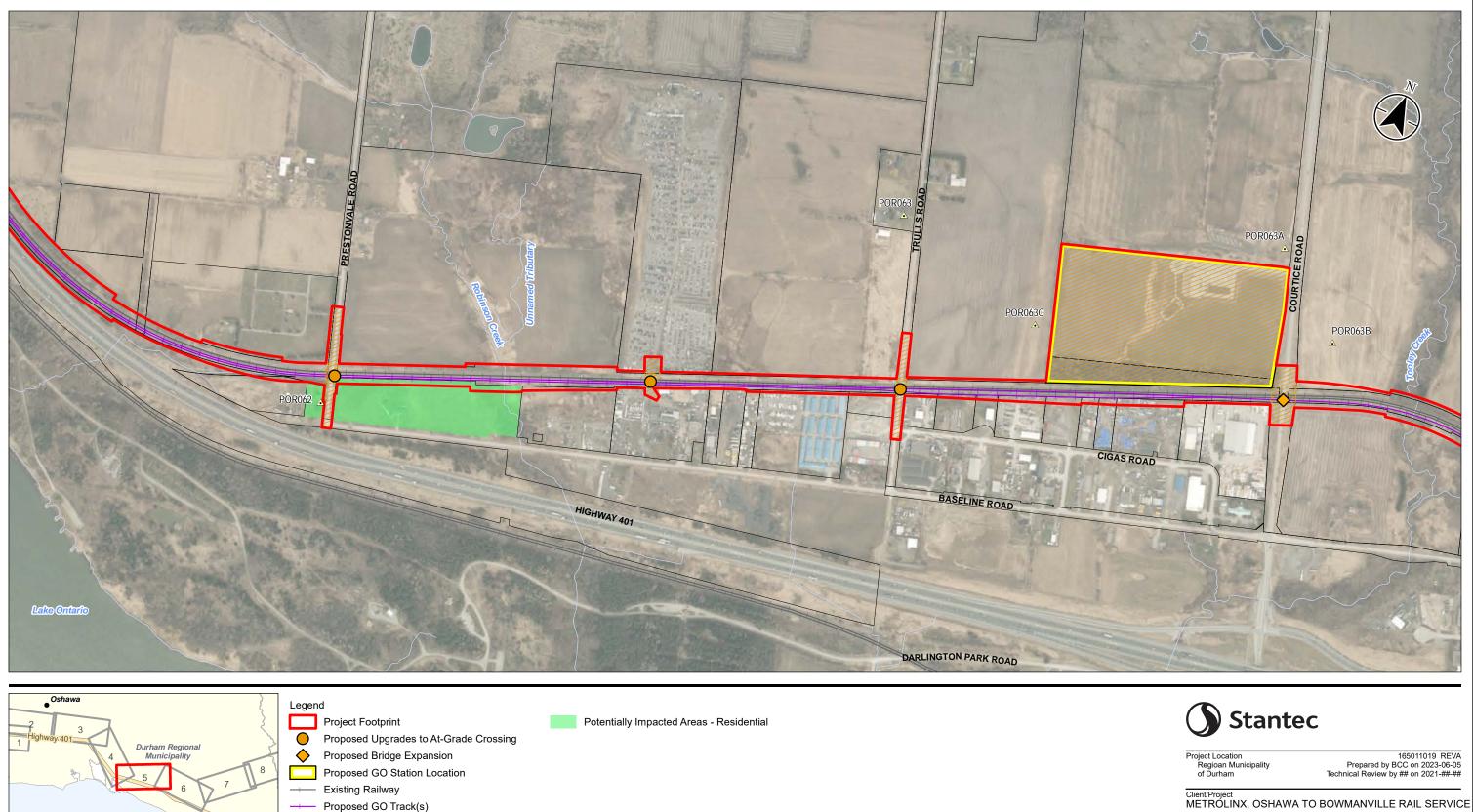

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.


6.1.8


400 m


Title **Construction Noise Zone of Influence for Residential Receptors on Weekdays** During the Daytime (No Barriers)



Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

6.2.4

400 m

Title **Construction Noise Assessment -Potentially Impacted Areas**

Notes

Lake Ontario

Watercourse

Property Boundary

Construction Areas

Representative Receptor

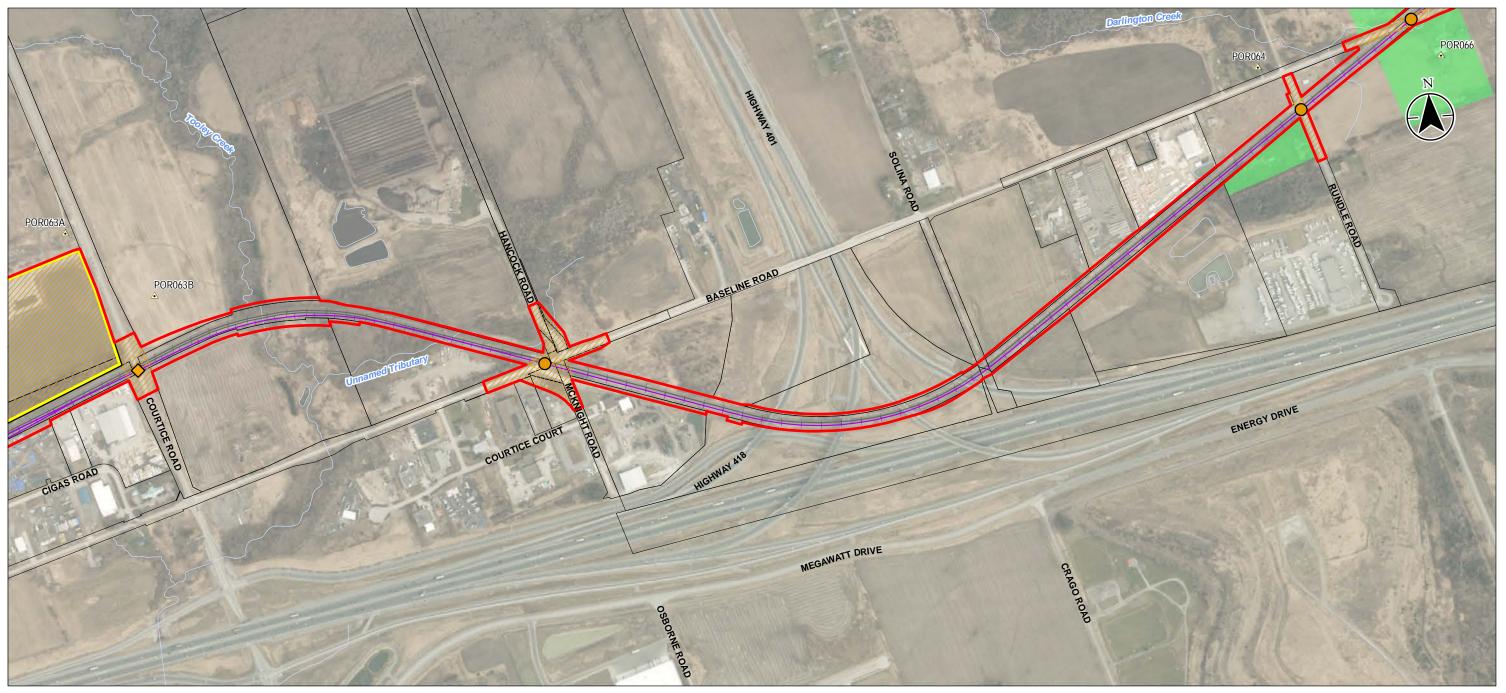
Waterbody

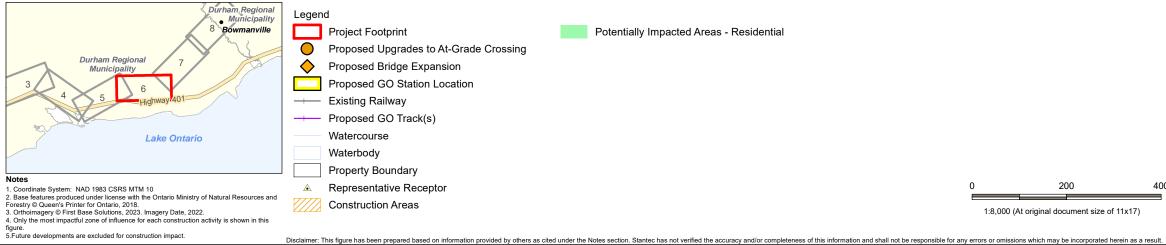
5.Future developments are excluded for construction impact.

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.


6.2.5 Title


400 m

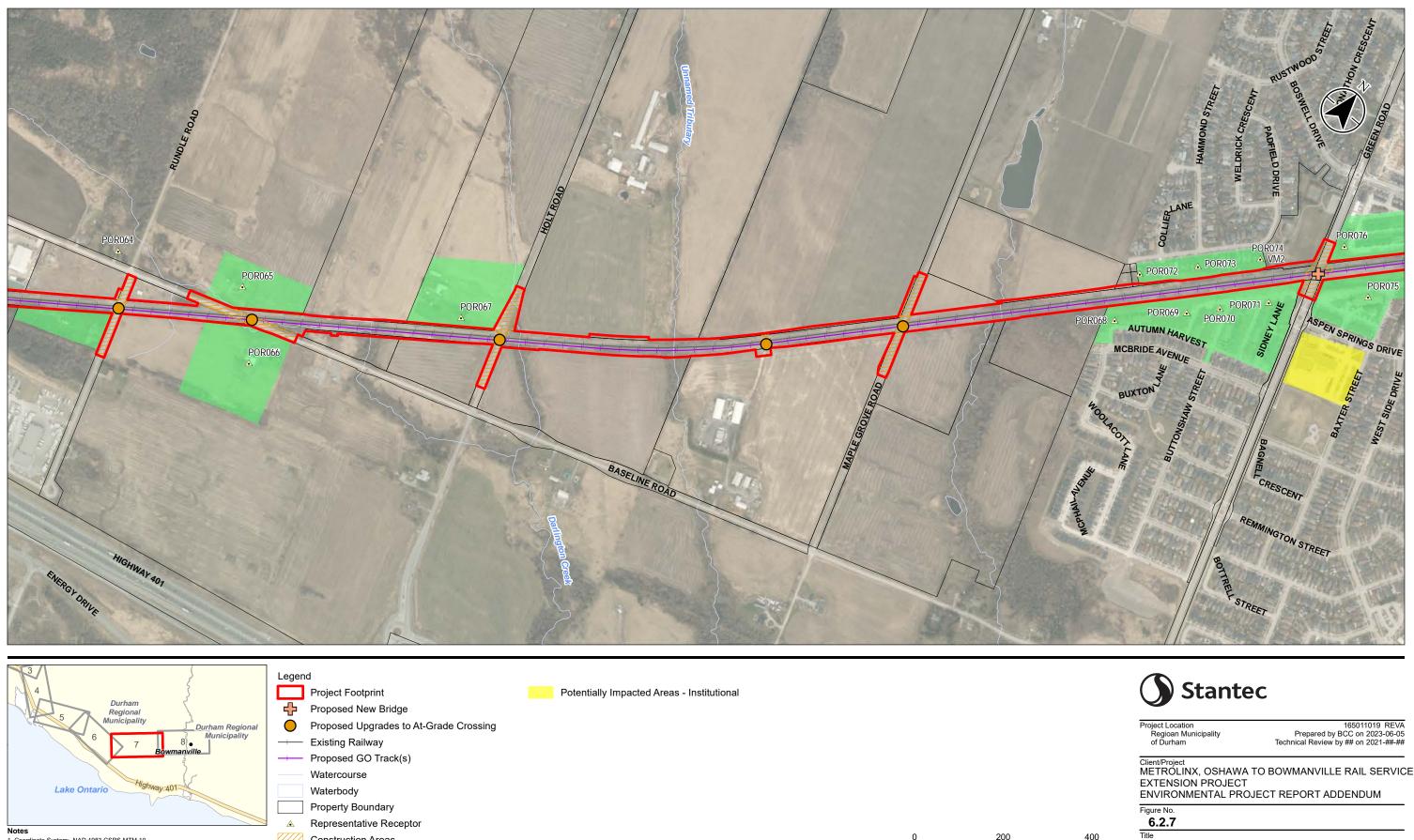
1:8,000 (At original document size of 11x17)

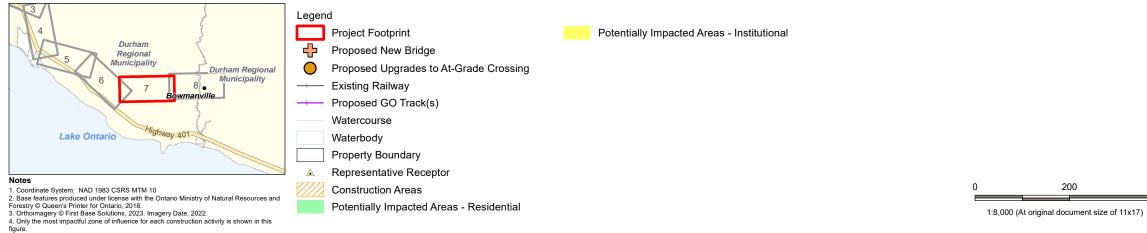
200

Construction Noise Assessment -Potentially Impacted Areas

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

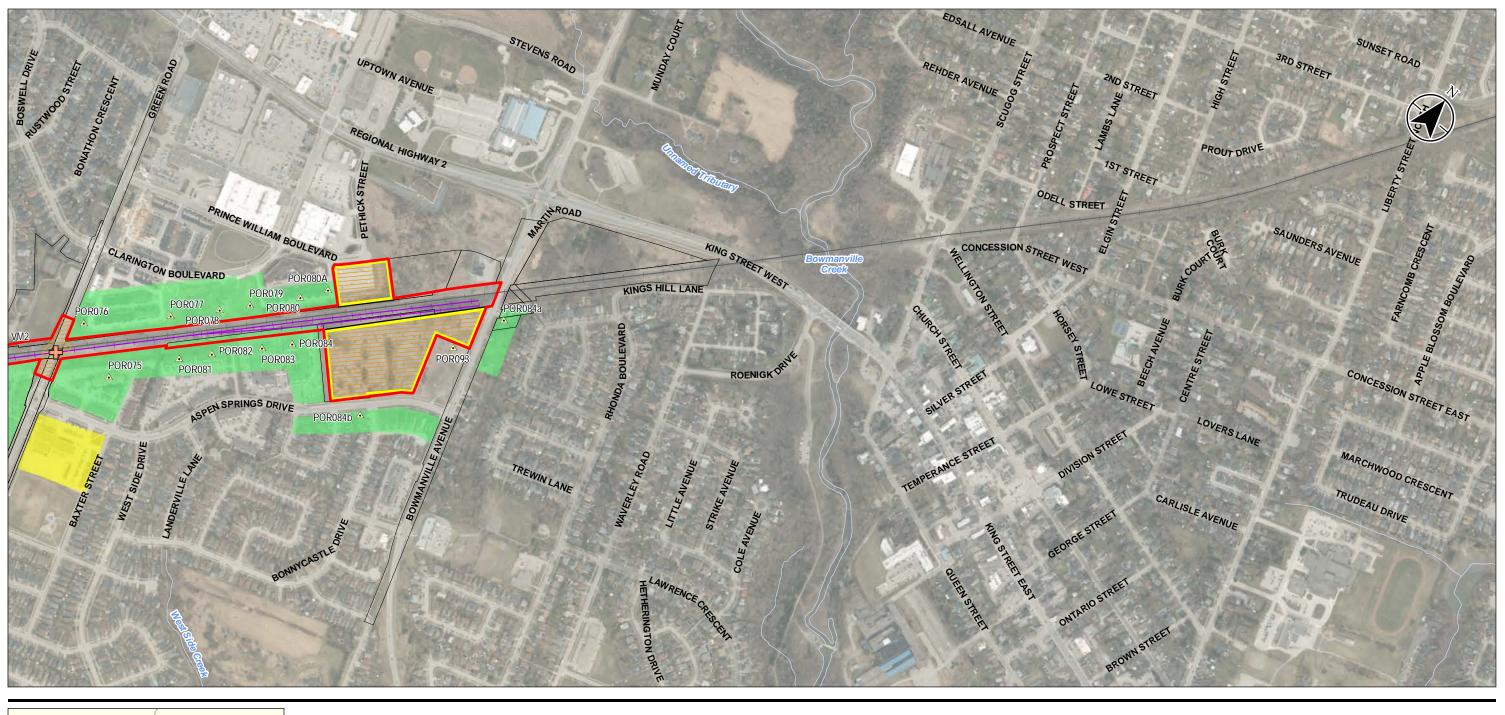

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

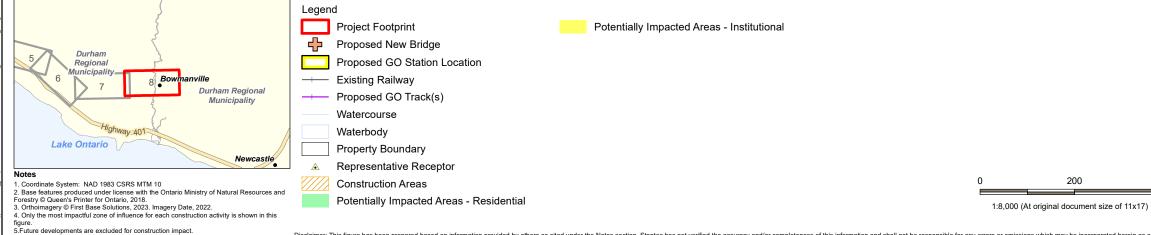

Figure No.

6.2.6

400 m

Title Construction Noise Assessment -Potentially Impacted Areas




5.Future developments are excluded for construction impact.

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

400 m

Construction Noise Assessment -Potentially Impacted Areas

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

6.2.8

Title

400 m

Construction Noise Assessment -Potentially Impacted Areas

Potential Effects, Mitigation and Monitoring August 24, 2023

6.1.2 Construction Vibration Assessment

As described in Section 4.2.1, construction vibration ZOIs for 5 mm/s PPVs were established for each piece of equipment for non-engineered timber/masonry buildings (typical buildings). Calculated vibration ZOIs for the most impactful piece of equipment for each construction phase are presented in Table 6.4.

Project Components	Construction Phase	Equipment ¹	Vibration ZOI (m) for Heritage Structures (3 mm/s)	Vibration ZOI (m) for Typical Construction (5 mm/s)
Track and Grading	Grading	Compactor	11	8
	Track	Compactor	11	8
Bridge Replacement	Utility Relocation and Road Closure	Compactor	11	8
	Demolition of Existing Bridge	Backhoe	6	4
	Abutment Construction	Pile driver	24	17
	Span construction	Dump trucks	6	4
	Road Re-instatement	Compactor	11	8
	Site Cleanup	Dump trucks	6	4
New Bridge	Utility Relocation and Road Closure	Compactor	11	8
	Abutment Construction	Pile driver	24	17
	Span construction	Dump trucks	6	4
	Road Re-instatement	Compactor	11	8
	Site Cleanup	Dump trucks	6	4
Modified Bridge	Removals and Site Preparation	Backhoe	6	4
	Abutment Underpinning	Pile driver	24	17
	Site Cleanup	Dump truck	6	4
Stations/Layover	Clearing	Earth Scraper	6	4
Facility	Parking Construction	Compactor	11	8
	Building/Platform Construction	Compactor	11	8

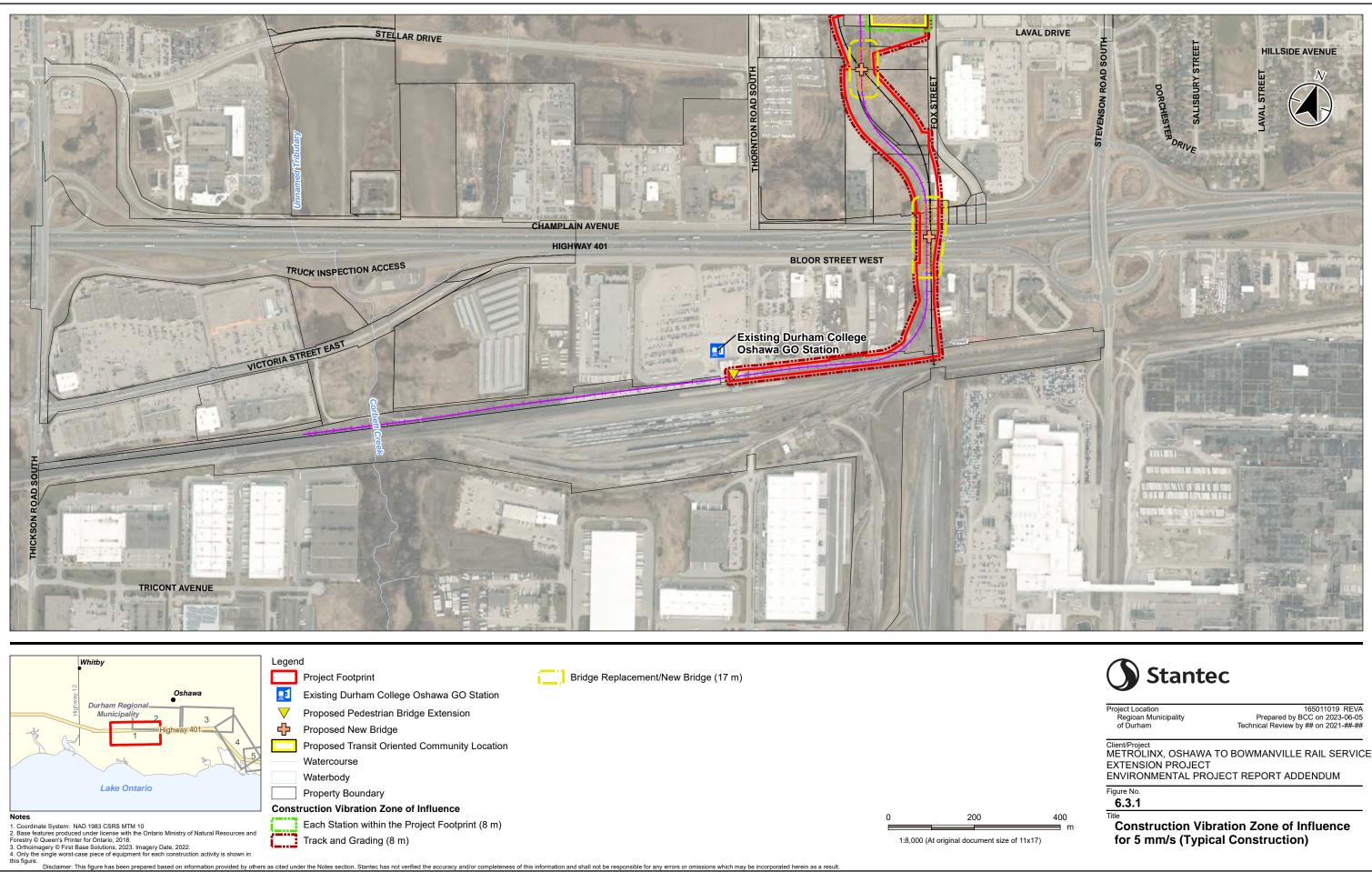
Table 6.4: Construction Vibration ZOI

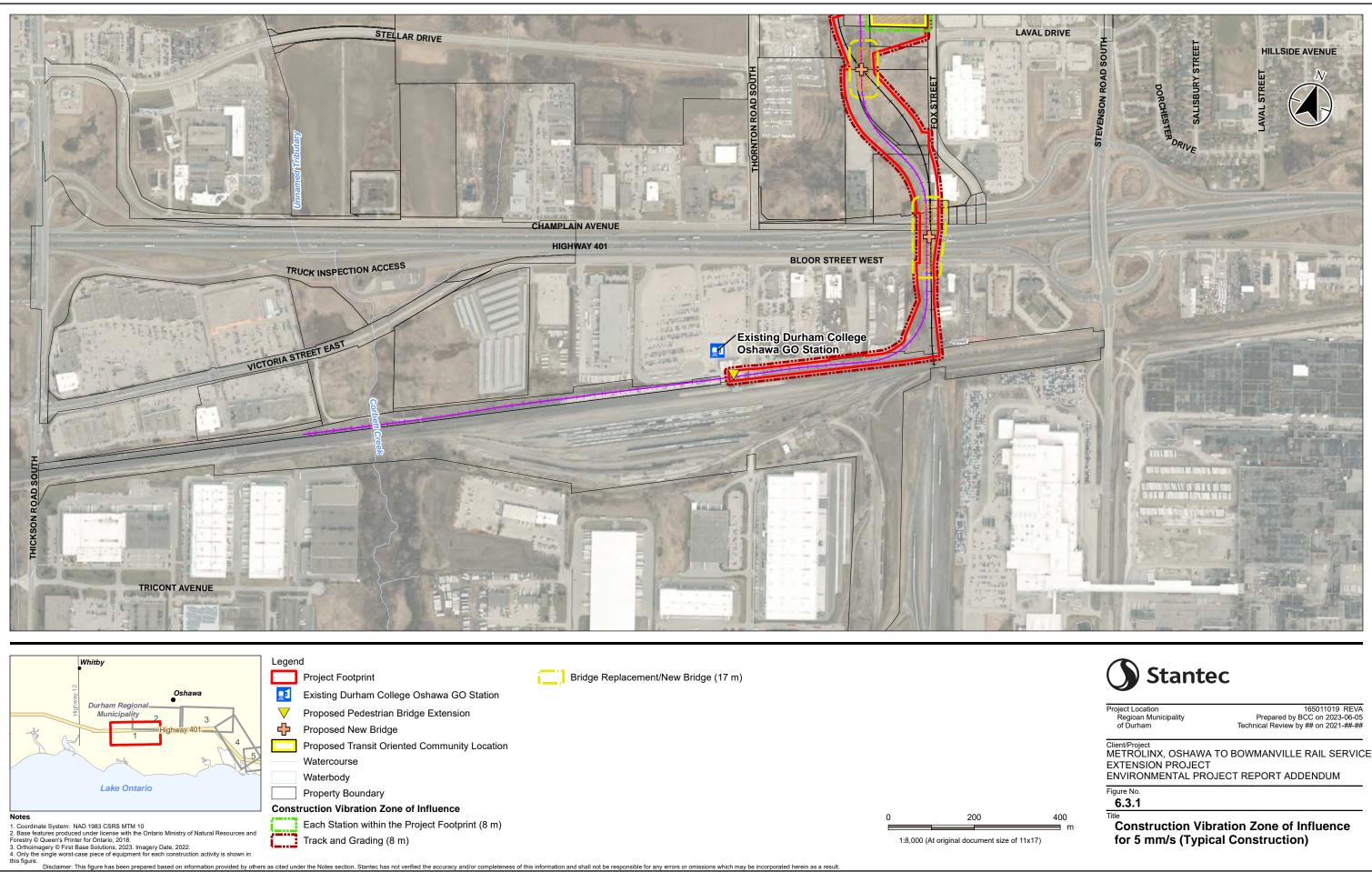
Potential Effects, Mitigation and Monitoring August 24, 2023

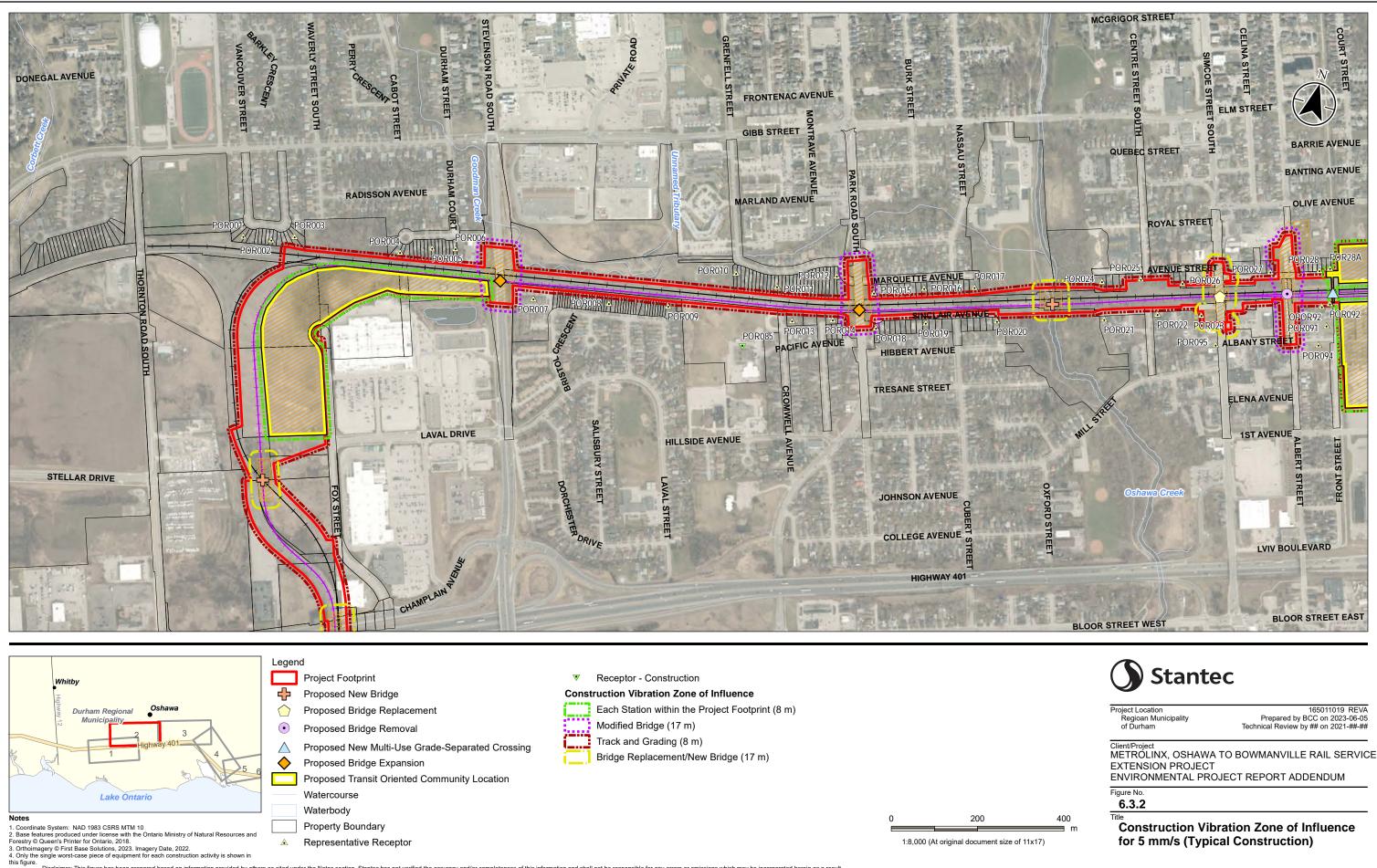
Project Components	Construction Phase	Equipment ¹	Vibration ZOI (m) for Heritage Structures (3 mm/s)	Vibration ZOI (m) for Typical Construction (5 mm/s)
Crossing Widening	Removals and Reconstruction	Compactor	11	8

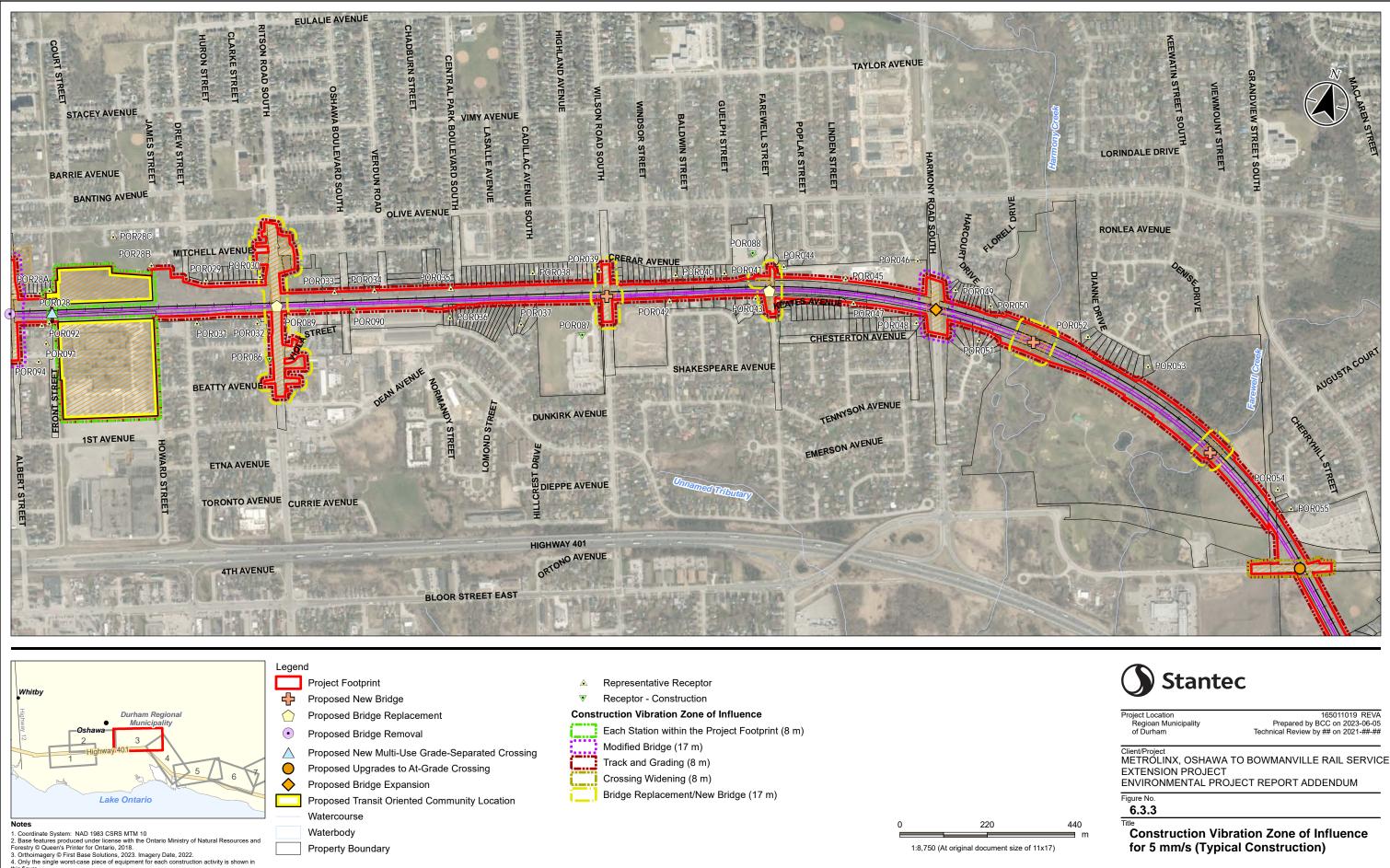
¹ Represents the most impactful single piece of equipment (i.e., worst-case piece of equipment) for each phase

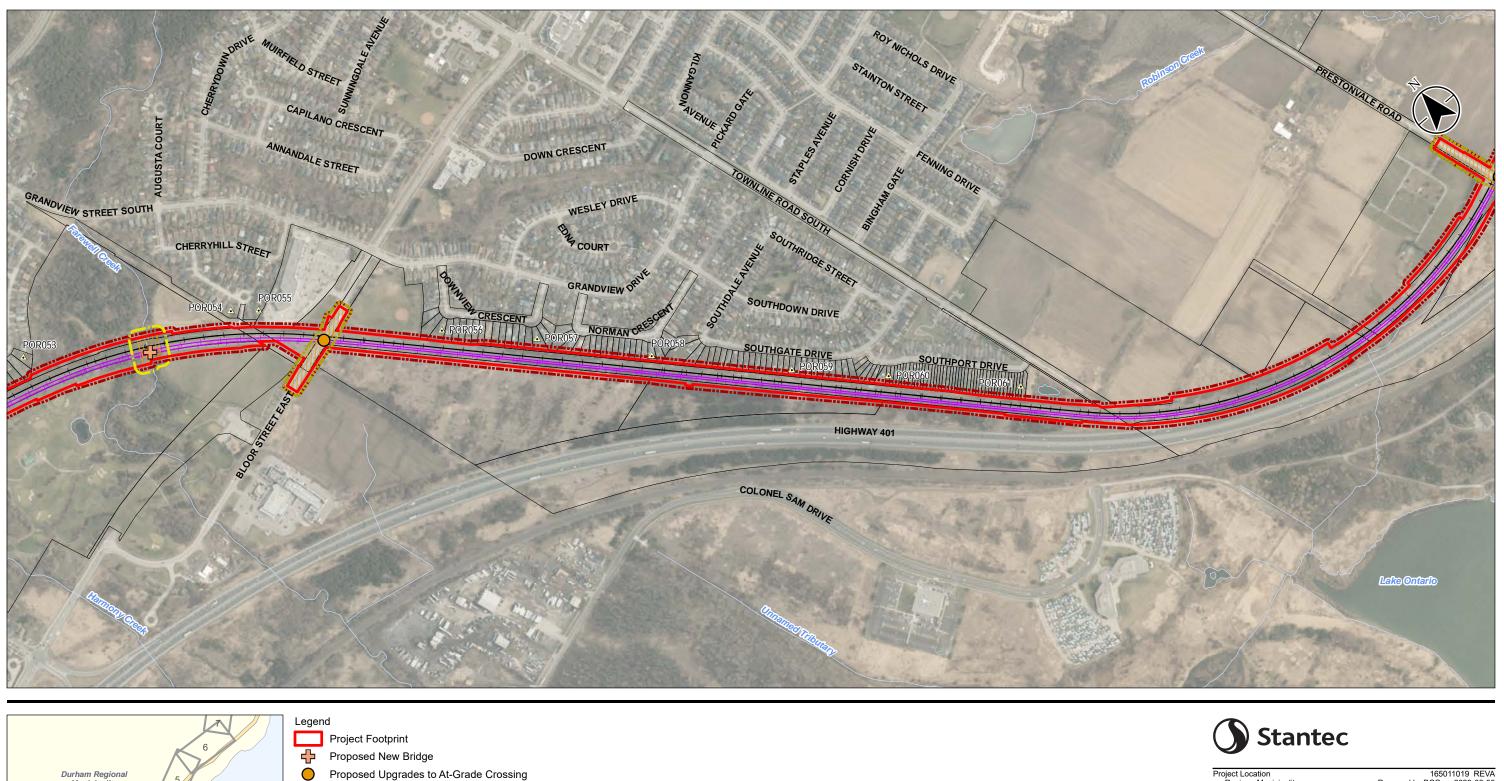
² Non-engineered timber and masonry buildings

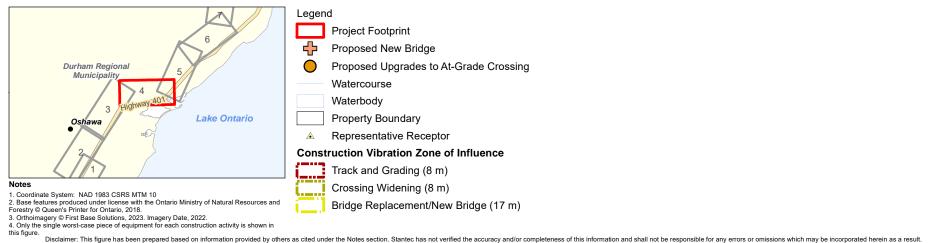

Construction vibration ZOIs presented in Figure 6.3.1 through Figure 6.3.16 conservatively represent the areas within which typical buildings may be impacted. This is because the ZOIs were established with the equipment operating along the Project boundary. In the absence of construction details, construction vibration ZOIs were established relative to the Project Footprint.


Construction vibration ZOIs presented in Table 6.4. and in Figure 6.3.1 through Figure 6.3.16, indicate that some PORs identified for the Project are within the established construction vibration ZOI. The PORs identified within the established construction ZOI and thus may be impacted.


Therefore, construction operational changes (e.g., maintaining setback distance and switching to lesser impactful equipment, etc.) are recommended. Construction vibration monitoring is recommended for the structures that are expected to exceed the criteria. Mitigation strategy for construction vibration and monitoring requirements are discussed in Section 6.2.


Maps showing the calculated construction vibration ZOIs for the most impactful piece of equipment for each construction activity are shown in Figure 6.3.1 through Figure 6.3.8. Vibration ZOIs for heritage structures are shown in Figure 6.3.9 through Figure 6.3.16.


Maps highlighting areas that have potentially impacted typical buildings are shown in Figure 6.4.1 through Figure 6.4.8.



1:8,000 (At original document size of 11x17)

200

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##.##

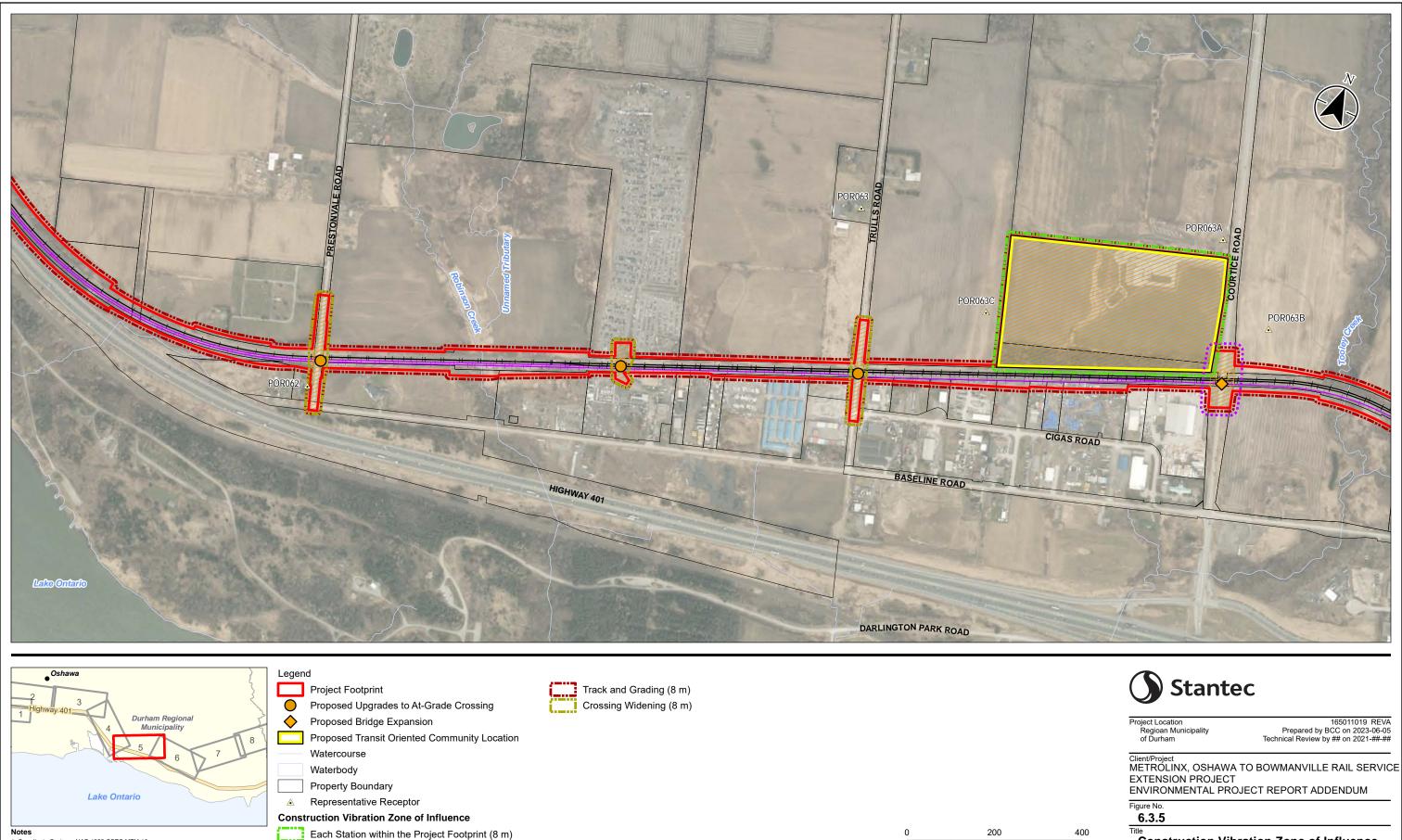
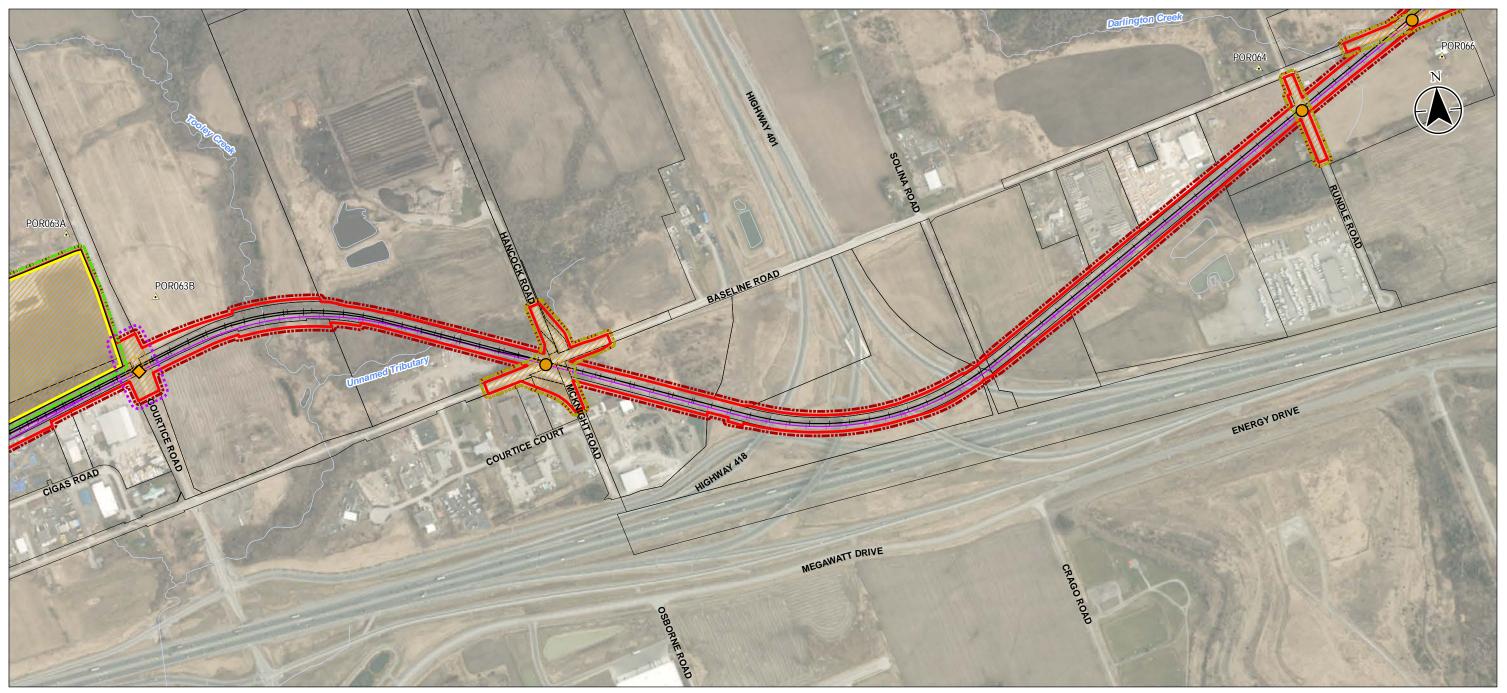

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

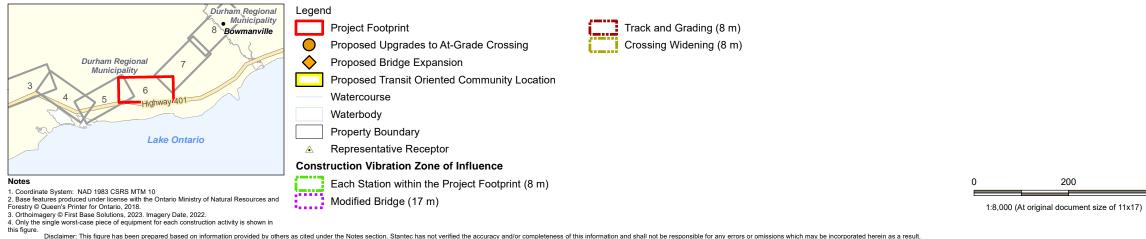
Figure No.

6.3.4

400 m E

Title **Construction Vibration Zone of Influence** for 5 mm/s (Typical Construction)




- 1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and
 Forestry © Queen's Printer for Ontario, 2018.
 3. Orthoimagery © First Base Solutions, 2023. Imagery Date, 2022.
 4. Only the single worst-case piece of equipment for each construction activity is shown in
 this figure.
 Disclaimer: This figure has been prepared based on information provided hy off

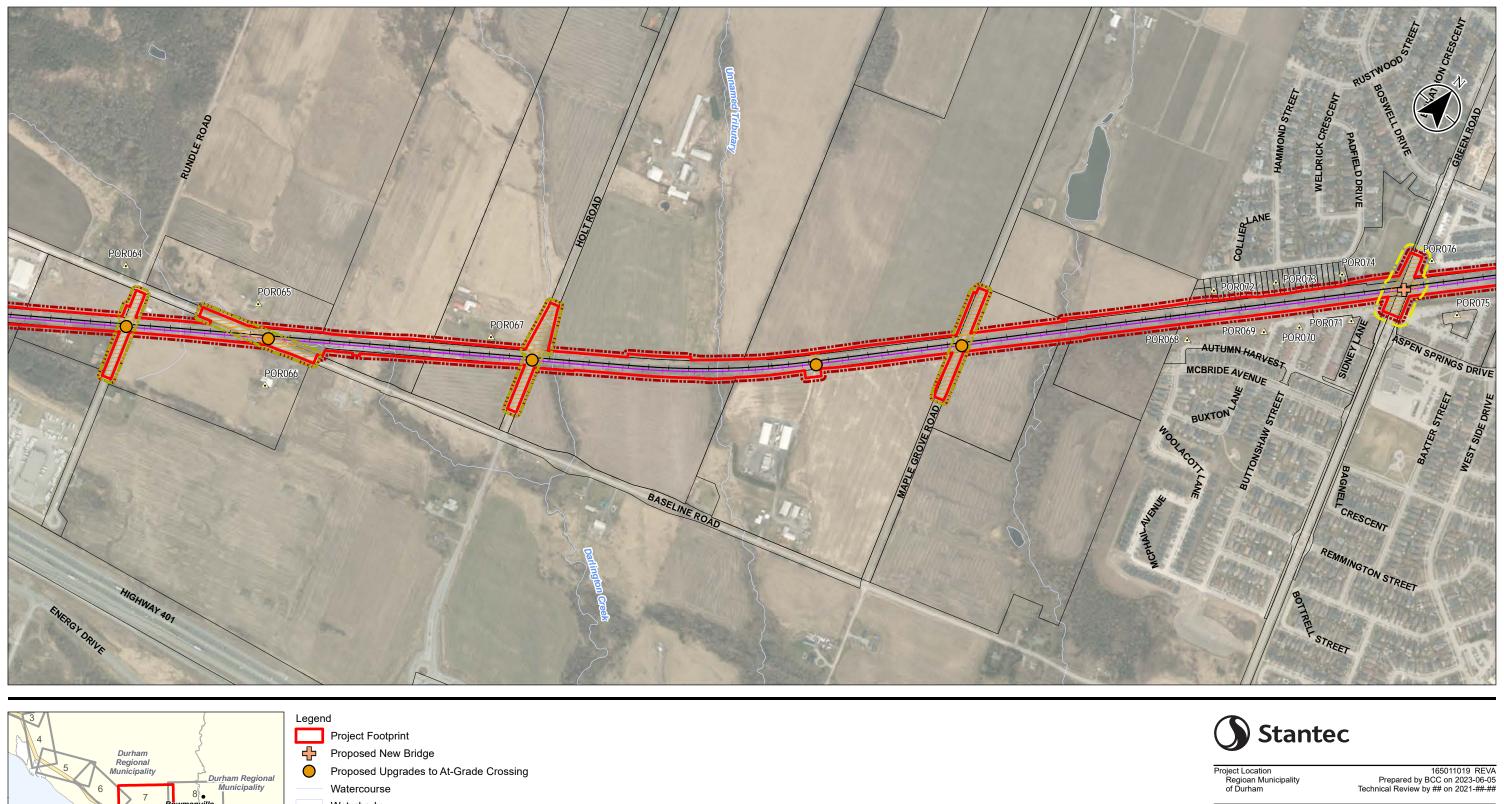
Modified Bridge (17 m)

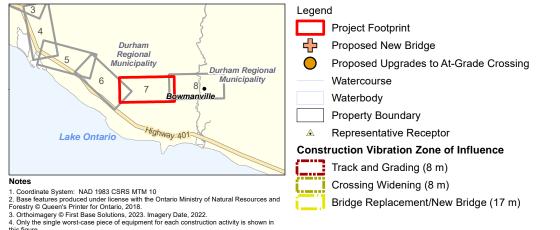
400 ∎ m Title Construction Vibration Zone of Influence for 5 mm/s (Typical Construction)

1:8,000 (At original document size of 11x17)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##


Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

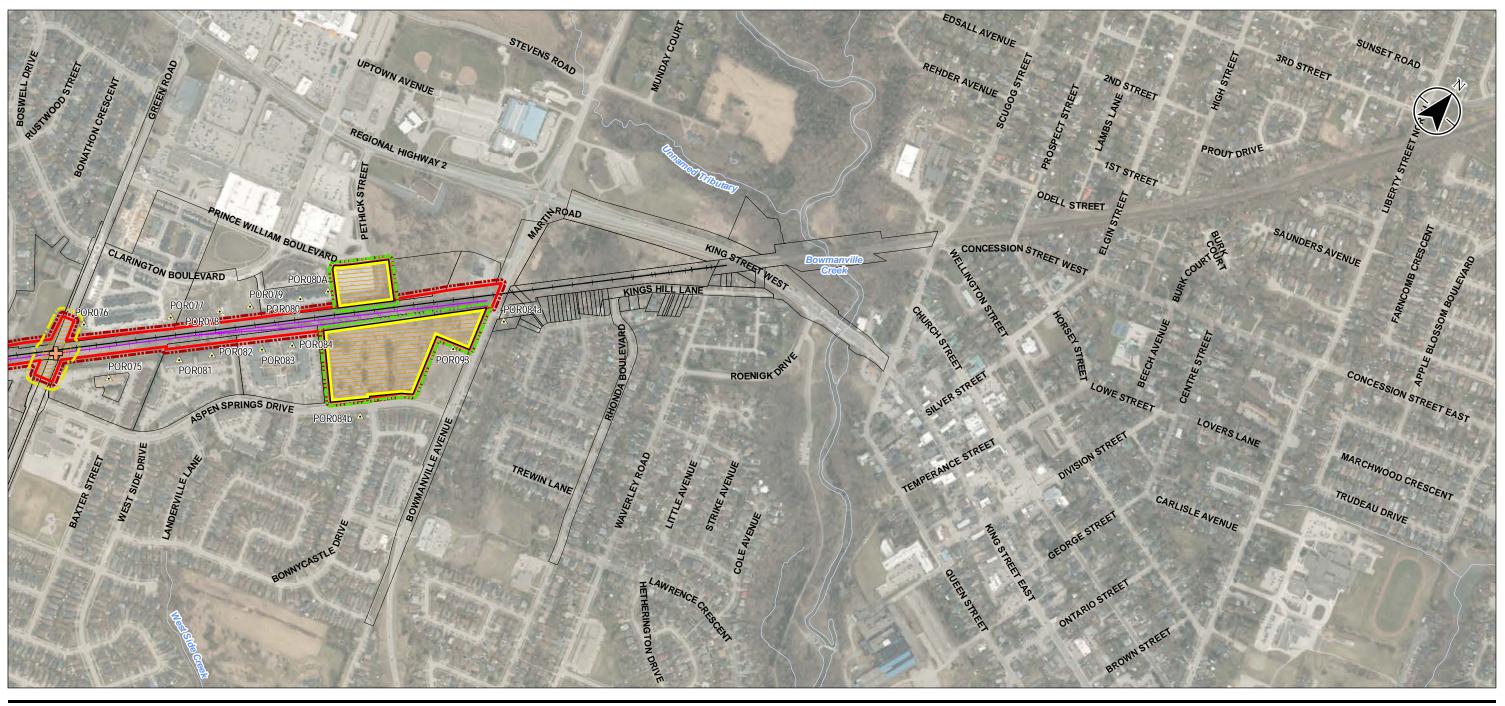
6.3.6

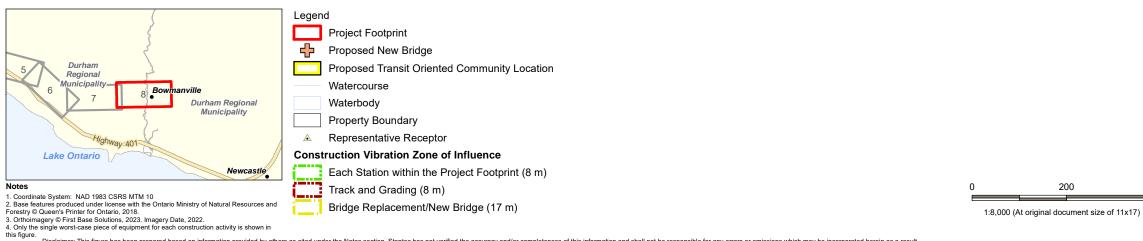
400 ∎ m

Title Construction Vibration Zone of Influence for 5 mm/s (Typical Construction)

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.


6.3.7


400

200

1:8,000 (At original document size of 11x17)

Title Construction Vibration Zone of Influence for 5 mm/s (Typical Construction)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

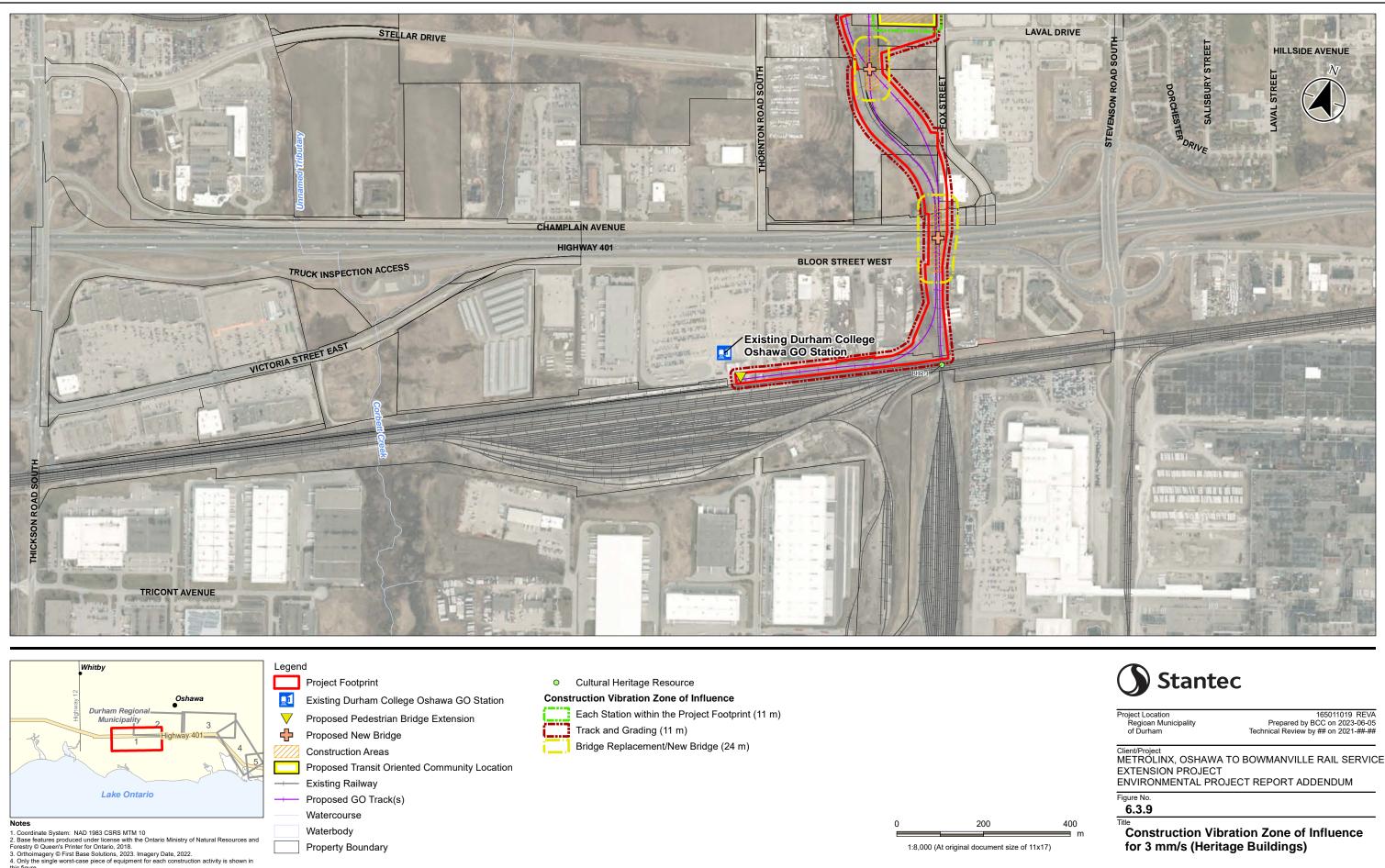
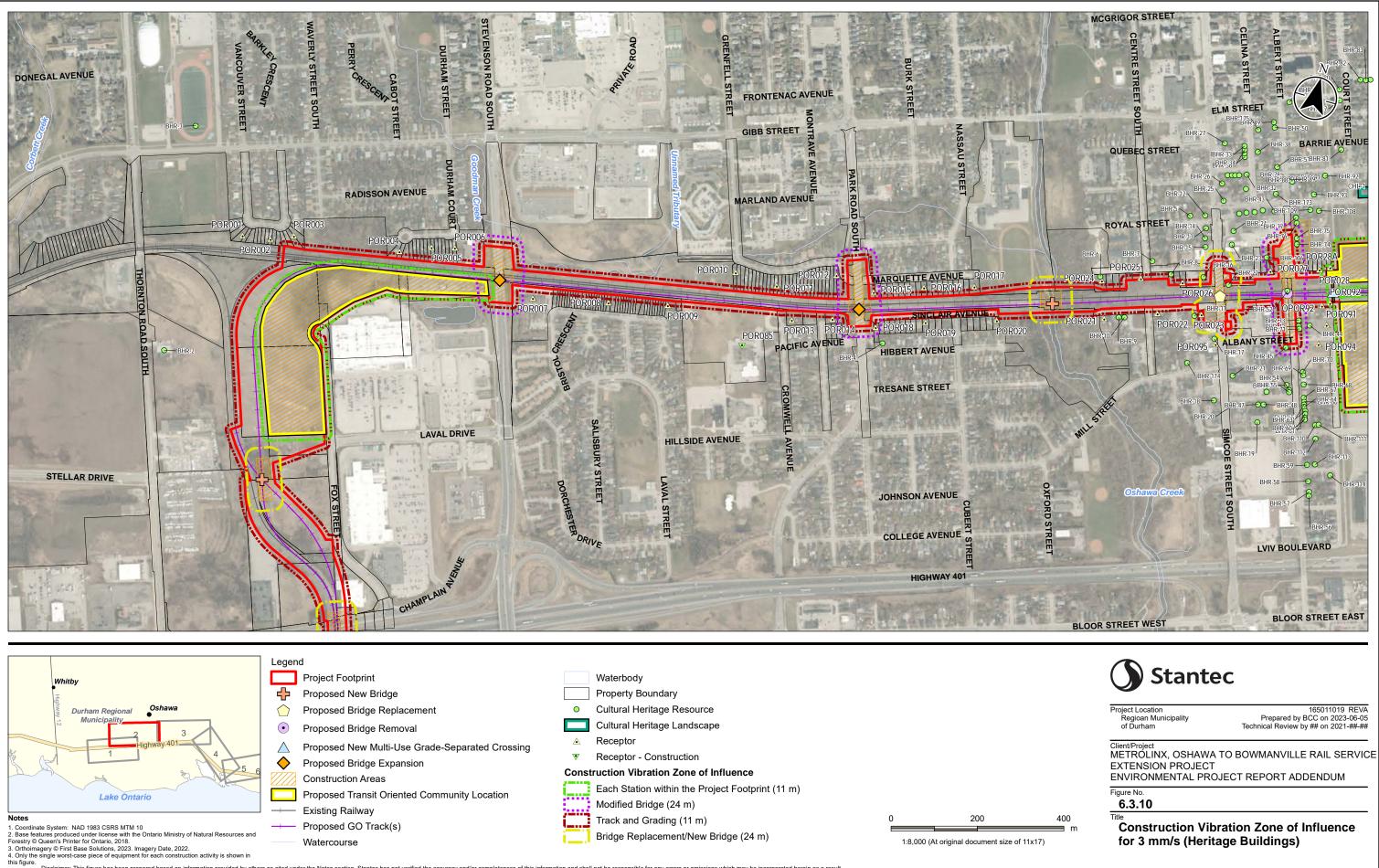
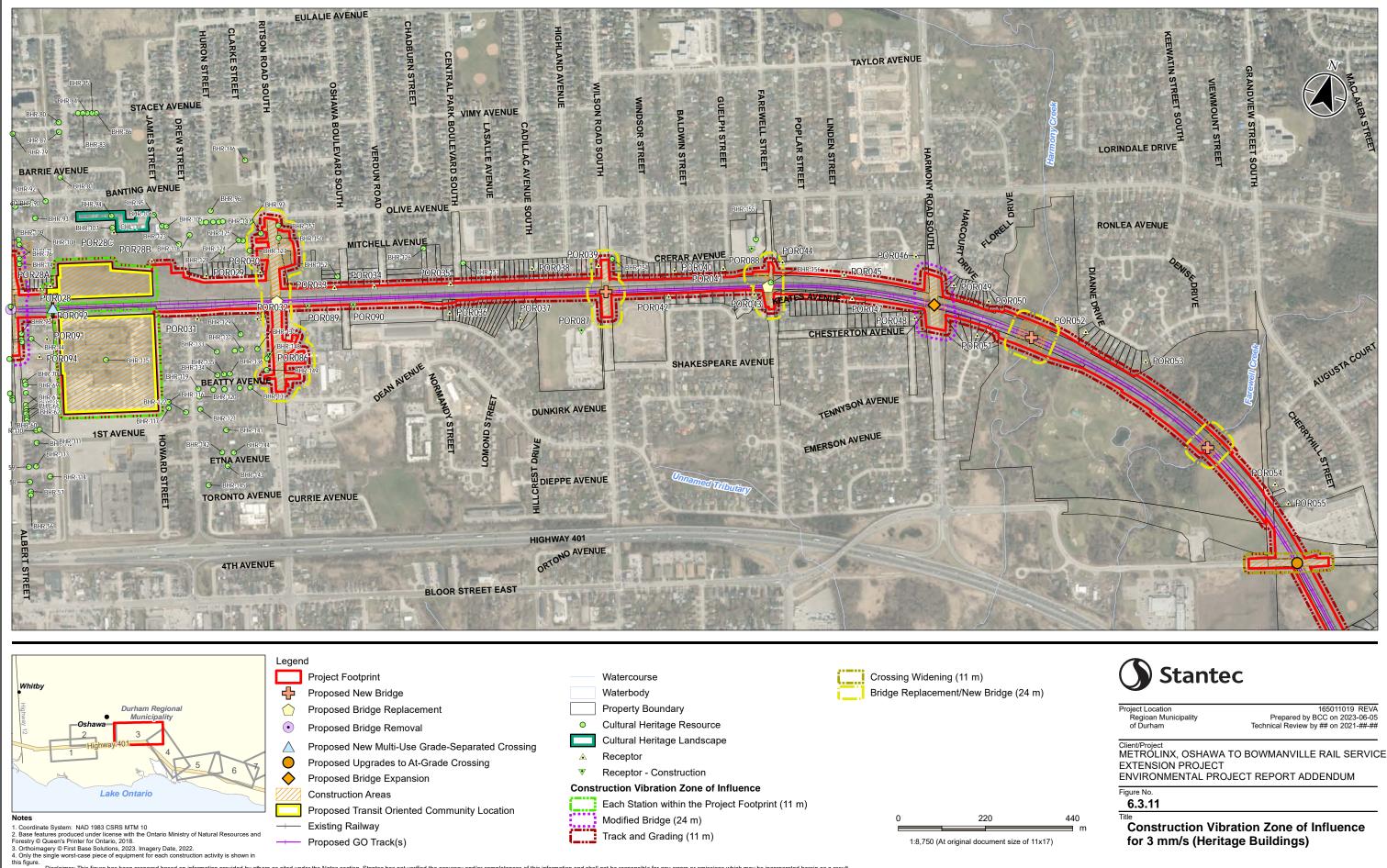
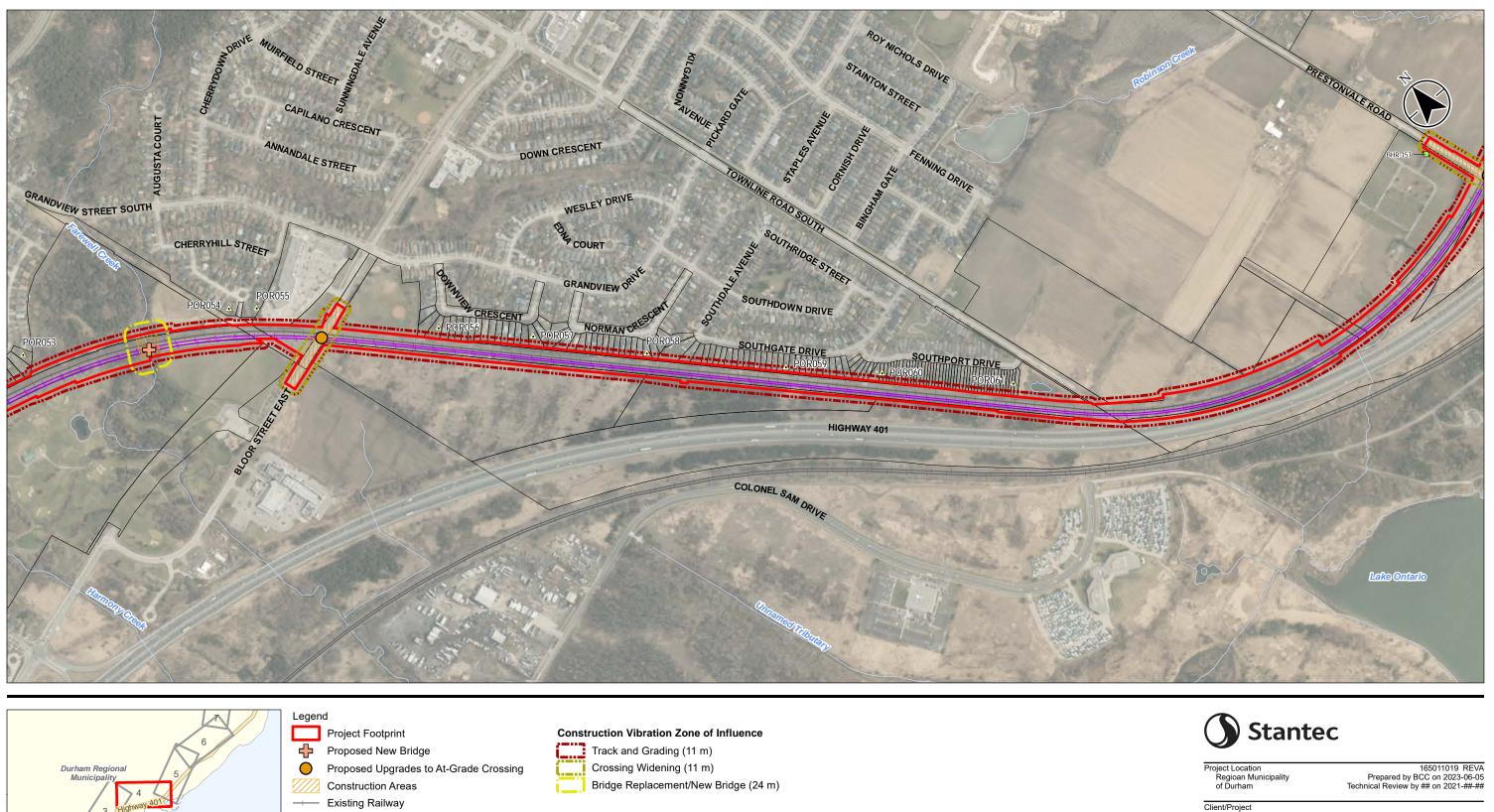
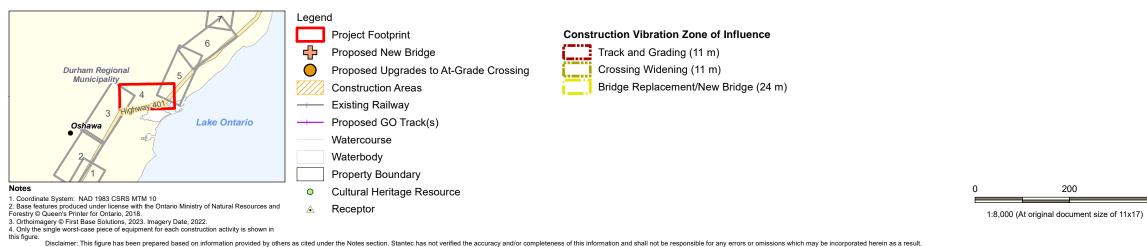

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.


6.3.8


400 m


Title **Construction Vibration Zone of Influence** for 5 mm/s (Typical Construction)



for 3 mm/s (Heritage Buildings)

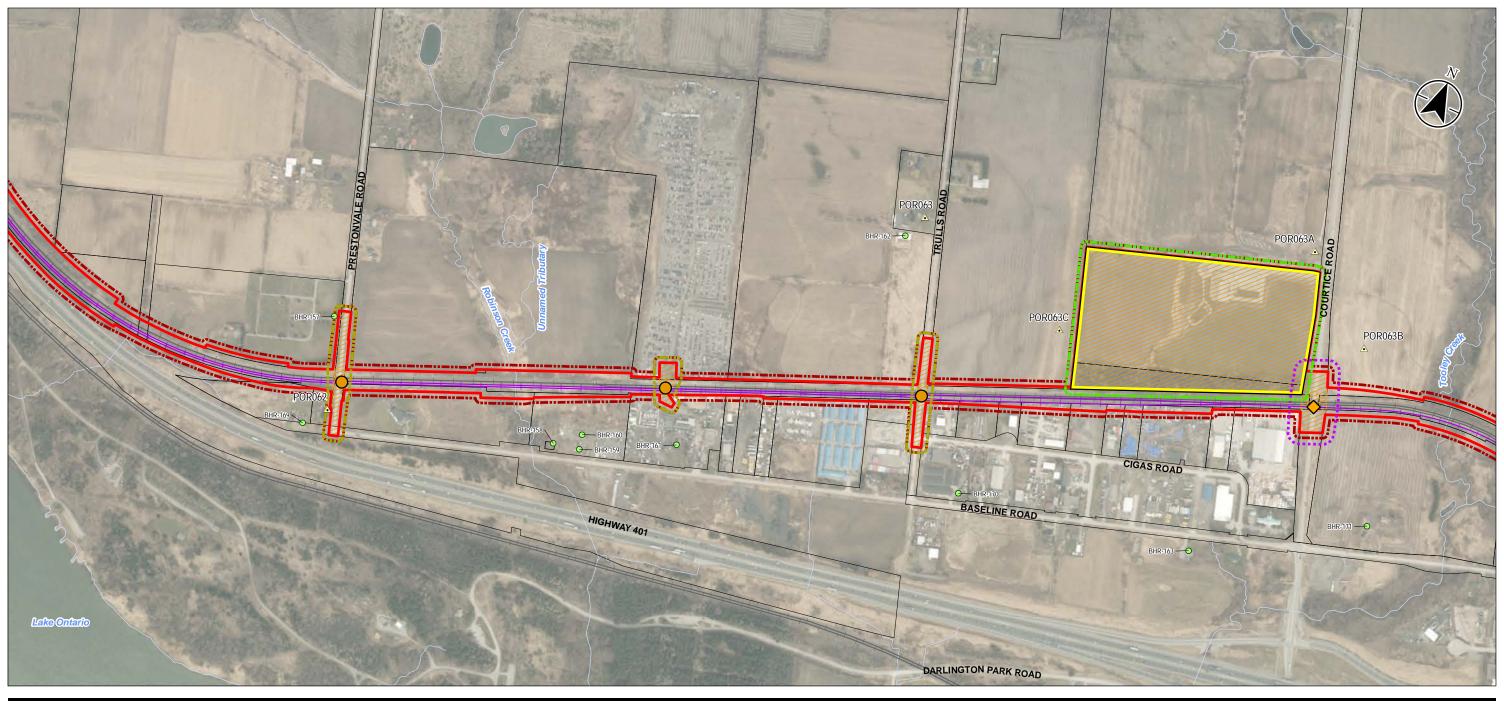

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

6.3.12

400 m

Title **Construction Vibration Zone of Influence** for 3 mm/s (Heritage Buildings)

Oshawa

- Notes
- 1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2018.
 3. Orthoimagery © First Base Solutions, 2023. Imagery Date, 2022.
 4. Only the single worst-case piece of equipment for each construction activity is shown in this figure.
 Disclaimer: This figure has been prepared based on information provided by other

Durham Regional

Municipality

Lake Ontario

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Proposed Upgrades to At-Grade Crossing

Proposed Transit Oriented Community Location

Proposed Bridge Expansion

Construction Areas

Proposed GO Track(s)

Property Boundary

Cultural Heritage Resource

٨

(......

Receptor

Construction Vibration Zone of Influence

Modified Bridge (24 m) Track and Grading (11 m)

Crossing Widening (11 m)

Each Station within the Project Footprint (11 m)

Legend

 \bigcirc

 \diamond

 \bigcirc

Project Footprint

— Existing Railway

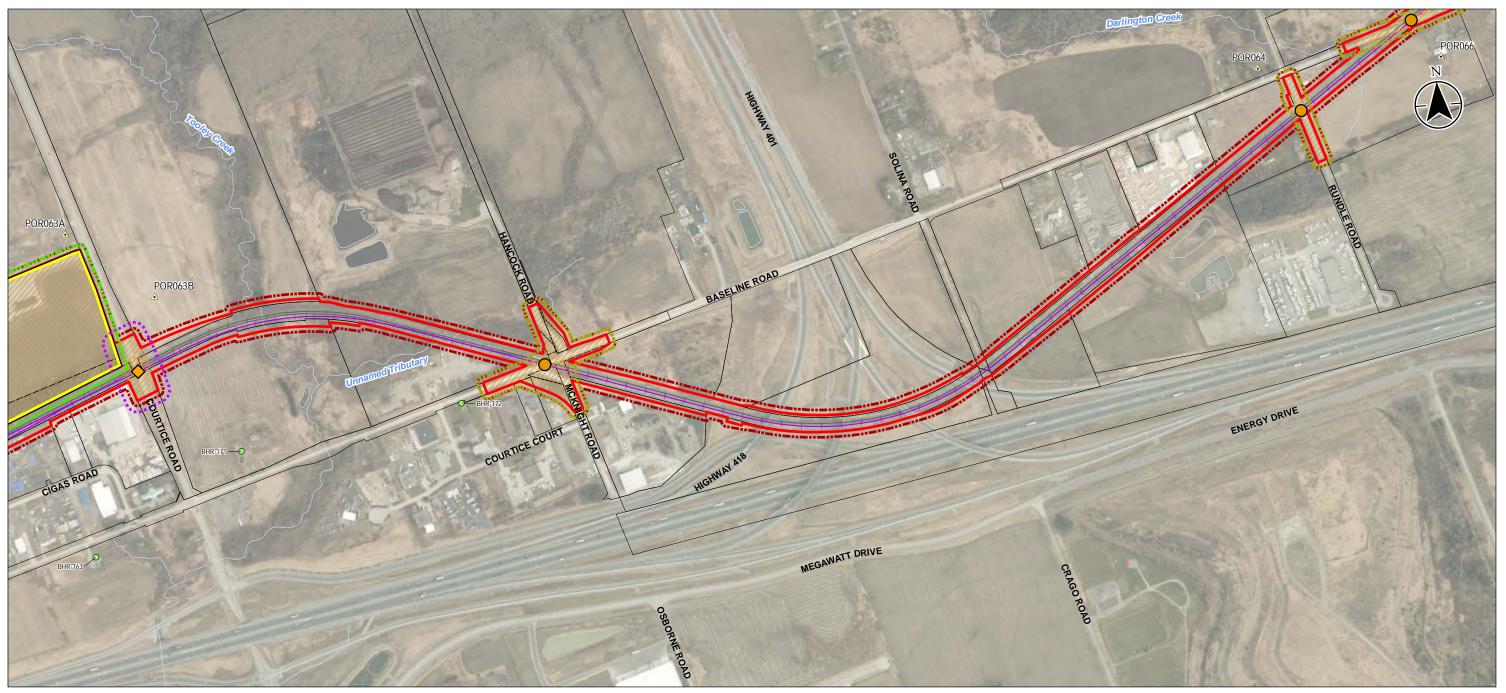
Watercourse

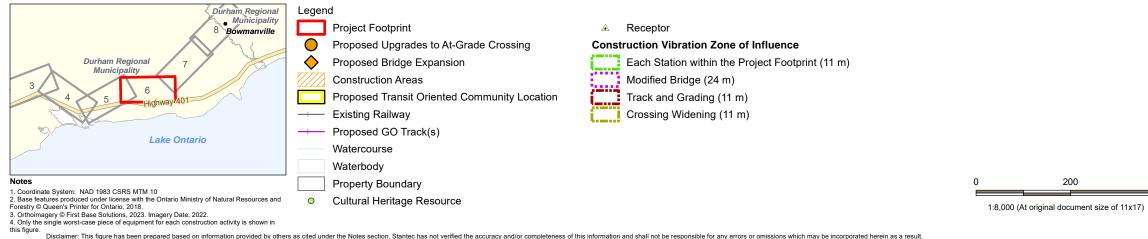
Waterbody

1:8,000 (At original document size of 11x17)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##


Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

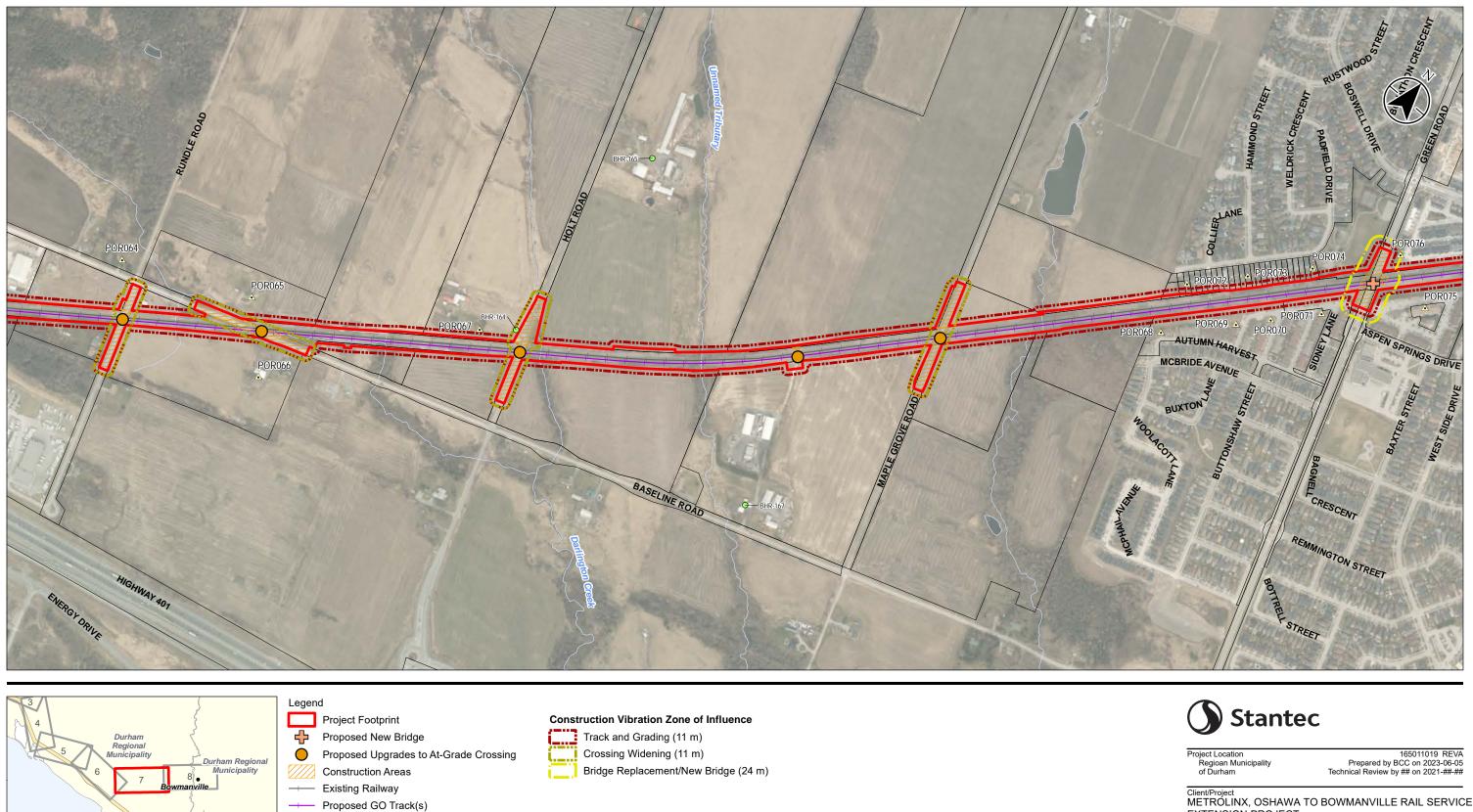

Figure No.

6.3.13

400 m E

Title Construction Vibration Zone of Influence for 3 mm/s (Heritage Buildings)

Project Location Regioan Municipality of Durham


165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

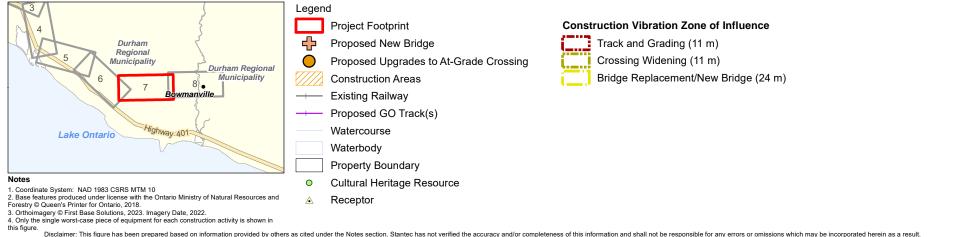

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

6.3.14

400 m E Title Construction Vibration Zone of Influence for 3 mm/s (Heritage Buildings)

1:8,000 (At original document size of 11x17)

200

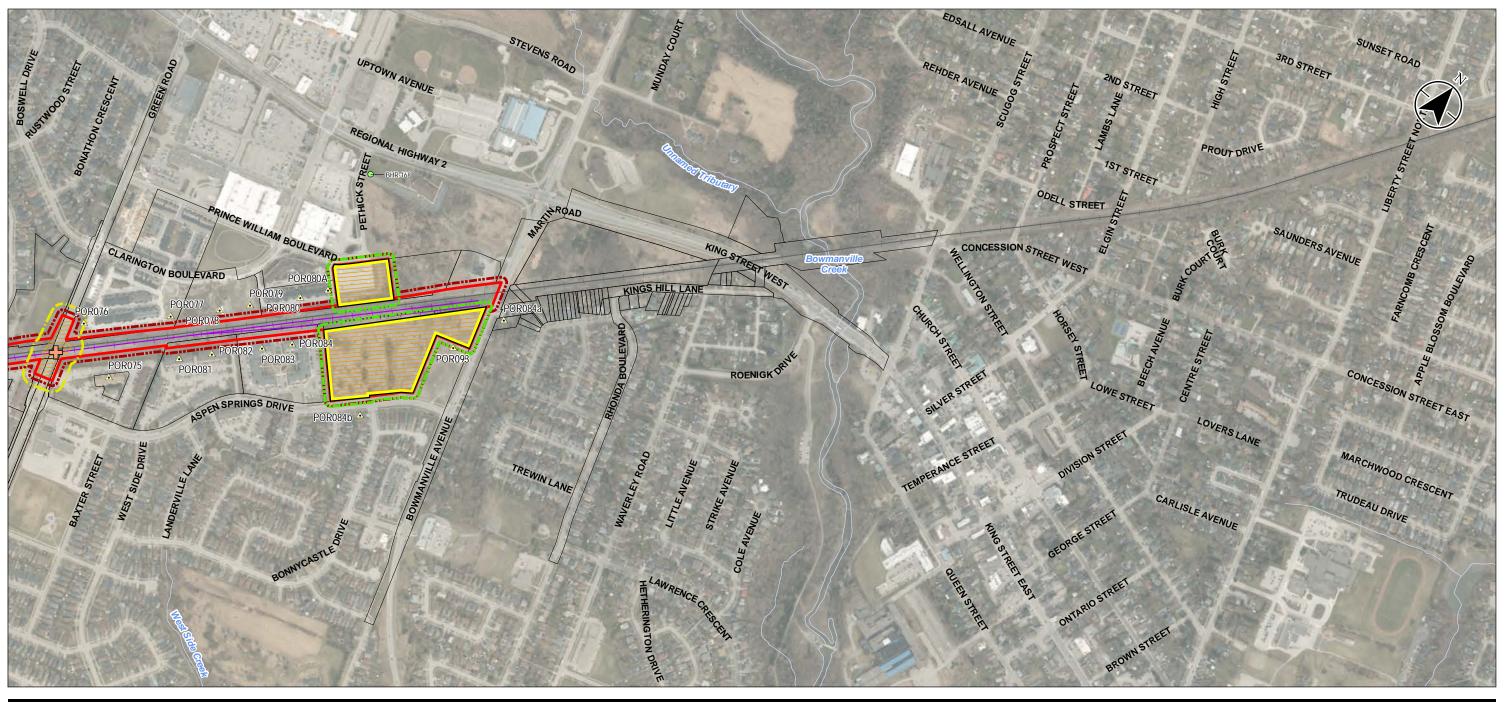

EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

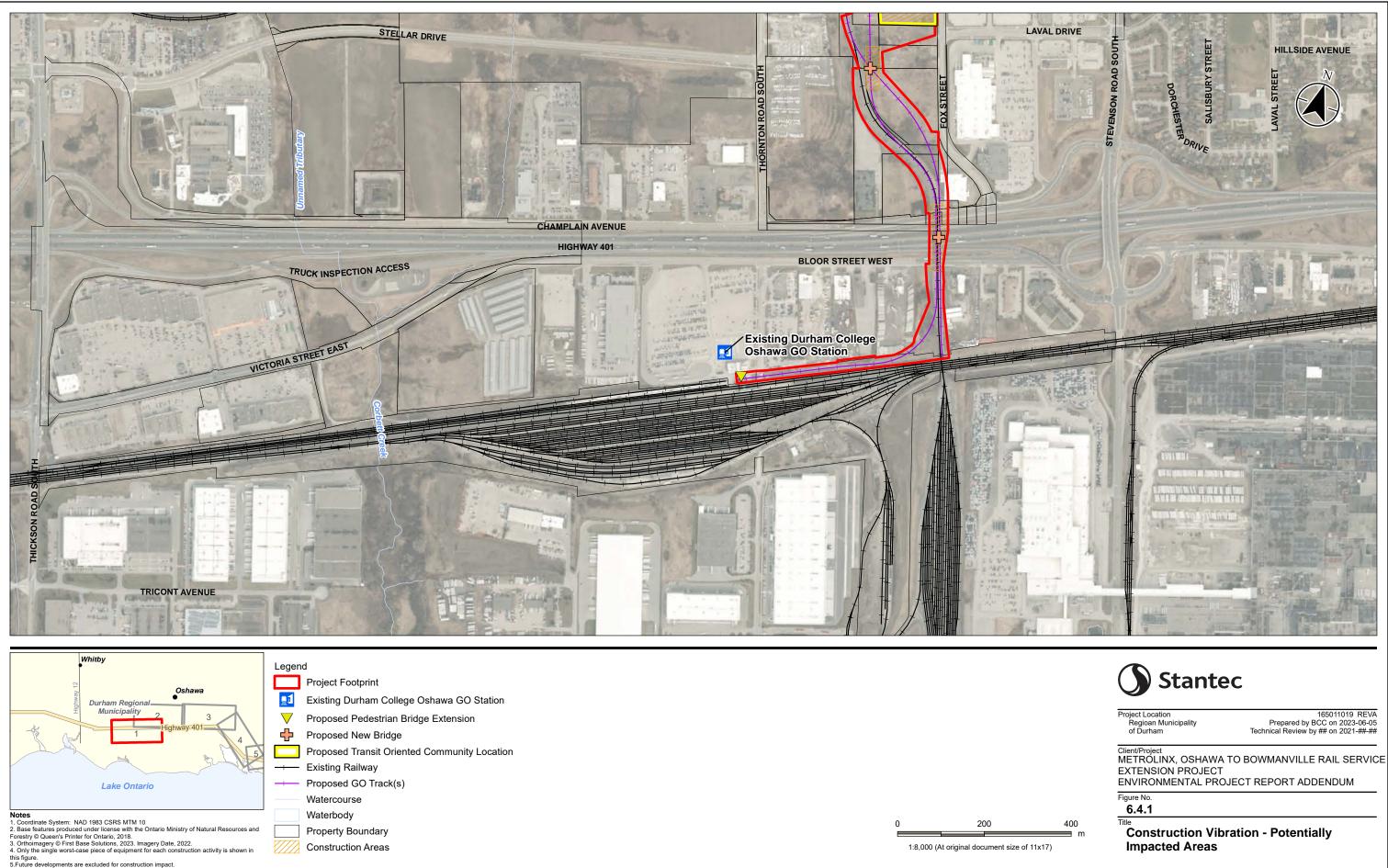
6.3.15

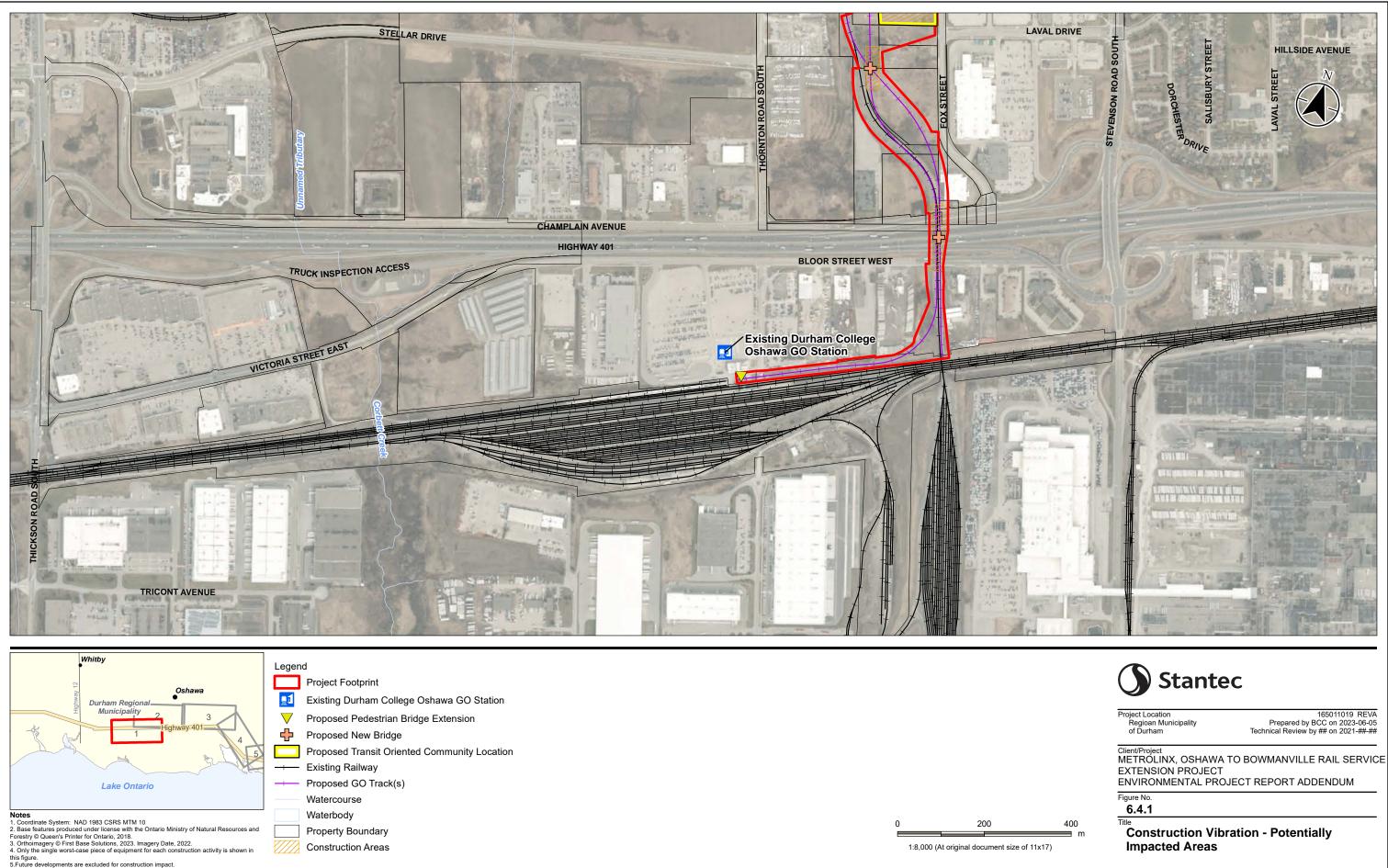
400 m

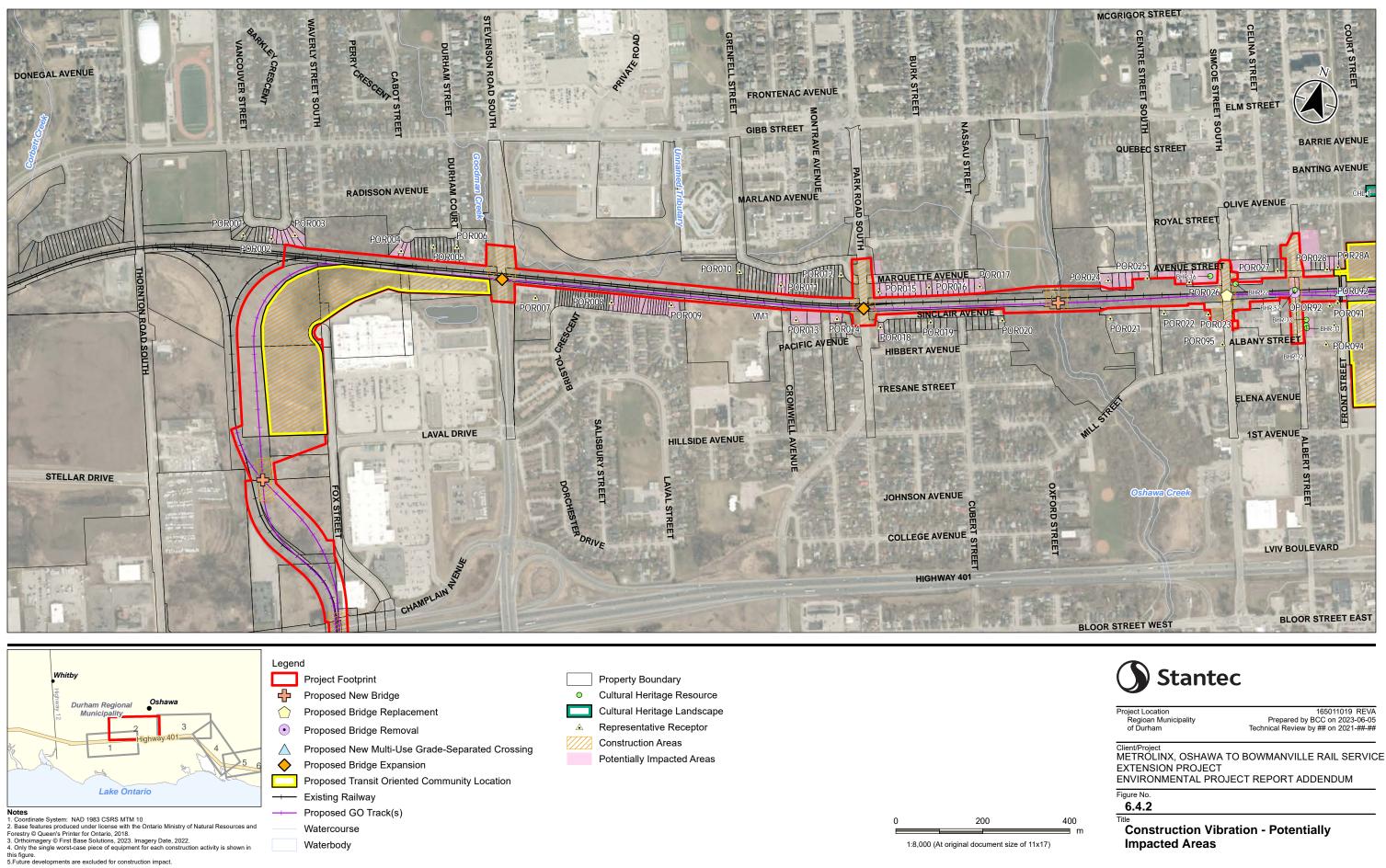
Title **Construction Vibration Zone of Influence** for 3 mm/s (Heritage Buildings)

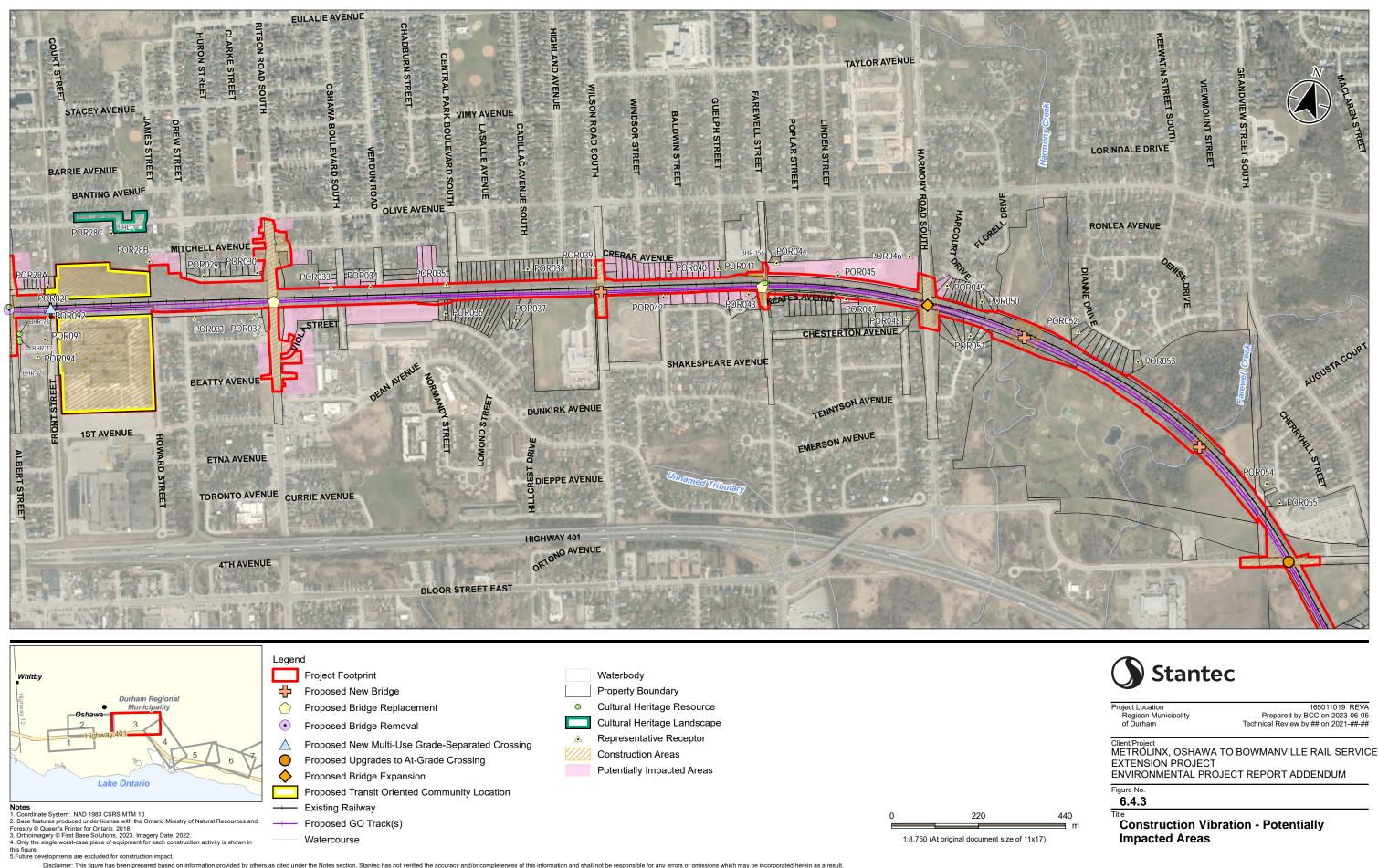
Project Location Regioan Municipality of Durham 165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

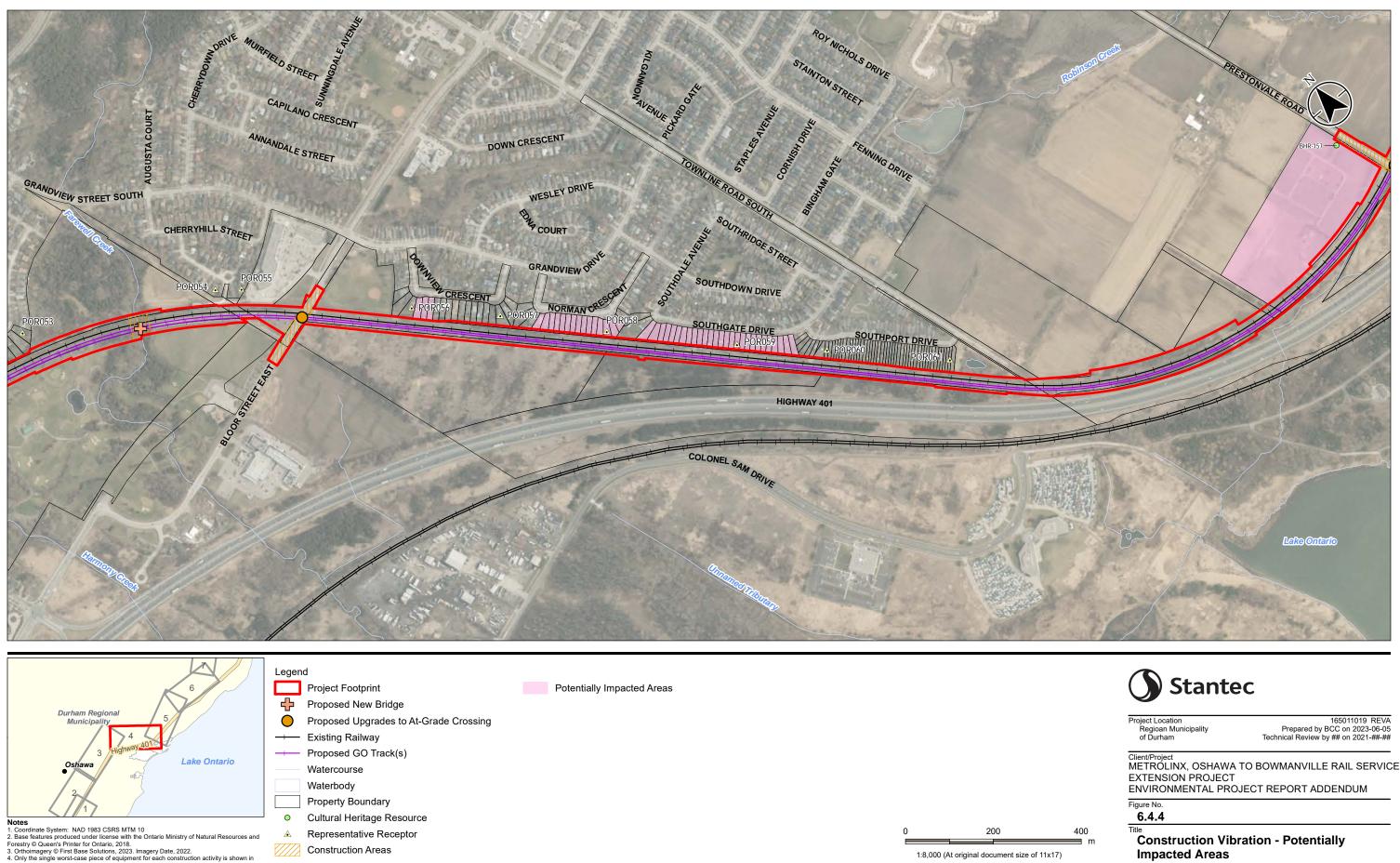
Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

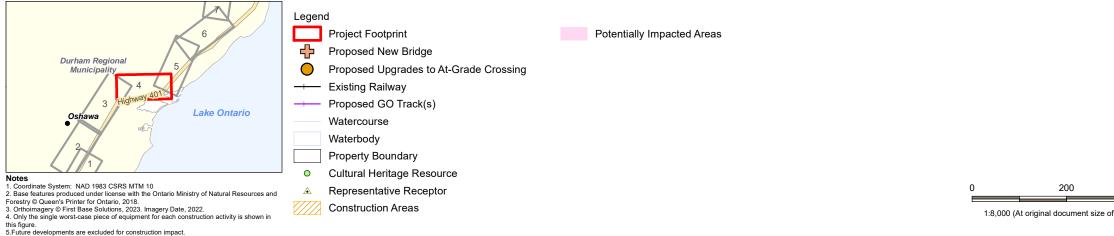

ENVIRONMENTAL PROJECT REPORT ADDENDUM Figure No.

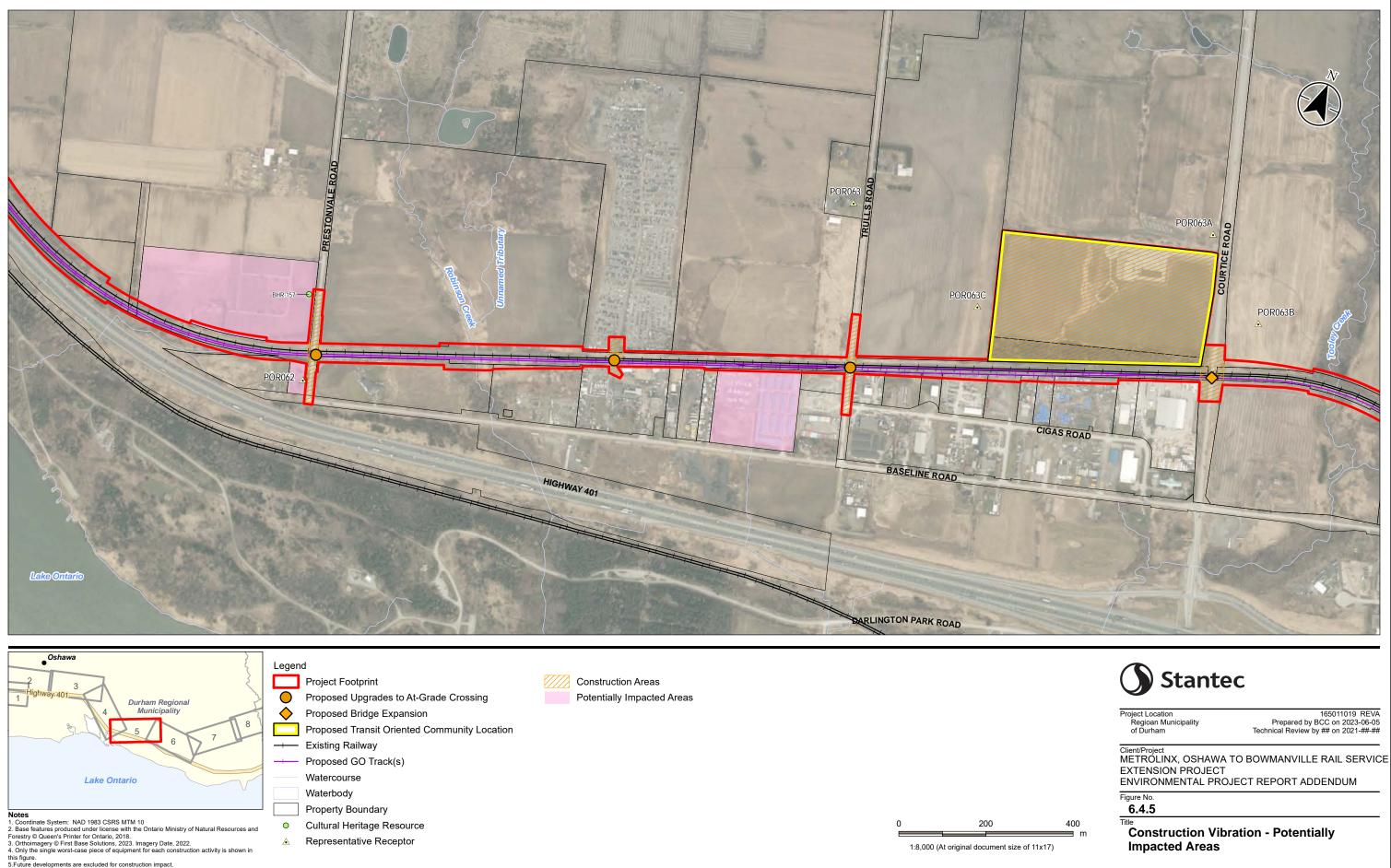

6.3.16

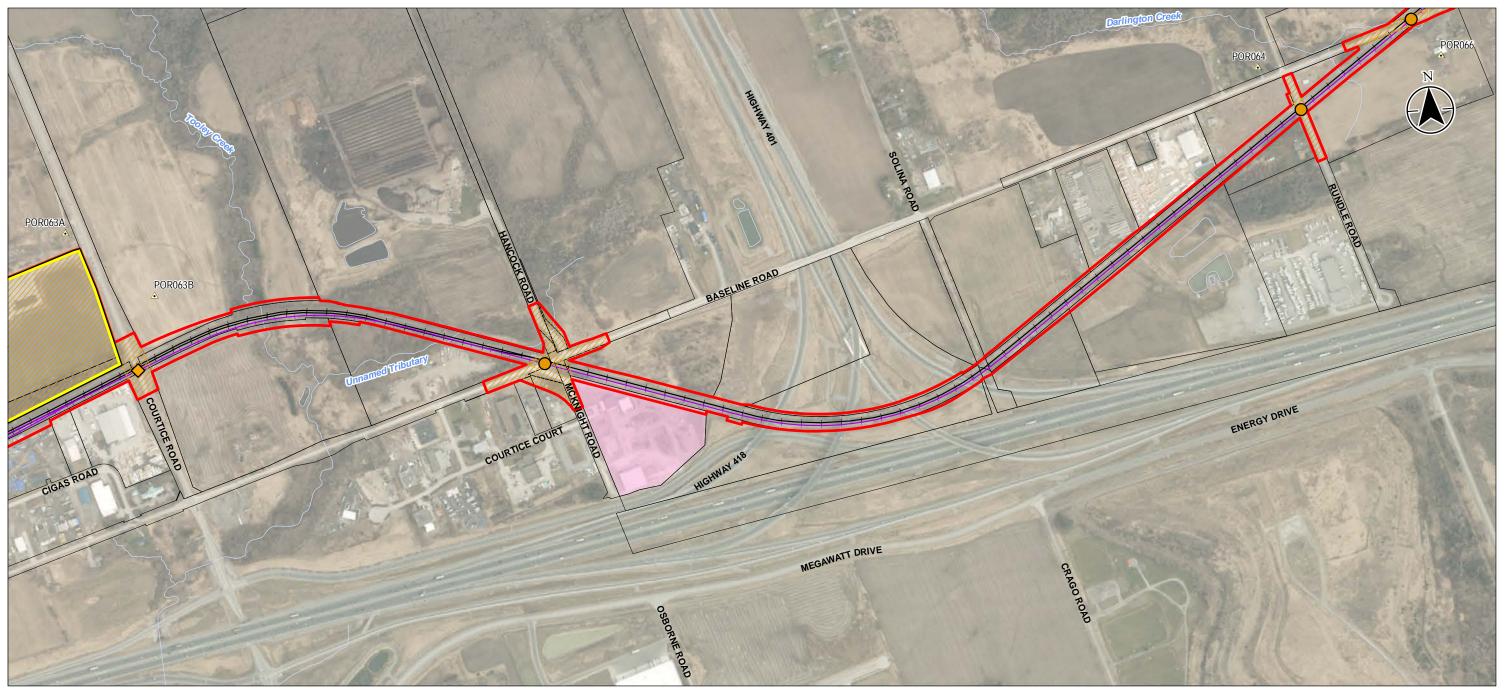

400

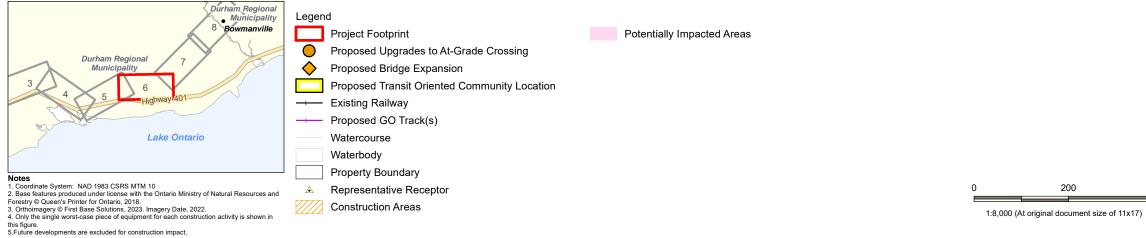

, ...


Title Construction Vibration Zone of Influence for 3 mm/s (Heritage Buildings)









Project Location Regioan Municipality of Durham


165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

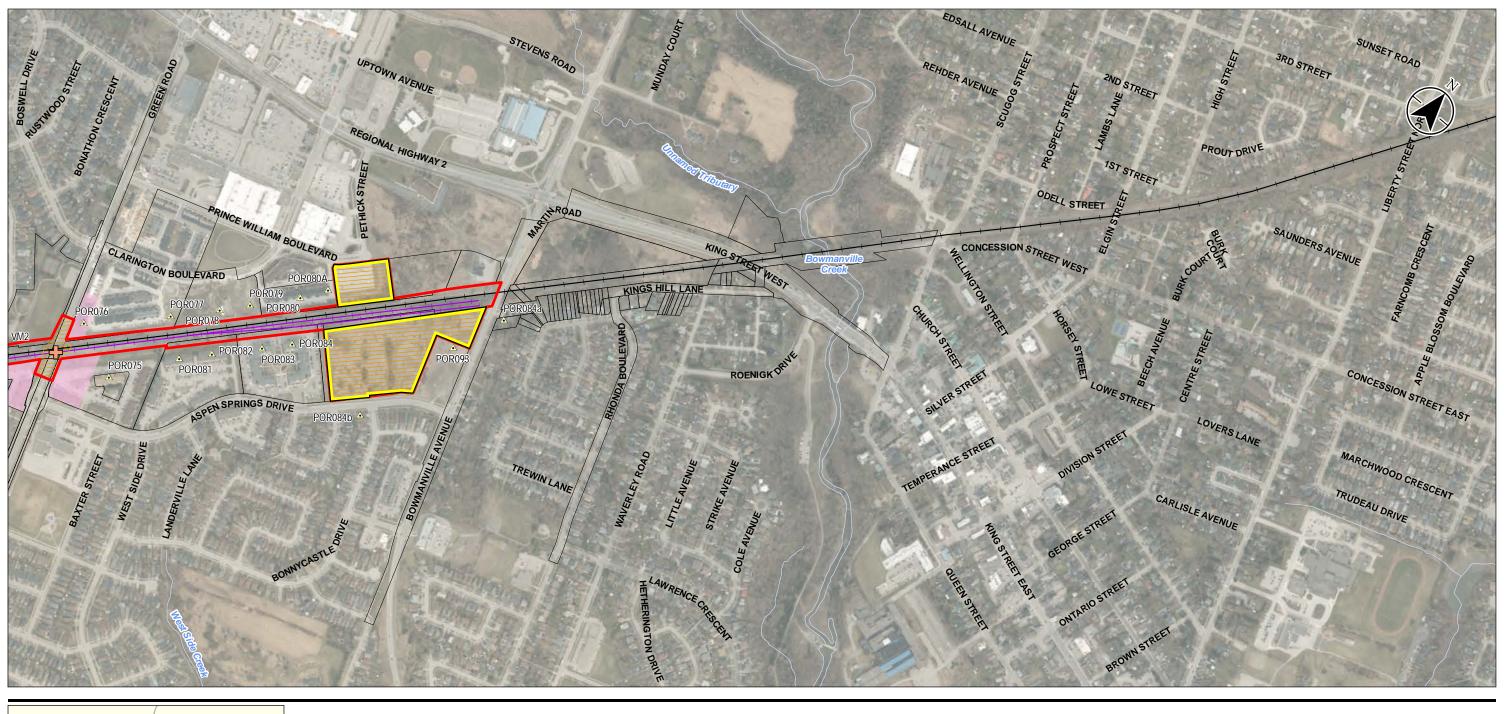
Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

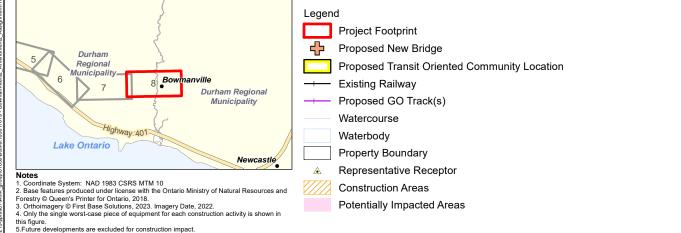
Figure No.

6.4.6

400 ∎ m Title Construction Vibration - Potentially Impacted Areas

1:8,000 (At original document size of 11x17)


200


6.4.7

Title

400 m E

Construction Vibration - Potentially Impacted Areas

1:8,000 (At original document size of 11x17)

200

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

6.4.8

400 m Title **Construction Vibration - Potentially** Impacted Areas

Potential Effects, Mitigation and Monitoring August 24, 2023

6.2 Construction Mitigation and Monitoring

6.2.1 Construction Noise

Based on the established construction noise ZOI (Table 6.2), some surrounding noisesensitive areas (in Figure 6.2.1 through Figure 6.2.8) may be impacted by construction noise. The following is a summary of the conceptual mitigation measures that should be considered for construction noise:

- Noise emissions of the construction equipment should be reviewed during detailed design to confirm that they are within the NPC-115 and NPC-118 limits. If they are expected to exceed the limits, quieter equipment should be considered for the Project. Alternatively, noise control options, such as silencers/mufflers should be investigated and implemented for specific equipment.
- 2. If the minimum setback distances in Table 6.2 cannot be maintained during the Project construction, temporary noise barriers for construction hoarding should be considered as primary means of construction noise mitigation for the Project. Figure 6.2.1 through Figure 6.2.8 highlight the areas that may be impacted by construction noise in the absence of any noise mitigation.
- 3. Noise shrouds for piling should be considered for the bridge construction where the receptors are within the ZOI established. Noise shrouds should have a minimum noise reduction of 10 dB. Vibratory/sonic or auger piling may be considered as alternate piling option.
- 4. Best construction practices for the Project should be followed as summarized in Appendix E.

Where noise barriers are used, the barriers should break line-of-sight between the construction equipment and the receptors, should have a minimum surface density (mass per unit of face area) of 20 kg/m² (4 lb/ft²) or an acoustic performance of STC 32 (per CSA-Z107.9-00), and be free of gaps and cracks. It is preferable that barriers are absorptive on the construction side.

The minimum setback distances for construction noise compliance with noise barriers for all construction phases considered in this assessment are summarized in Table 6.5. Although the noise barriers reduce the minimum setback distance required for compliance as compared to the no barrier scenario, some PORs may still fall within the noise ZOI depending on the actual construction equipment operating location. Therefore, noise monitoring is recommended for the receptors that exceed the criteria limits after mitigation and to address noise complaints.

Potential Effects, Mitigation and Monitoring August 24, 2023

Lastly, a detailed construction noise and vibration management plan should be completed by the Contractor to identify specific mitigation required for each location and to ensure that the noise limits are met for the Project construction. The construction noise and vibration management plan should be based on the actual location of the equipment and the manufacturer's sound levels for the finalized list of equipment.

Project Component	Construction Phase	ZOI (m)			
		Industrial Receptors (85 dBA)	Commercial Receptors (80 dBA)	Residential Receptors (75 dBA)	Institutional Receptors (70 dBA)
Track and Grading	Grading	6	10	20	41
	Track	4	7	15	32
Bridge Replacement	Utility Relocation and Road Closure	4	7	13	25
	Demolition of Existing Bridge	4	8	15	31
	Abutment Construction	14	25	44	79
	Span construction	2	3	6	11
	Road Reinstatement	4	7	12	23
	Site Cleanup	2	3	6	10
New Bridge	Utility Relocation and Road Closure	4	7	13	25
	Abutment Construction	14	25	44	79
	Span construction	2	3	6	11
	Road Reinstatement	4	7	13	24
	Site Cleanup	2	3	6	10
Modified Bridge	Removals and Site Preparation	4	7	13	25
	Abutment Underpinning	6	11	20	37
	Site Cleanup	2	3	6	10

Table 6.5: Construction Noise ZOI with Noise Barriers

Potential Effects, Mitigation and Monitoring August 24, 2023

Project Component	Construction Phase	ZOI (m)			
		Industrial Receptors (85 dBA)	Commercial Receptors (80 dBA)	Residential Receptors (75 dBA)	Institutional Receptors (70 dBA)
Stations/Layover Facility	Clearing	3	6	11	24
	Parking Construction	3	6	10	21
	Building/Platform Construction	3	5	9	18
Crossing Widening	Removals and Reconstruction	2	4	7	13

6.2.2 Construction Vibration

Based on the established construction vibration ZOIs summarized in Table 6.4, some surrounding heritage and non-engineered timber/masonry buildings (typical buildings) may be impacted by construction vibration.

Some of the PORs identified for the Project falls within the construction vibration ZOI and thus are impacted.

Figure 6.4.1 through Figure 6.4.8 show the PORs identified for the Project and areas that may be impacted by the Project construction vibration if the minimum setback distances cannot be maintained by operational changes. The potential vibration effects from construction equipment can be controlled by increasing the setback distance. Therefore, construction operational changes (e.g., maintaining setback distance, switching to lesser impactful equipment, etc.) and monitoring are recommended. The owners of the properties within the ZOIs should be notified in advance of nearby construction activities commencing.

Figure 6.4.1 through Figure 6.4.8 also serves to identify vibration monitoring areas where there are potentially impacted non-engineered timber/masonry buildings (typical construction) within the vibration ZOI. Mitigation and monitoring measures for construction noise and vibration are also summarized in Appendix F.

6.3 **Operations Assessment**

This section discusses modelling results and provides an indication of the anticipated potential effects associated with Project operations.

Potential Effects, Mitigation and Monitoring August 24, 2023

6.3.1 Operation Noise Assessment (Rail)

The Project noise levels from rail operations was predicted at the PORs, using the methodology described in Section 4.3. Predicted Project daytime ($L_{eq (16 hr)}$) and nighttime ($L_{eq (8 hr)}$) sound levels at the representative receptors compared with the Pre-Project sound levels as part of this assessment and are presented in Table 6.6. Table 6.6 also shows the Adjusted Daytime and Nighttime noise Impact which is the difference between the Pre-Project and Project sound levels. As per the MOEE/GO Draft Protocol, potential mitigation will be evaluated when the predicted impact is "significant or greater" (> 5 dB increase), as defined in Table 3.7. The mitigation will be evaluated based on administrative, operational, and technical feasibility. If deemed feasible, the mitigation measures shall ensure that the predicted sound level from the GO Transit rail project is as close to or lower than, the rail service objective.

Potential Effects, Mitigation and Monitoring August 24, 2023

Table 6.6: Pre-Project vs. Project Sound Levels

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
POR001	Façade	65	66	67	67	2	1	No
PORUUI	OLA	67	-	69	-	2		No
POR002	Façade	66	66	68	68	3	1	No
PORUUZ	OLA	67	-	70	-	3		No
POR003	Façade	63	63	67	66	5	3	Yes
PORUU3	OLA	65	-	68	-	4		No
POR004	Façade	66	66	68	67	3	2	No
POR004	OLA	67	-	70	-	3		No
DODOOF	Façade	64	64	66	65	2	1	No
POR005	OLA	65	-	68	-	3		No
	Façade	65	63	67	65	2	1	No
POR006	OLA	66	-	68	-	2		No
00007	Façade	66	64	68	66	3	2	No
POR007	OLA	67	-	70	-	3		No
	Façade	65	65	69	67	4	2	No
POR008	OLA	66	-	70	-	4		No
	Façade	65	66	70	68	4	2	No
POR009	OLA	67	-	71	-	4		No

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
POR010	Façade	63	63	65	64	3	1	No
PORUIU	OLA	66	-	68	-	2		No
POR011	Façade	65	66	68	67	3	1	No
PORUTI	OLA	66	-	69	-	3		No
000010	Façade	63	62	65	64	2	1	No
POR012	OLA	64	-	66	-	2		No
000040	Façade	65	65	68	67	4	2	No
POR013	OLA	66	-	70	-	4		No
000011	Façade	66	66	70	68	4	2	No
POR014	OLA	67	-	71	-	4		No
	Façade	67	67	69	68	2	1	No
POR015	OLA	68	-	70	-	2		No
000046	Façade	65	66	67	67	2	1	No
POR016	OLA	66	-	69	-	2		No
000017	Façade	65	66	68	67	2	1	No
POR017	OLA	67	-	69	-	2		No
000040	Façade	64	63	67	65	3	2	No
POR018	OLA	60	-	61	-	1		No
DODA40	Façade	64	64	68	67	4	2	No
POR019	OLA	60	-	61	-	1		No

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
POR020	Façade	64	65	68	67	4	2	No
POR020	OLA	64	-	67	-	3		No
POR021	Façade	64	64	67	66	4	2	No
POR021	OLA	60	-	62	-	2		No
DODOOO	Façade	64	64	68	66	3	2	No
POR022	OLA	64	-	66	-	3		No
DODOOO	Façade	66	65	68	66	2	1	No
POR023	OLA	64	-	65	-	1		No
000004	Façade	65	65	67	67	2	1	No
POR024	OLA	66	-	69	-	2		No
DODODE	Façade	65	65	67	66	2	1	No
POR025	OLA	66	-	68	-	2		No
DODOOC	Façade	67	67	69	68	2	1	No
POR026	OLA	69	-	71	-	2		No
00007	Façade	65	64	66	65	1	0	No
POR027	OLA	60	-	60	-	0		No
DODOO	Façade	65	65	66	65	1	0	No
POR028	OLA	59	-	59	-	0		No
DODOOO	Façade	63	63	64	64	2	1	No
POR029	OLA	59	-	59	-	0		No

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
POR030	Façade	65	62	66	63	1	1	No
POR030	OLA	64	-	64	-	0		No
DOD034	Façade	65	65	68	67	3	1	No
POR031	OLA	65	-	67	-	3		No
DODOOO	Façade	65	64	68	66	3	2	No
POR032	OLA	63	-	63	-	0		No
	Façade	67	68	70	69	3	1	No
POR033	OLA	66	-	69	-	3		No
	Façade	67	68	70	69	3	1	No
POR034	OLA	66	-	69	-	3		No
DOD025	Façade	67	67	70	69	3	1	No
POR035	OLA	64	-	67	-	3		No
DODOOC	Façade	63	64	67	66	4	2	No
POR036	OLA	64	-	68	-	4		No
00007	Façade	62	63	66	64	3	2	No
POR037	OLA	63	-	67	-	4		No
DODOOO	Façade	63	63	65	65	2	1	No
POR038	OLA	64	-	67	-	3		No
DODOOO	Façade	65	64	67	65	1	1	No
POR039	OLA	66	-	68	-	2		No

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
POR040	Façade	65	65	67	66	3	1	No
POR040	OLA	66	-	69	-	3		No
	Façade	64	64	67	66	3	2	No
POR041	OLA	65	-	69	-	3		No
000040	Façade	66	67	72	70	6	3	Yes
POR042	OLA	68	-	74	-	6		Yes
DO DO 10	Façade	66	67	71	70	5	3	Yes
POR043	OLA	66	-	71	-	5		Yes
000044	Façade	61	61	64	63	3	2	No
POR044	OLA	60	-	62	-	3		No
000045	Façade	66	66	68	67	2	1	No
POR045	OLA	-	-	-	-	-	-	No
000046	Façade	61	59	62	60	1	1	No
POR046	OLA	63	-	64	-	0		No
000047	Façade	66	66	69	68	3	2	No
POR047	OLA	67	-	70	-	3		No
000040	Façade	63	63	66	64	2	1	No
POR048	OLA	64	-	66	-	2		No
00040	Façade	63	62	64	63	1	1	No
POR049	OLA	64	-	66	-	2		No

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
DODOSO	Façade	64	65	66	66	2	1	No
POR050	OLA	66	-	67	-	2		No
	Façade	63	63	66	65	2	1	No
POR051	OLA	65	-	67	-	3		No
DODOCO	Façade	63	63	64	64	2	1	No
POR052	OLA	64	-	66	-	2		No
DODOCO	Façade	62	62	64	63	2	1	No
POR053	OLA	63	-	65	-	2		No
DODOC 4	Façade	64	64	66	65	2	1	No
POR054	OLA	65	-	67	-	2		No
DODACC	Façade	64	64	65	65	2	1	No
POR055	OLA	65	-	67	-	2		No
DODOCO	Façade	66	66	68	68	2	1	No
POR056	OLA	67	-	69	-	2		No
000057	Façade	66	66	67	67	1	1	No
POR057	OLA	66	-	68	-	2		No
DODOCO	Façade	68	68	69	69	1	1	No
POR058	OLA	69	-	70	-	1		No
DODOCO	Façade	69	70	70	70	1	0	No
POR059	OLA	71	-	71	-	1		No

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
POR060	Façade	69	69	70	70	1	0	No
PORUOU	OLA	70	-	71	-	1		No
POR061	Façade	70	70	70	70	1	0	No
PORUOI	OLA	71	-	72	-	1		No
DODOGO	Façade	70	70	71	71	1	0	No
POR062	OLA	71	-	71	-	1		No
DODOCO	Façade	57	57	58	58	1	1	No
POR063	OLA	57	-	59	-	1		No
	Façade	63	61	65	63	1	1	No
POR064	OLA	62	-	64	-	2		No
DODOGE	Façade	63	63	65	65	2	2	No
POR065	OLA	64	-	67	-	3		No
DODOGG	Façade	62	62	64	63	2	2	No
POR066	OLA	63	-	65	-	2		No
	Façade	65	65	68	67	3	2	No
POR067	OLA	66	-	69	-	3		No
	Façade	60	61	65	64	4	2	No
POR068	OLA	59	-	64	-	4		No
DODOGO	Façade	61	62	65	64	4	2	No
POR069	OLA	62	-	67	-	4		No

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
	Façade	61	61	65	64	4	2	No
POR070	OLA	61	-	65	-	4		No
POR071	Façade	60	61	64	63	5	2	No
PORUTI	OLA	58	-	62	-	4		No
000070	Façade	63	64	66	65	4	2	No
POR072	OLA	63	-	67	-	4		No
000070	Façade	62	63	66	65	4	2	No
POR073	OLA	64	-	67	-	4		No
000074	Façade	62	63	66	65	3	2	No
POR074	OLA	63	-	67	-	4		No
	Façade	61	62	65	64	4	2	No
POR075	OLA	53	-	54	-	1		No
000070	Façade	62	63	66	65	3	2	No
POR076	OLA	63	-	66	-	3		No
000077	Façade	63	64	67	66	3	2	No
POR077	OLA	64	-	67	-	3		No
000070	Façade	64	65	66	66	3	1	No
POR078	OLA	64	-	66	-	2		No
	Façade	63	64	66	65	2	1	No
POR079	OLA	64	-	66	-	2		No

Potential Effects, Mitigation and Monitoring August 24, 2023

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}	Project Daytime Sound Levels (dBA) L _{eq(16)}	Project Nighttime Sound Levels (dBA) L _{eq(8)}	Adjusted Daytime Noise Impact (dB) ¹	Adjusted Nighttime Noise Impact (dB)	Mitigation Needed? (Yes or No)
DODOOO	Façade	63	64	66	65	3	1	No
POR080	OLA	56	-	56	-	0		No
	Façade	62	63	66	65	4	2	No
POR081	OLA	64	-	68	-	4		No
	Façade	62	63	66	65	4	2	No
POR082	OLA	64	-	68	-	4		No
DODAAA	Façade	63	64	66	65	3	2	No
POR083	OLA	55	-	56	-	1		No
000004	Façade	63	64	66	65	4	2	No
POR084	OLA	56	-	57	-	1		No
00004	Façade	64	65	66	65	2	1	No
POR091	OLA	-	-	-	-	-	-	No
	Façade	66	67	69	68	3	1	No
POR092	OLA	65	-	68	-	3		No
DODAAA	Façade	63	61	64	62	1	1	No
POR093	OLA	-	-	-	-	-	-	No
00004	Façade	63	62	64	62	1	0	No
POR094	OLA	-	-	-	-	-	-	No
DODOOF	Façade	62	62	64	63	2	1	No
POR095	OLA	-	-	-	-	-	-	No

¹ Discrepancy in adjusted noise impact is due to sound levels rounded to the nearest whole number

Potential Effects, Mitigation and Monitoring August 24, 2023

The assessment of rail corridor indicates that sound levels are expected to increase by 0-6 dB at the receptors. Based on the assessment, the Project has significant impact on five of the surrounding representative receptors (per Table 6.6) for rail operations, and therefore, noise mitigation is recommended. A table detailing the noise impact of the Project operations without ambient noise considered is provided as Appendix B.5.

6.3.2 Operations Noise Assessment – Rail Squeal

Rail squeal noise resulting from the movement of trains around curves is a very complex phenomenon. Track curve radii under 305 m has a potential for wheel squeal noise from rail. No rail under curve radii of 305 m is identified along the corridor, except the one at the current spur line connecting to the CP Rail main line. This curved track is currently used by the CP Rail spur line that connects from the CN to CP Rail main line. A GO station is proposed at this location and trains are expected to stop and/or move at reduced speed at this location. As the trains are moved around the curved tracks, the wheels have potential to produce squeal. A tonal penalty of 5 dB has been included for the curved portions of the track at this location in the assessment. Modelling results presented in Table 6.6 include impact due to squeal. Modeling results indicate that, no receptors are impacted from squeal noise.

6.3.3 Operations Noise Assessment – GO Stations and Layover Facility

Stationary noise sources at the GO stations and layover facility were assessed by predicting noise levels at the surrounding receptors and comparing with the applicable MECP limits. Sound levels were predicted using the methodology described in Section 4.3. The predicted sound levels are reported in Table 6.7.

Potential Effects, Mitigation and Monitoring August 24, 2023

Table 6.7: GO Station/Layover Facility Stationary Noise Assessment GO Station/ Receptor ID Receptor Daytime Impact Nighttime NPC-300

GO Station/ Layover Facility	Receptor ID	Receptor Location	Daytime Impact (dBA) L _{eq(1hr)}	Nighttime Impact (dBA) L _{eq(1hr)}	NPC-300 Class 1 Daytime Criteria	NPC-300 Class 1 Nighttime Criteria	Mitigation Needed? (Yes or No)
B1 Station	POR001	POW	38	34	50	45	Yes
		OPOR	39	-	50	-	Yes
	POR002	POW	39	36	50	45	Yes
		OPOR	41	-	50	-	Yes
	POR003	POW	39	37	50	45	Yes
		OPOR	40	-	50	-	Yes
	POR004	POW	45	44	50	45	Yes
		OPOR	46	-	50	-	Yes
B2 Station	POR28A	POW	53	50	50	45	No
		OPOR	53	-	50	-	No
	POR28B	POW	46	44	50	45	Yes
		OPOR	46	-	50	-	Yes
	POR28C	POW	45	43	50	45	Yes
		OPOR	47	-	50	-	Yes
B3 Station	POR063	POW	33	30	50	45	Yes
		OPOR	30	-	50	-	Yes
	POR063A	POW	52	48	50	45	No
		OPOR	54	-	50	-	Yes
	POR063B	POW	45	41	50	45	Yes
		OPOR	-	-	50	-	Yes
	POR063C	POW	Ν	37	50	45	Yes

Potential Effects, Mitigation and Monitoring August 24, 2023

GO Station/ Layover Facility	Receptor ID	Receptor Location	Daytime Impact (dBA) L _{eq(1hr)}	Nighttime Impact (dBA) L _{eq(1hr)}	NPC-300 Class 1 Daytime Criteria	NPC-300 Class 1 Nighttime Criteria	Mitigation Needed? (Yes or No)
		OPOR	-	-	50	-	Yes
B4 Station	POR080	POW	47	44	50	45	Yes
		OPOR	45	-	50	-	Yes
	POR080A	POW	58	52	50	45	No
		OPOR	45	-	50	-	Yes
	POR093	POW	46	43	50	45	Yes
		OPOR	24	-	50	-	Yes
B4 Layover	POR0801	POW	35	49	55	55	Yes
Facility		OPOR	15	-	55	-	Yes
	POR080A ¹	POW	37	50	55	55	Yes
		OPOR	15	-	55	-	Yes
	POR0841	POW	34	44	55	55	Yes
		OPOR	15	-	55	-	Yes
	POR084A ¹	POW	30	54	55	55	Yes
		OPOR	-	-	55	-	Yes
	POR084B1	POW	30	38	55	55	Yes
		OPOR	-	-	55	-	Yes
	POR093	POW	40	59	55	55	No
		OPOR	-	-	55	-	No

¹ Locomotives have been assumed to be at the east end of trains stationed at the layover facility. If locomotives are placed at the west end of trains, predicted sound levels would exceed applicable noise criteria at PORs adjacent to the Bowmanville Avenue (B4 Bowmanville) GO Station

Potential Effects, Mitigation and Monitoring August 24, 2023

The assessment indicates that the anticipated sound levels generated by GO station operations at B2, B3, and B4 are above applicable MECP NPC-300 criteria at some of the receptors. The noise impact of the layover facility and fueling operations east of GO Station B4 are above the applicable MECP NPC-300 criteria at the representative receptor east of Bowmanville Avenue. Mitigation is required to achieve compliance with applicable MECP NPC-300 criteria and is discussed under Section 6.4.

6.3.4 GO Station and Layover Facility Emergency Generator Testing

The noise impact of emergency generators at the GO stations and the layover facility during planned non-emergency operation (e.g., during testing) were assessed separately by predicting noise levels at the surrounding receptors and comparing with the applicable MECP limits. Generator sound levels were predicted at the surrounding receptors using the methodology described in Section 4.3. The predicted sound levels are reported in Table 6.8.

Potential Effects, Mitigation and Monitoring August 24, 2023

GO Station/ Layover Facility	Receptor ID	Receptor Location	Daytime Impact (dBA) L _{eq(1hr)}	NPC-300 Class 1 Daytime Criteria ¹	Mitigation Needed? (Yes or No)
B1	POR001	POW	38	55	No
		OPOR	35	55	No
	POR002	POW	38	55	No
		OPOR	38	55	No
	POR003	POW	38	55	No
		OPOR	33	55	No
	POR004	POW	36	55	No
		OPOR	38	55	No
B2	POR28A	POW	43	55	No
		OPOR	43	55	No
	POR28B	POW	50	55	No
		OPOR	52	55	No
	POR28C	POW	44	55	No
		OPOR	47	55	No
B3	POR063	POW	27	55	No
		OPOR	27	55	No
	POR063A	POW	37	55	No
		OPOR	39	55	No

Table 6.8: GO Station/Layover Facility Emergency Generator Noise Assessment

Potential Effects, Mitigation and Monitoring August 24, 2023

GO Station/ Layover Facility	Receptor ID	Receptor Location	Daytime Impact (dBA) L _{eq(1hr)}	NPC-300 Class 1 Daytime Criteria ¹	Mitigation Needed? (Yes or No)
B4	POR080	POW	48	55	No
		OPOR	25	55	No
	POR080A	POW	51	55	No
		OPOR	25	55	No
	POR084	POW	47	55	No
		OPOR	26	55	No
	POR084A	POW	42	55	No
		OPOR	33	55	No
	POR084B	POW	44	55	No
		OPOR	42	55	No

¹ Criteria for emergency generator testing are 5 dB above the applicable stationary noise criteria per NPC-300. Emergency generator testing is expected during daytime hours only.

Predicted sound levels are within the MECP limits and no additional mitigation is required for the emergency generators at the GO stations and layover facility.

Potential Effects, Mitigation and Monitoring August 24, 2023

6.3.5 Operations Vibration Assessment (Rail)

The Project vibration impact from rail operations was assessed using the field measurements conducted at two representative locations for several setback distances for the pre-project conditions as summarized in Table 5.6. The setback distances from the proposed GO rail track were identified and conservatively matched to setback distances from measured levels to assess future potential vibration impact from the proposed GO rail operations. The future vibration levels at the receptors are reported in Table 6.9.

Table 6.9 indicates that they are expected to exceed the limit at the receptors within 30 m from the centerline of the proposed GO track. Vibration level as high as 0.37 mm/s is expected at the dwellings represented by PORs 42, 43 and 47. Other locations where vibration limits expected to exceed are the dwellings that represented by PORs 009, 014, and 031. Vibration mitigation is discussed in the following section.

Potential Effects, Mitigation and Monitoring August 24, 2023

Table 6.9: Future Vibration Levels at Receptors Based on Vibration Measurements

Receptor ID ¹	Receptor Description	Approximate Separation Distance (m)	Anticipated RMS Vibration Levels (mm/s)	Vibration Criteria (mm/sec)	Exceeds Criteria (Yes or No?)	
POR007	Two Storey Residence on Bristol Cres.	33	<0.170	0.175	No	
POR008	Two Storey Residence on Bristol Cres.	30	<0.170	0.175	No	
POR009	Two Storey Residence on Bristol Cres.	23	0.211	0.175	Yes	
POR013	Two Storey Residence on Cromwell Ave.	30	<0.170	0.175	No	
POR014	Two Storey Residence on Cromwell Ave.	22	0.211	0.175	Yes	
POR018	Two Storey Residence on Sinclair Ave.	40	<0.170	0.175	No	
POR019	One Storey Residence on Sinclair Ave.	32	<0.170	0.175	No	
POR020	One Storey Residence on Sinclair Ave.	34	<0.170	0.175	No	
POR021	Two Storey Residence on Hall St.	38	<0.170	0.175	No	
POR022	One Storey Residence on Hall St.	34	<0.170	0.175	No	
POR023	Two Storey Residence on Hall St.	41	<0.170	0.175	No	
POR031	Two Storey Residence on Edward Ave.	27	0.196	0.175	Yes	
POR032	Two Storey Residence on Edward Ave.	37	<0.170	0.175	No	
POR036	One Storey Residence on Sedan Cres.	40	<0.170	0.175	No	
POR037	One Storey Residence on Brest Cres.	62	<0.170	0.175	No	
POR042	Three Storey Residence on Chaucer	16	0.366	0.175	Yes	
POR043	Three Storey Residence on Chaucer	17	0.366	0.175	Yes	
POR047	Two Storey Residence on Keates Ave.	18	0.366	0.175	Yes	

Potential Effects, Mitigation and Monitoring August 24, 2023

Receptor ID ¹	Receptor Description	Approximate Separation Distance (m)	Anticipated RMS Vibration Levels (mm/s)	Vibration Criteria (mm/sec)	Exceeds Criteria (Yes or No?)	
POR048	Two Storey Residence on Chesterton Ave.	39	<0.170	0.175	No	
POR051	One Storey Residence on Tennyson Ct.	37	<0.170	0.175	No	
POR062	Two Storey Residence on Prestonvale Rd.	55	<0.170	0.175	No	
POR065	One Storey Residence on Baseline Rd. W.	73	<0.170	0.175	No	
POR068	Two Storey Residence on Autumn Harvest Rd.	46	<0.170	0.175	No	
POR069	Two Storey Residence on Dykstra Ln.	49	<0.170	0.175	No	
POR070	Two Storey Residence on Dykstra Ln.	49	<0.170	0.175	No	
POR071	Two Storey Residence on Dykstra Ln.	49	<0.170	0.175	No	
POR075	Four Storey Apartment Building on Aspen Springs	65	<0.170	0.175	No	
POR081	Three Storey Residence on Aspen Springs	45	<0.170	0.175	No	
POR082	Three Storey Residence on Aspen Springs	43	<0.170	0.175	No	
POR083	Four Storey Residence on Aspen Springs D	39	<0.170	0.175	No	
POR084	Four Storey Residence on Aspen Springs D	35	<0.170	0.175	No	

Only receptors south of the proposed GO rail tracks have been considered as the new tracks are added to the south of the existing CP tracks. Receptors north of the proposed GO rail tracks are in closer proximity to the existing CP rail line and is farther away from the proposed GO track. Therefore, lesser vibration impact than that from the existing CP rai line is expected.

Potential Effects, Mitigation and Monitoring August 24, 2023

6.4 Operation Mitigation

Mitigation for the rail corridor, GO stations and layover facility is required to achieve compliance with applicable Draft Protocol and MECP NPC-300 noise limits. Predicted sound levels from GO station operations are expected to exceed the applicable limits at the receptors surrounding B2, B3, and B4 GO stations. Noise walls are recommended for these GO stations for compliance. Noise barriers recommend for the Project operations are summarized in Table 6.10. Mitigated sound levels are presented in Table 6.12 for rail operations and Table 6.13 for GO station stationary operations.

Mitigated noise contours for stationary noise sources (GO stations) are presented on Figures 6.5.1 through 6.5.8.

A summary of noise barriers for the mitigation of GO station, layover facility and rail operations is provided in Table 6.10 and are shown in Figure set 6.7.

Barrier ID	Height (m)	Length (m)	Barrier Start Point (MTM Zone 10)		Barrier Endpoint (MTM Zone 10)	
			Easting	Northing	Easting	Northing
NB_A ¹	5	78	356607	4861068	356568	4861152
NB_B ²	5	325	357994	4861481	358306	4861581
NB_C ¹	5	76	363691	4860979	363619	4860956
NB_D ¹	5	86	368647	4863383	368710	4863324
NB_E ³	5	33	368942	4863518	368948	4863547
NB_F	5	176	354088	4860469	354259	4860496

Table 6.10: Noise Barrier Summary

¹ Noise barriers required for GO stations

² North surface of barrier to be acoustically absorptive finish

³Noise barrier required for the layover facility

Operation vibration from rail is expected to exceed applicable criteria at the dwellings represented by PORs 009, 014, 031, 042, 043 and 047. Ballast mats are recommended to mitigate the impact of operational vibration. The area identified for vibration mitigation (ballast mat) are shown in Figure set 6.7.

The following mitigation measures are recommended for the Project operations:

• Install the noise barriers listed in Table 6.10 to address operation noise impacts. Noise barriers are shown in Figure set 6.7.

Potential Effects, Mitigation and Monitoring August 24, 2023

- Curved portions of the track at GO Station B1 should be designed and lubricated tracks at the curve as part of general track maintenance to minimize or eliminate rail squeal noise.
- Ballast mats are recommended for the dwellings represented by PORs 009, 014, 031, 032, 042, 043 and 047 to address operation vibration impact. The area identified for mitigation are shown in Figure set 6.7.

With the recommended noise barriers in place, GO station and layover facility stationary noise and future operational noise from rail activities at the surrounding receptors are expected to meet the applicable noise limits, with the exception of POR093 as discussed below

The noise barriers listed in Table 6.10 are considered technically feasible as they achieve a minimum reduction of 5 dB at representative receptors along the ROW. Barriers shall be installed on Metrolinx-owned land, where possible. Public consultations shall be held with the public to include considerations such as aesthetics and interference with sunlight. Barriers shall be installed so as to not obstruct line-of-sight of train engineers, allow for ROW maintenance, not obstruct pedestrian bridges or roadway crossings, allow for trackside and roadside equipment operation, and not create a safety hazard.

The economic feasibility of the barriers listed in Table 6.10 has been evaluated using the barrier cost effectiveness index (CEI). The CEI is defined as the cost per benefitted receptor and per dB of minimum noise reduction (\$\$/BR/dBNR). A summary of the CEI for each barrier is summarized in Table 6.11.

Barrier ID	Receptors Impacted	Length (m)	Estimated Unit Barrier Cost \$/m ²	Surface area (m²)	Total Cost	Average Noise Reduction (dB) ²	CEI (BR/dBNR)
NB_A ¹	-	78	\$600	390	\$234,000	-	-
NB_B	9	284	\$600	1,420	\$852,000	5	\$18,933
NB_C ¹	-	76	\$600	380	\$228,000	-	-
NB_D ¹	-	86	\$600	430	\$258,000	-	-
NB_E ¹	-	33	\$600	165	99,000	-	-
NB_F	14	176	\$600	880	\$528,000	5	\$7,542

¹ Noise barriers required for GO stations and layover facility are not subject to CEI analysis

² Based on worst case daytime noise impact levels and mitigated daytime levels

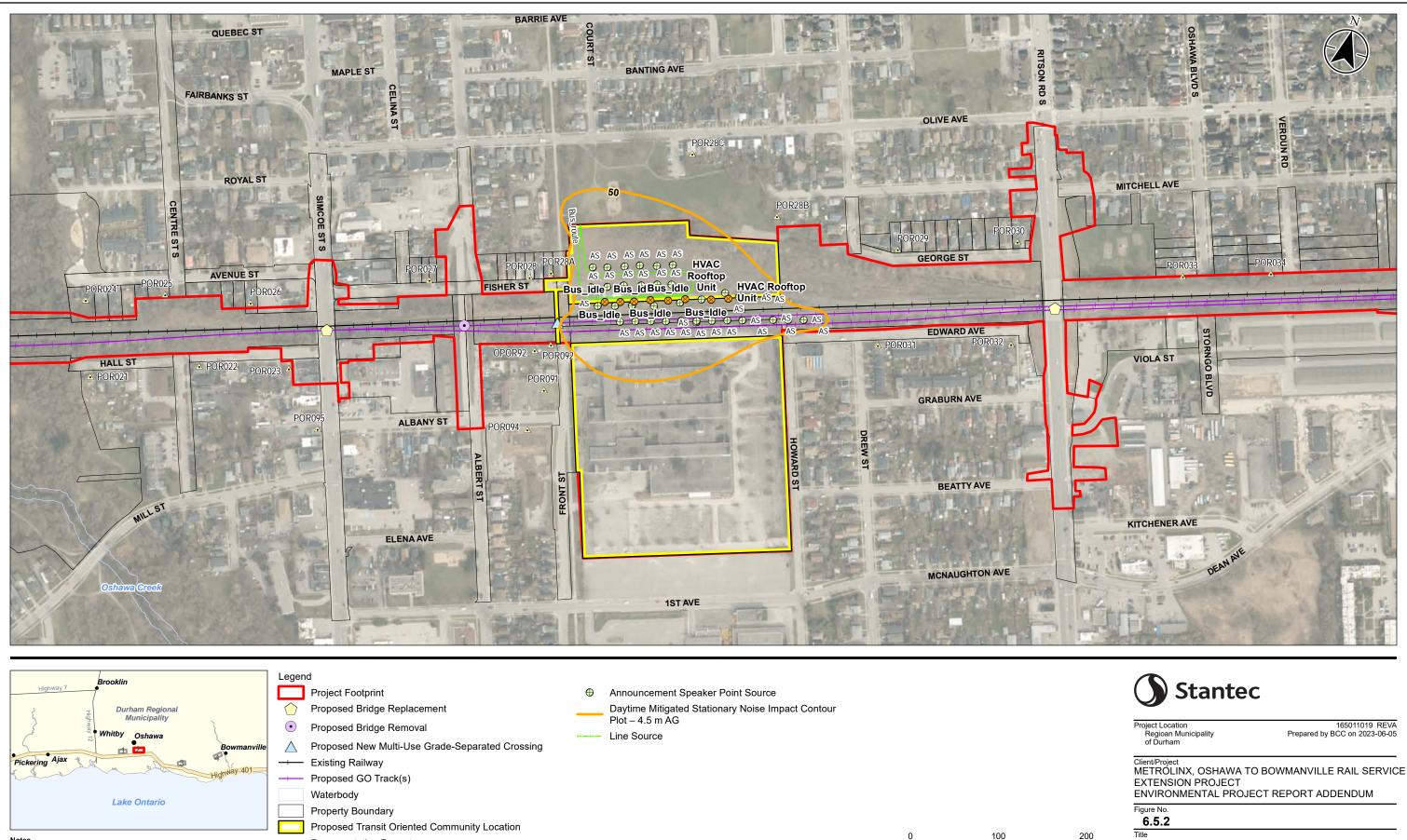
Potential Effects, Mitigation and Monitoring August 24, 2023

Mitigation to reduce operational noise generated by layover activities at POR093 is not feasible given the proposed development is a 25-storey high-rise building overlooking the proposed layover yard. It is expected that this has been taken into account during the land use planning and approval process for this development.

Ballast mat will provide approximately 10 dB reduction in vibration levels. Mitigated vibration from rail operations is expected to be within the MOEE/GO Draft Protocol limits.


Mitigation requirements for Project operation noise and vibration are also summarized in Appendix F.

6.5 Recommendations


Stantec recommends that additional noise and vibration monitoring be conducted during the detailed design phase of the Project. These measurements should be collected to confirm that modelled ambient noise levels are a conservative estimate of existing ambient sound levels and that measured vibration levels are also representative of the existing conditions along the project corridor.

Noise and vibration monitoring may be challenging given the varying schedule and composition of the freight movements along the CP rail line.

Stantec also recommends that an additional set of validation measurements be collected after the commissioning of the Project to validate modelled sound levels.

isclaimer. This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Notes

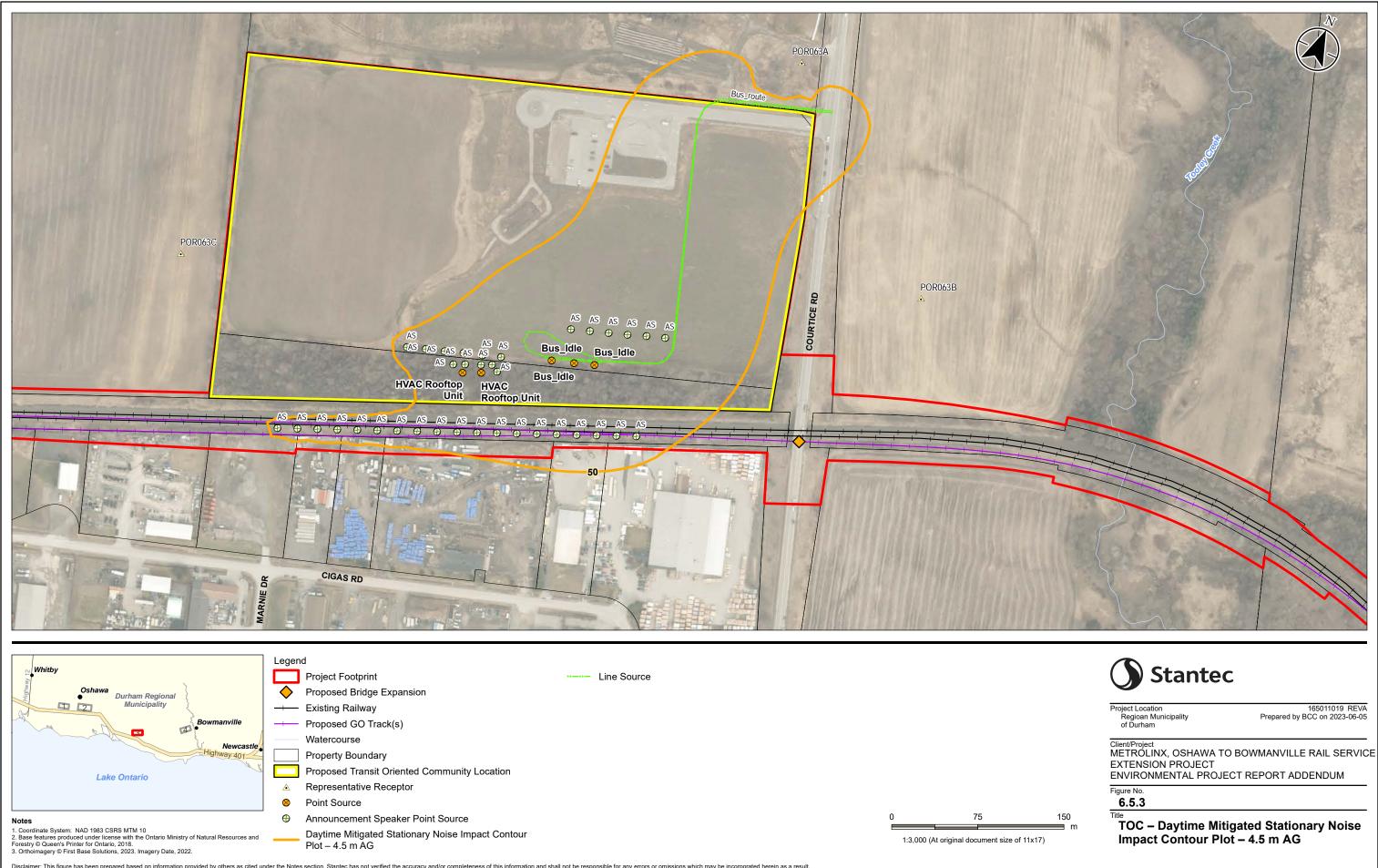
1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and
 Forestry © Queen's Printer for Ontario, 2018.
 3. Orthoimagery © First Base Solutions, 2023. Imagery Date, 2022.

isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

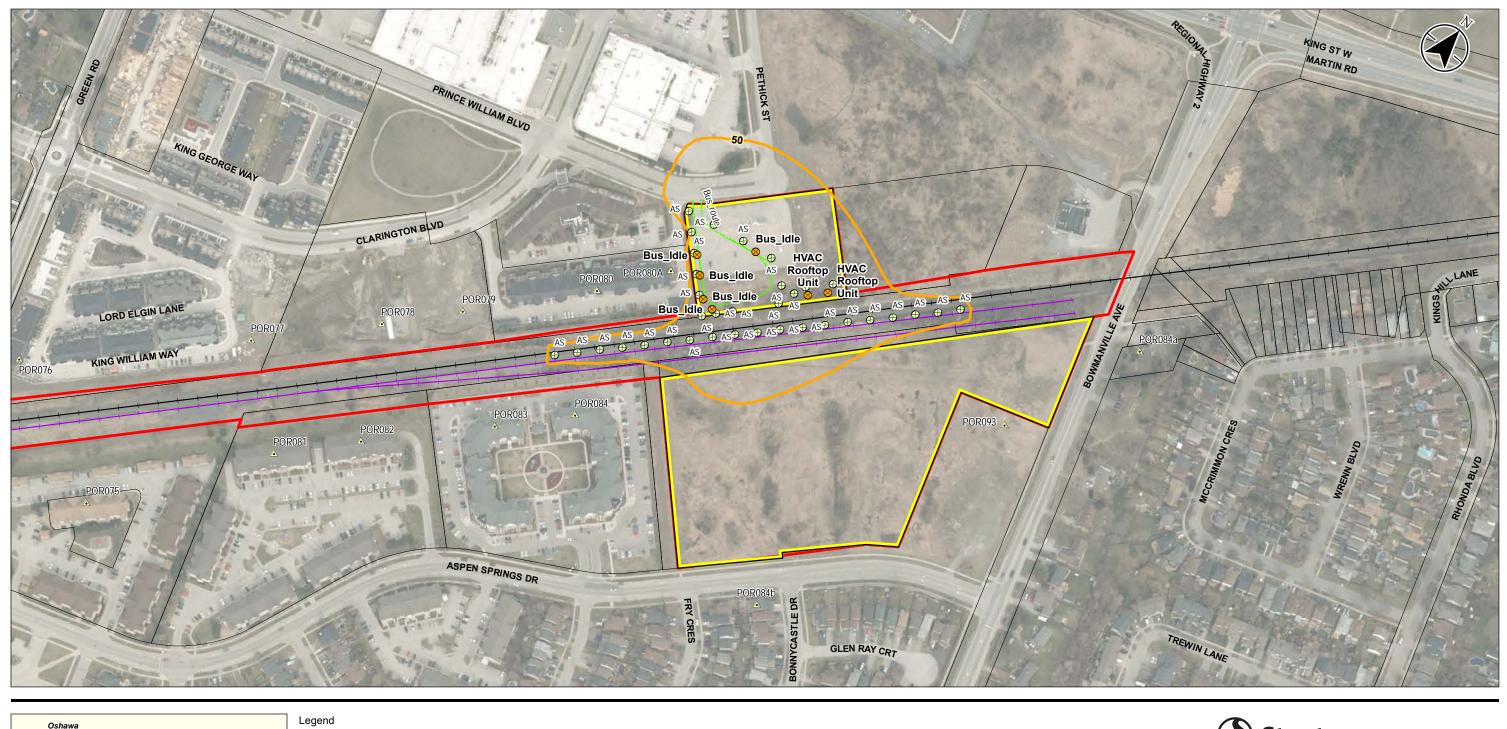
Representative Receptor

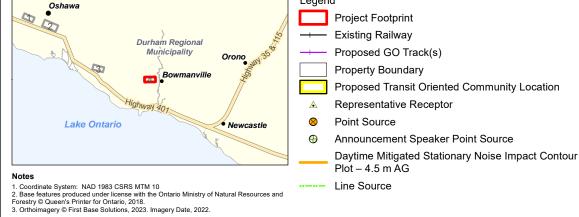
Point Source

۸


 \otimes

Title


200 m


TOC – Daytime Mitigated Stationary Noise Impact Contour Plot – 4.5 m AG

1:4,000 (At original document size of 11x17)

isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

75

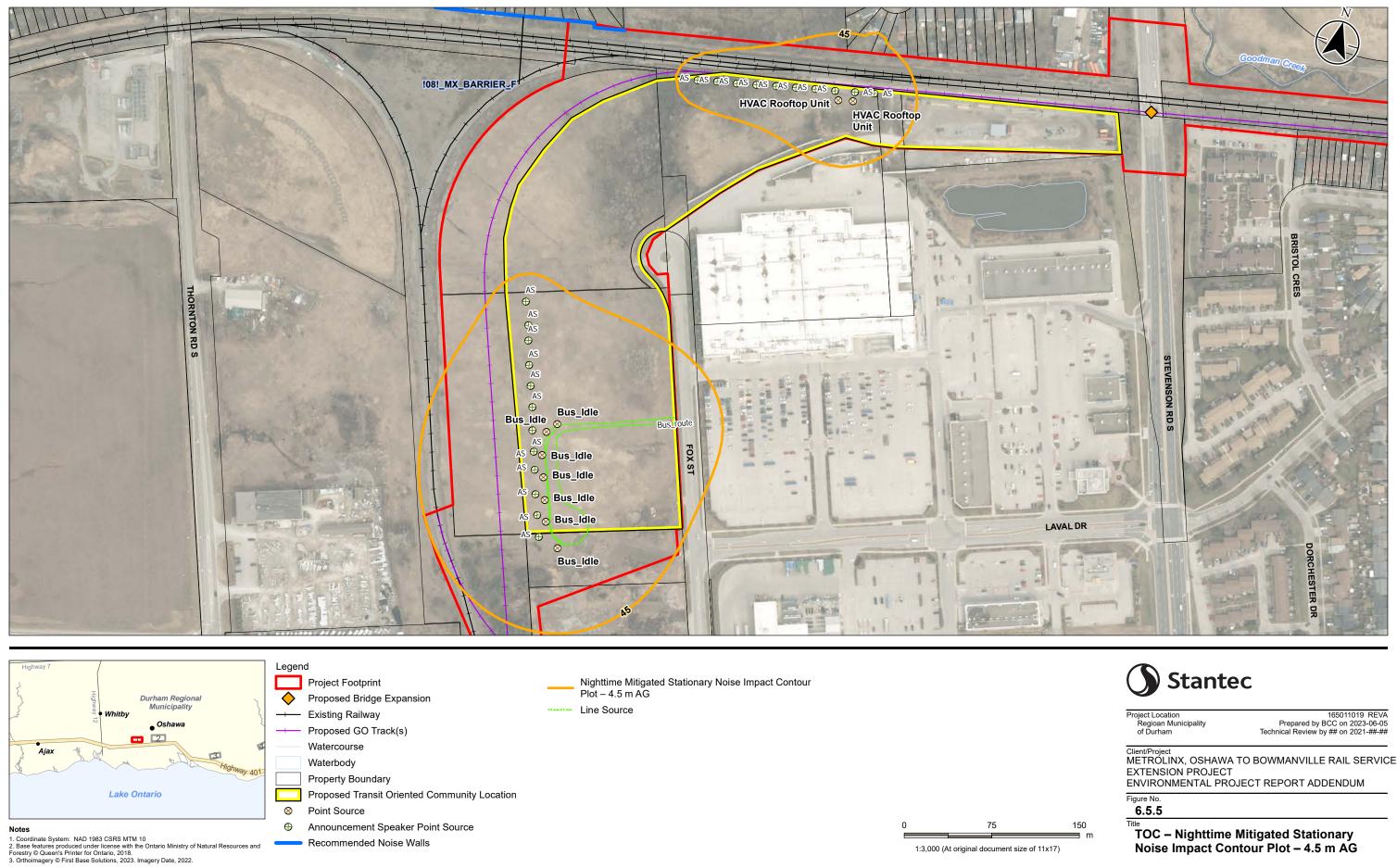
laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Project Location Regioan Municipality of Durham

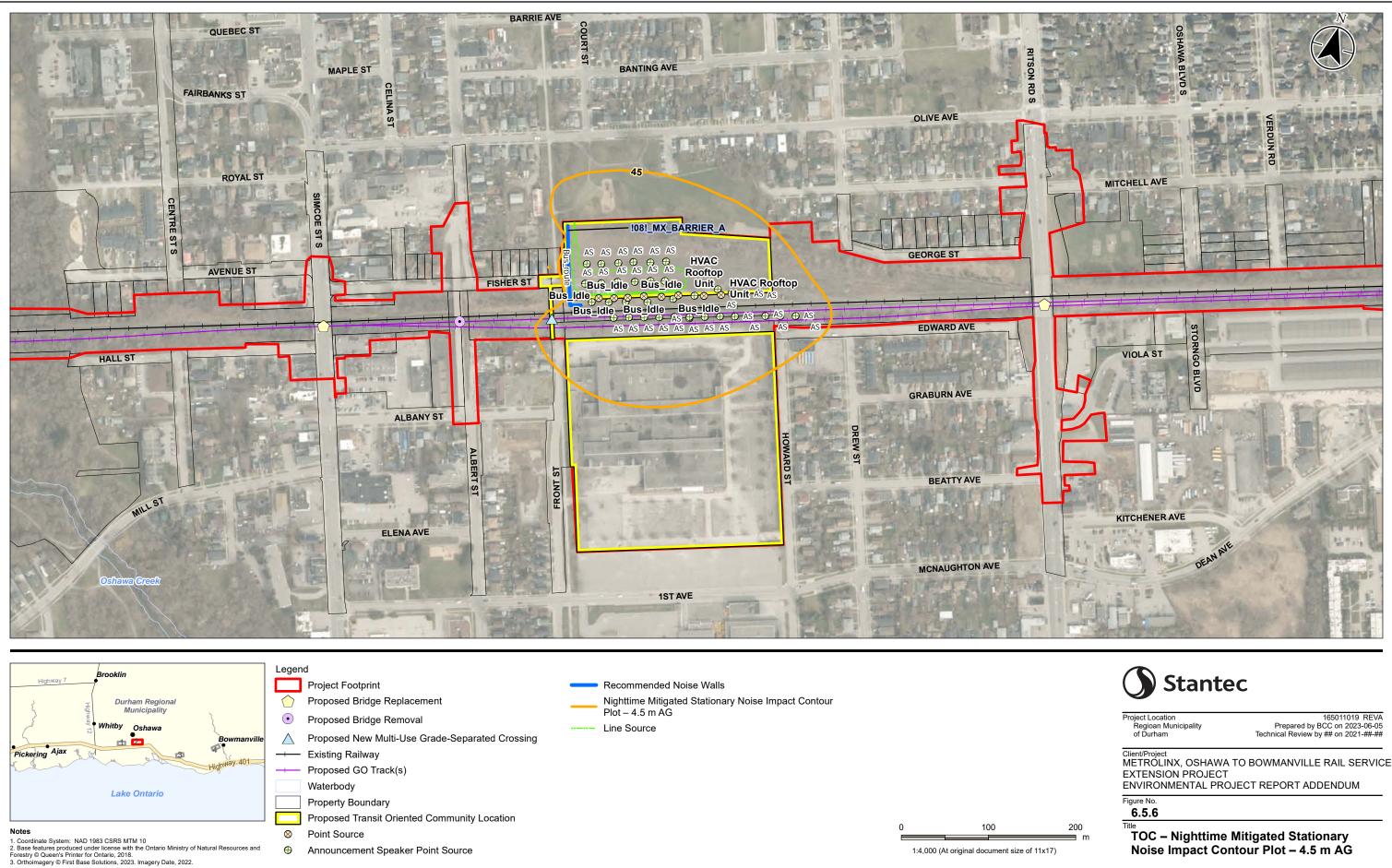
165011019 REVA Prepared by BCC on 2023-06-05

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

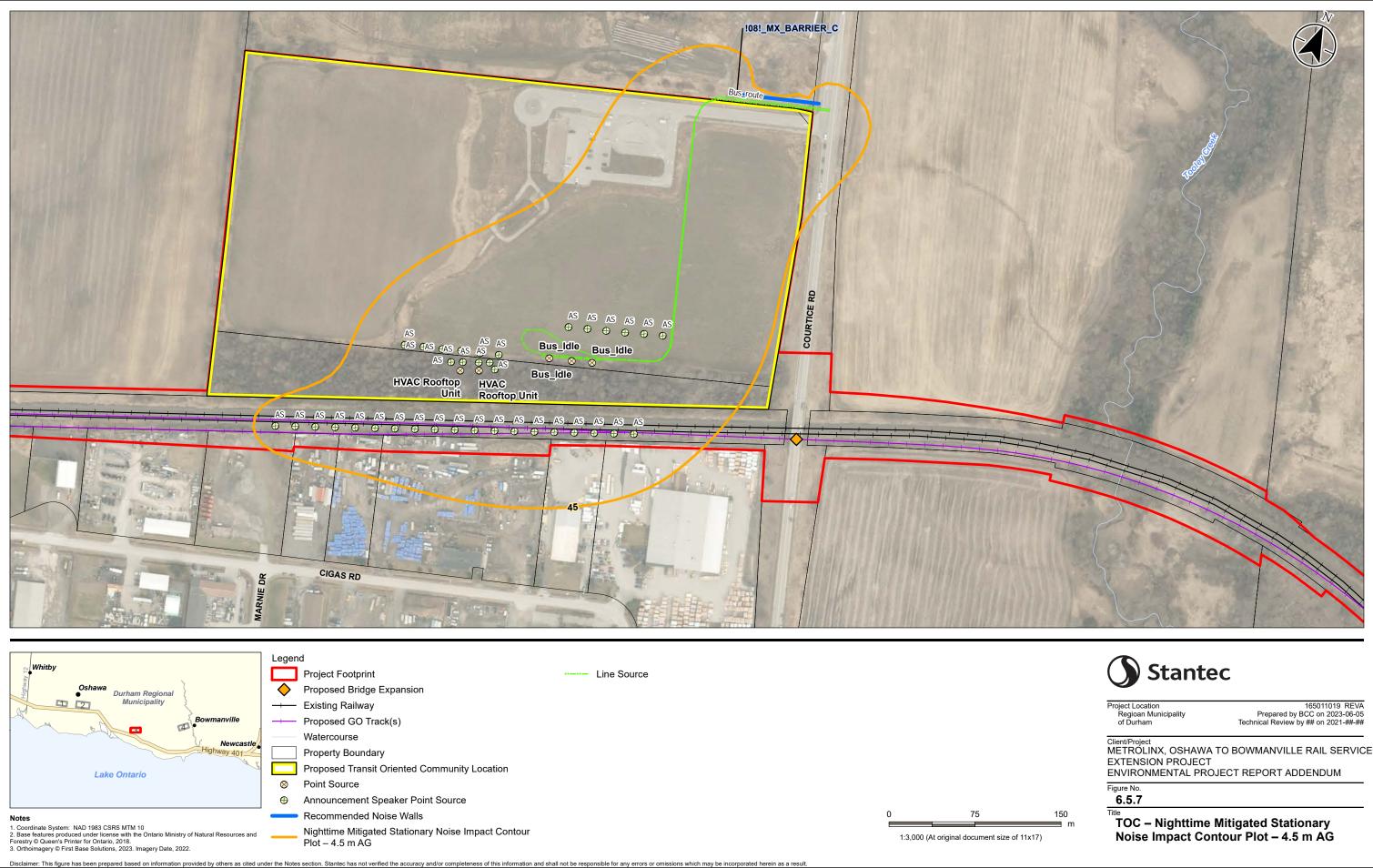
Figure No.

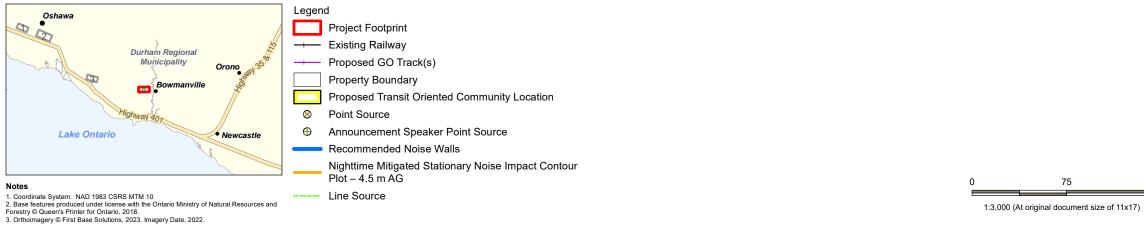

6.5.4

Title


150 m

TOC – Daytime Mitigated Stationary Noise Impact Contour Plot – 4.5 m AG


1:3,000 (At original document size of 11x17)


isclaimer. This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

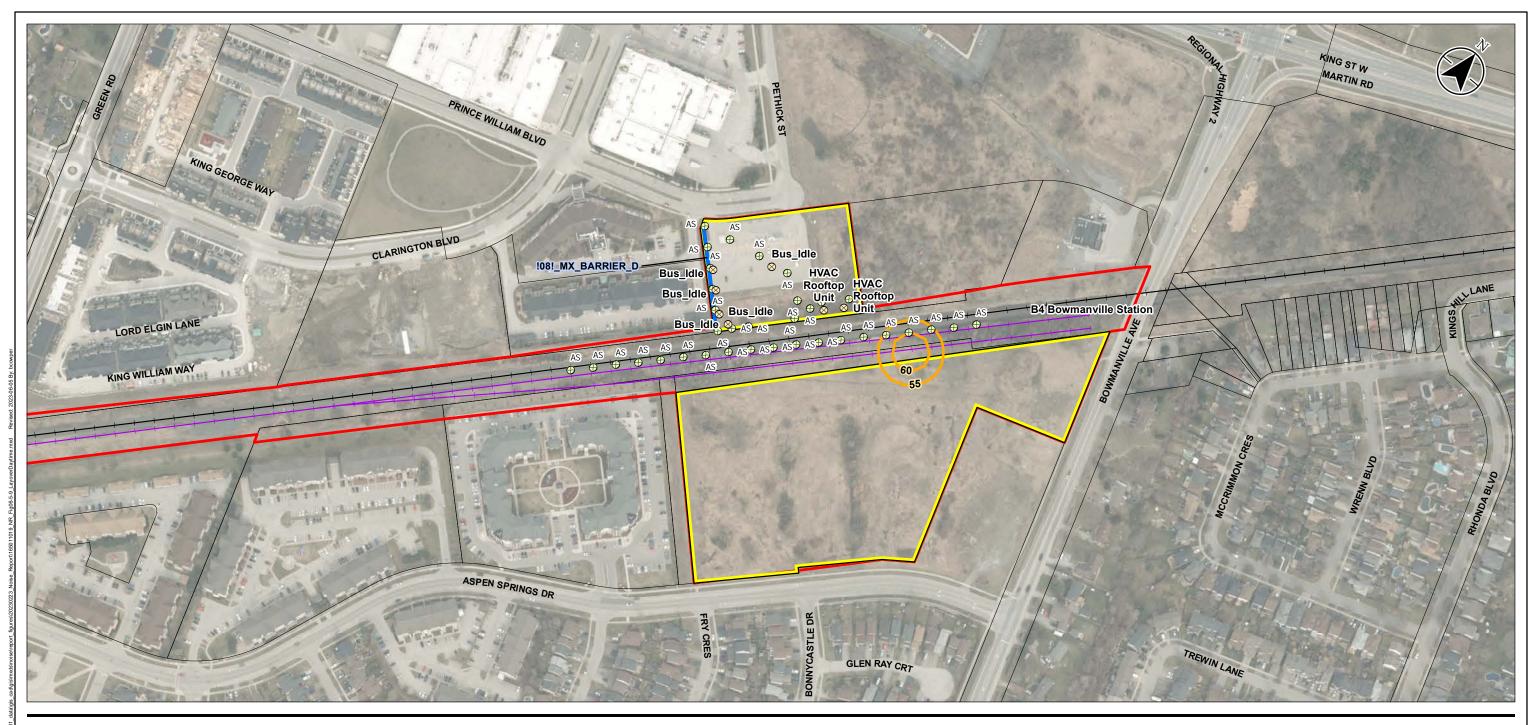
isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM


Figure No.

6.5.8

Title

150 m

TOC – Nighttime Mitigated Stationary Noise Impact Contour Plot – 4.5 m AG

- Project Footprint ----- Existing Railway
 - Proposed GO Track(s)
 - Property Boundary
- Proposed Transit Oriented Community Location
- Point Source
- Announcement Speaker Point Source
- Recommended Noise Walls
- Layover Facility Daytime Mitigated Stationary Noise Impact Contour Plot

1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and
 Forestry @ Oueen's Printer for Ontario, 2018.
 3. Orthoimagery @ First Base Solutions, 2023. Imagery Date, 2022.

laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1:3,000 (At original document size of 11x17)

75

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05

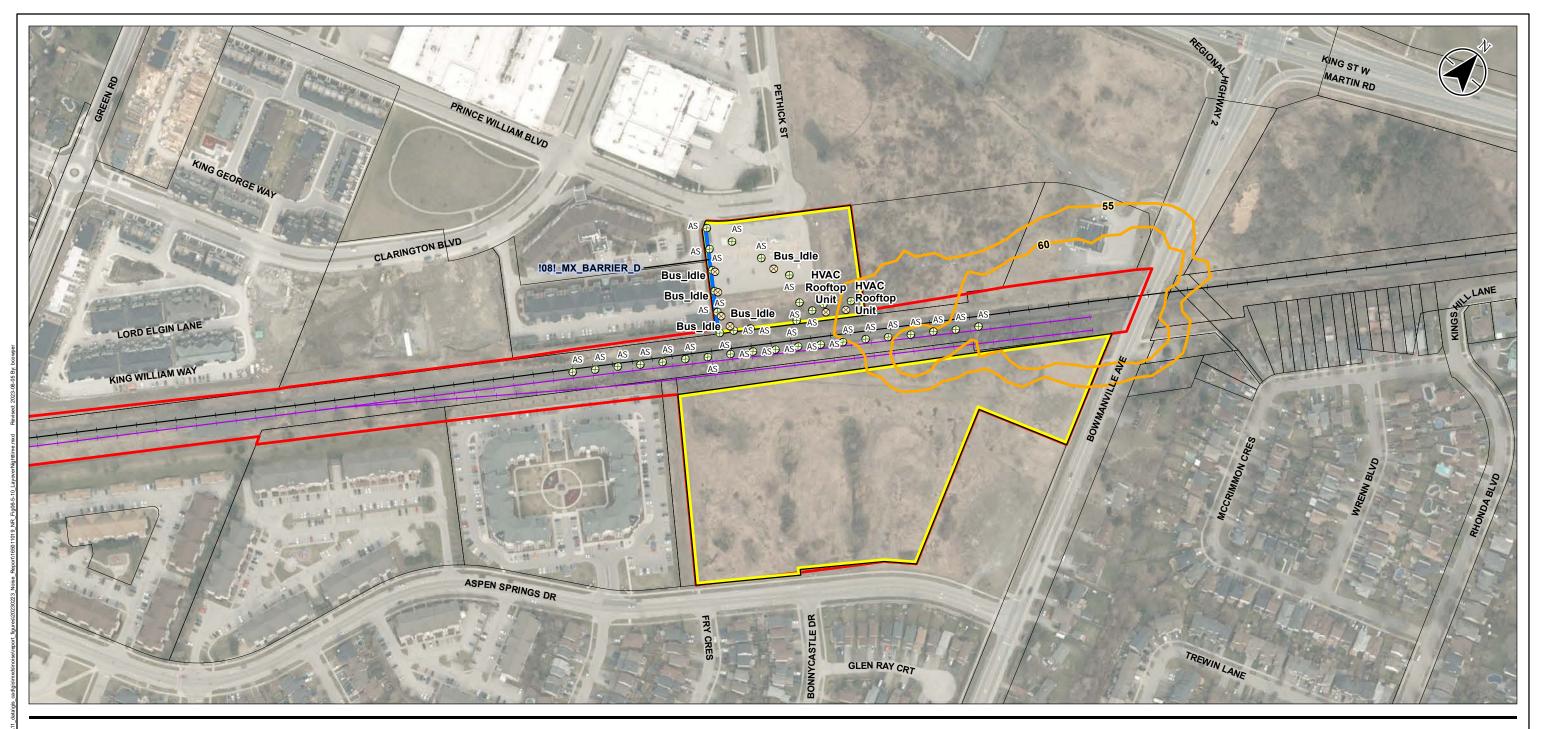

Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

Figure No.

6.5.9 Title

150 m

Layover Facility – Daytime Mitigated Stationary Noise Impact Contour Plot – 4.5 m AG

Proposed GO Track(s)

- Property Boundary
- Proposed Transit Oriented Community Location
- Point Source

Recommended Noise Walls

Layover Facility – Nighttime Mitigated Stationary Noise Impact Contour

75

1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and
 Forestry @ Oueen's Printer for Ontario, 2018.
 3. Orthoimagery @ First Base Solutions, 2023. Imagery Date, 2022.

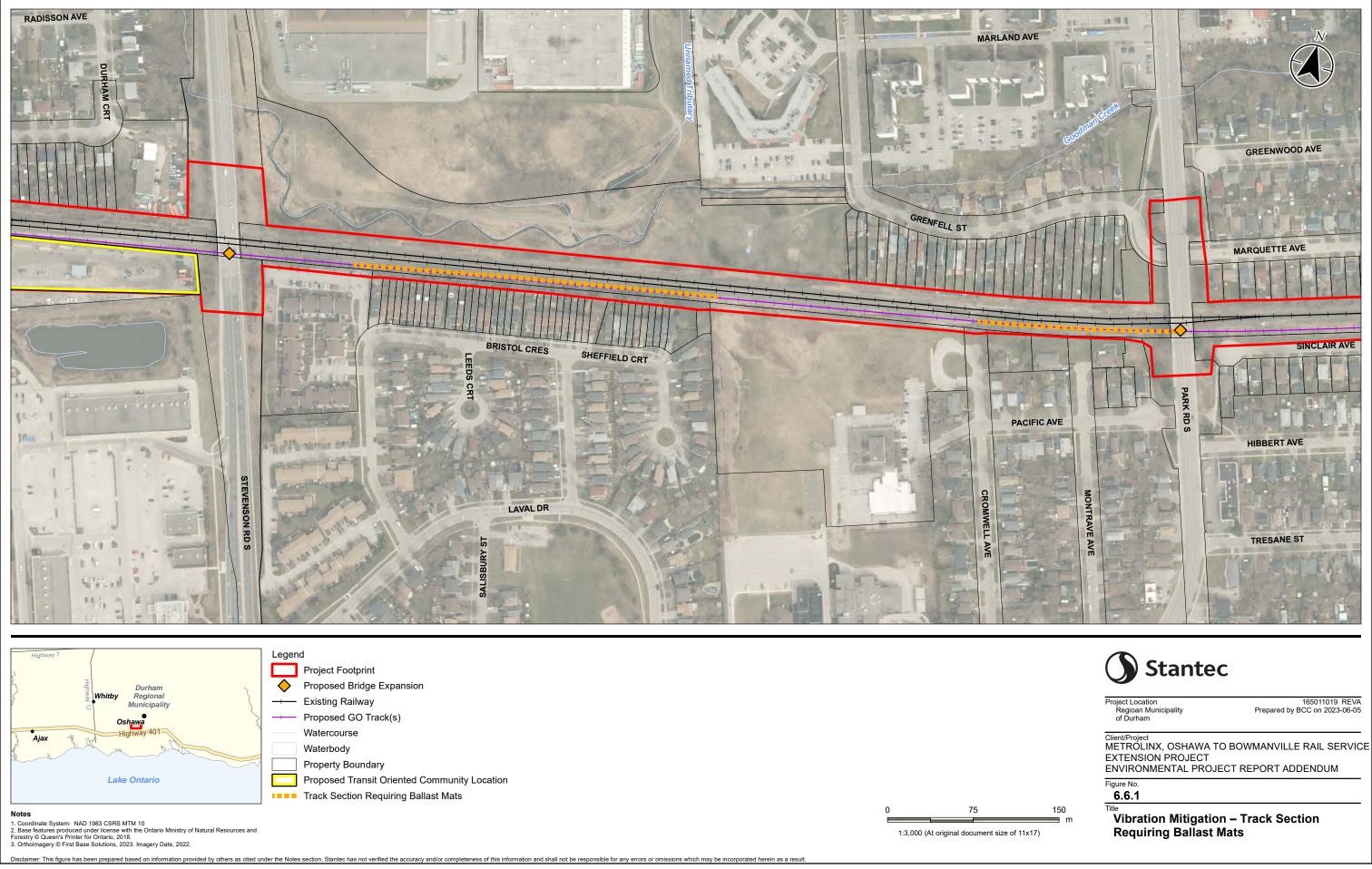
laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

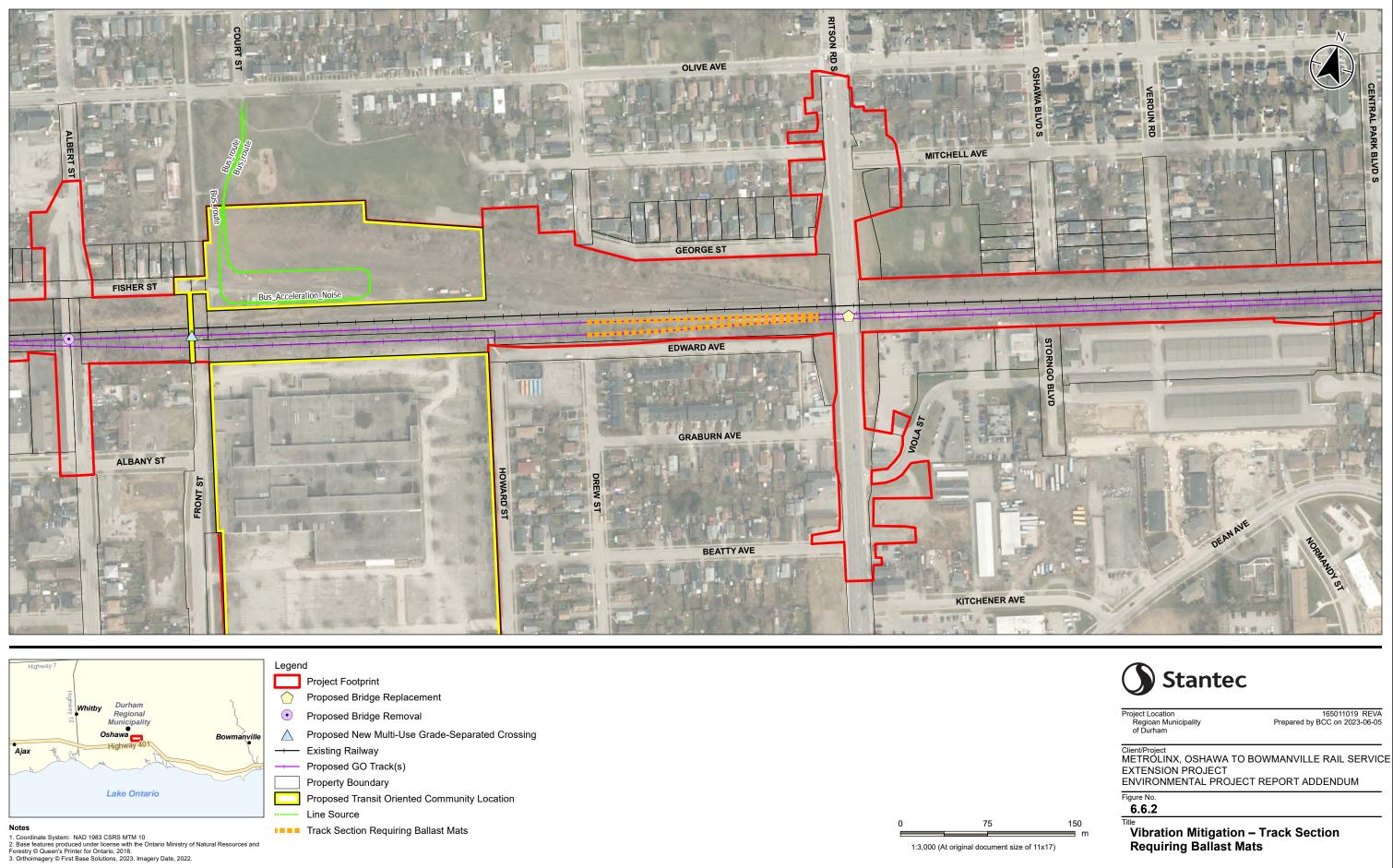
Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-06-05 Technical Review by ## on 2021-##-##

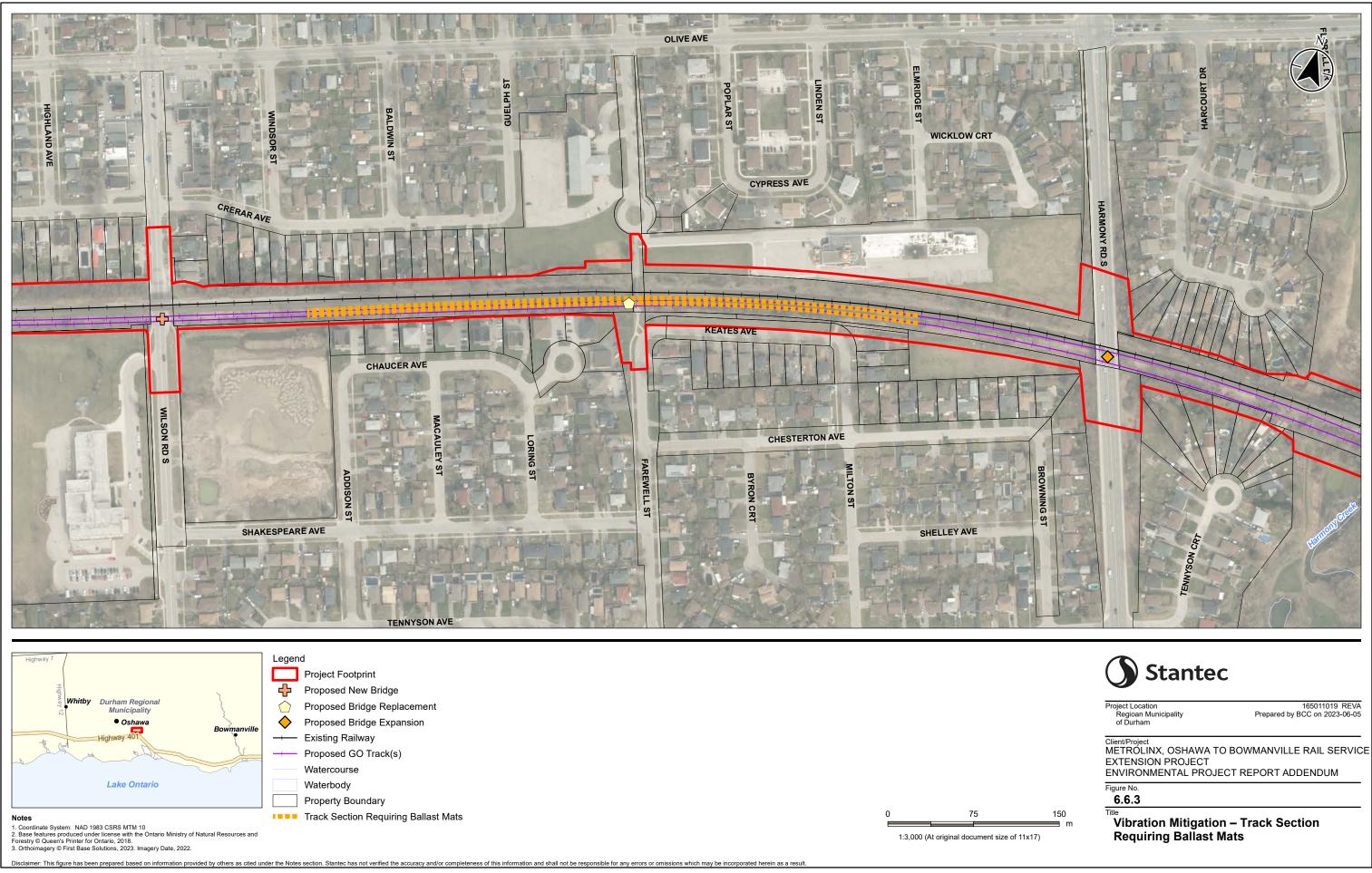
Client/Project METROLINX, OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT ENVIRONMENTAL PROJECT REPORT ADDENDUM

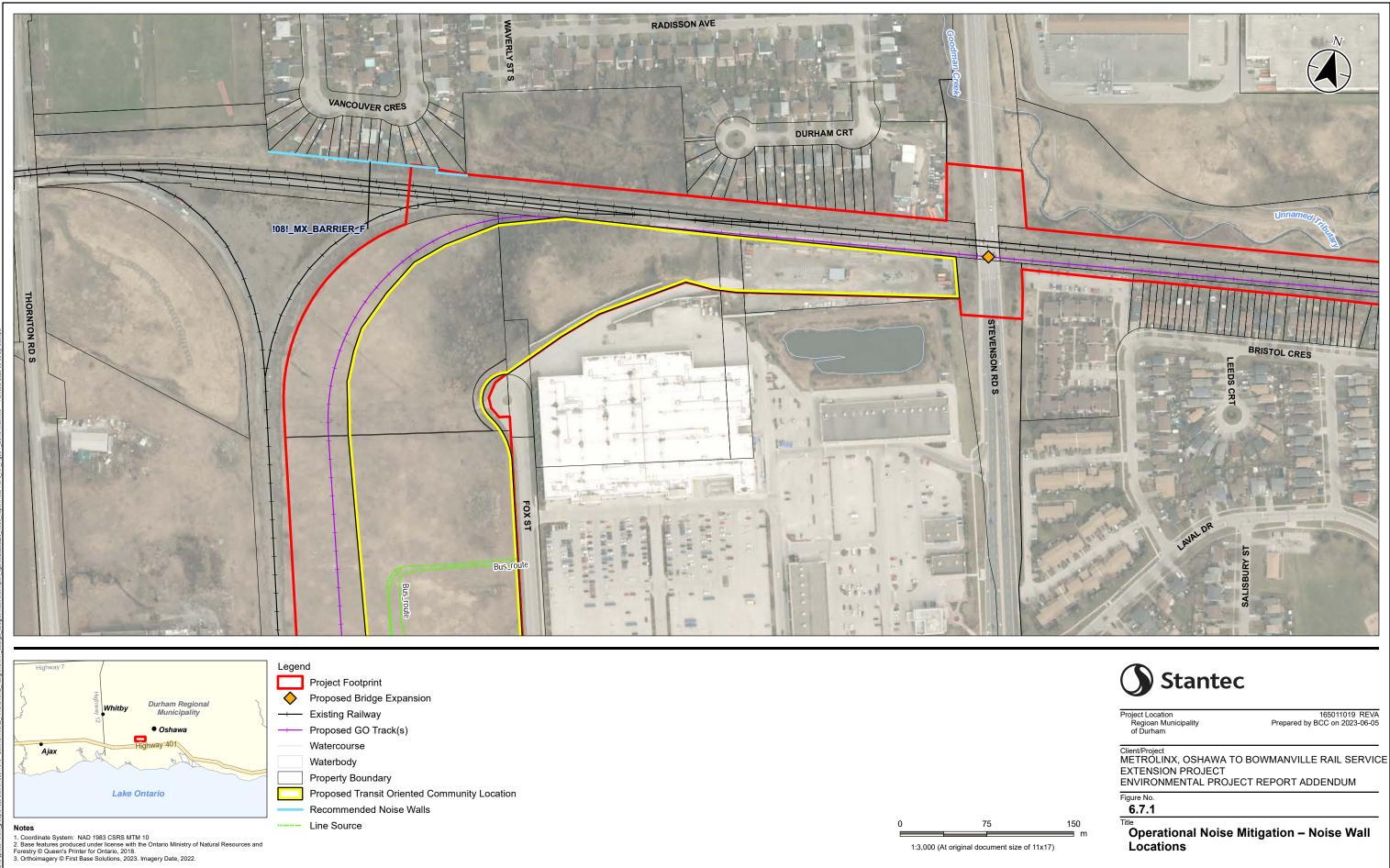
Figure No.

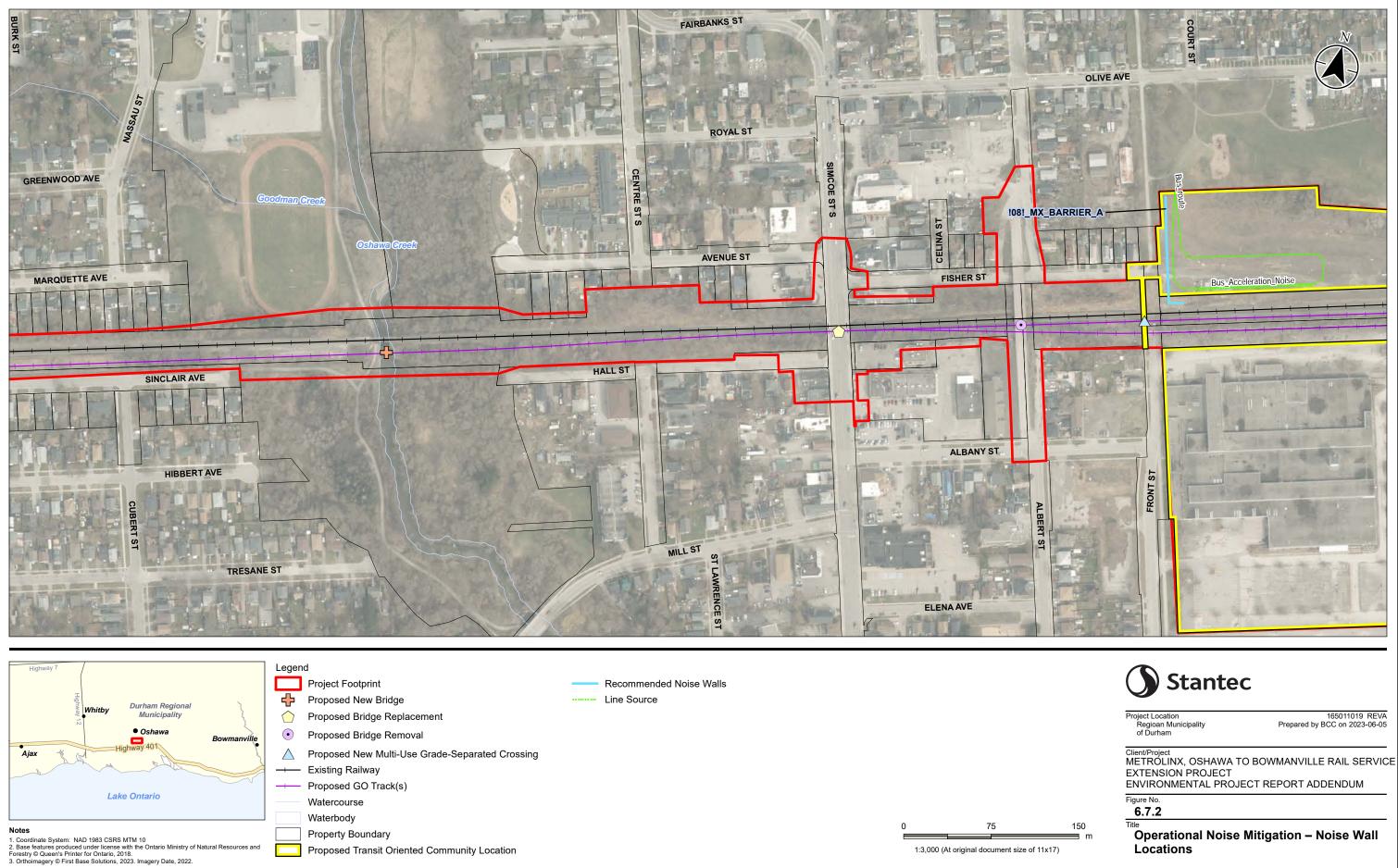

6.5.10


Title

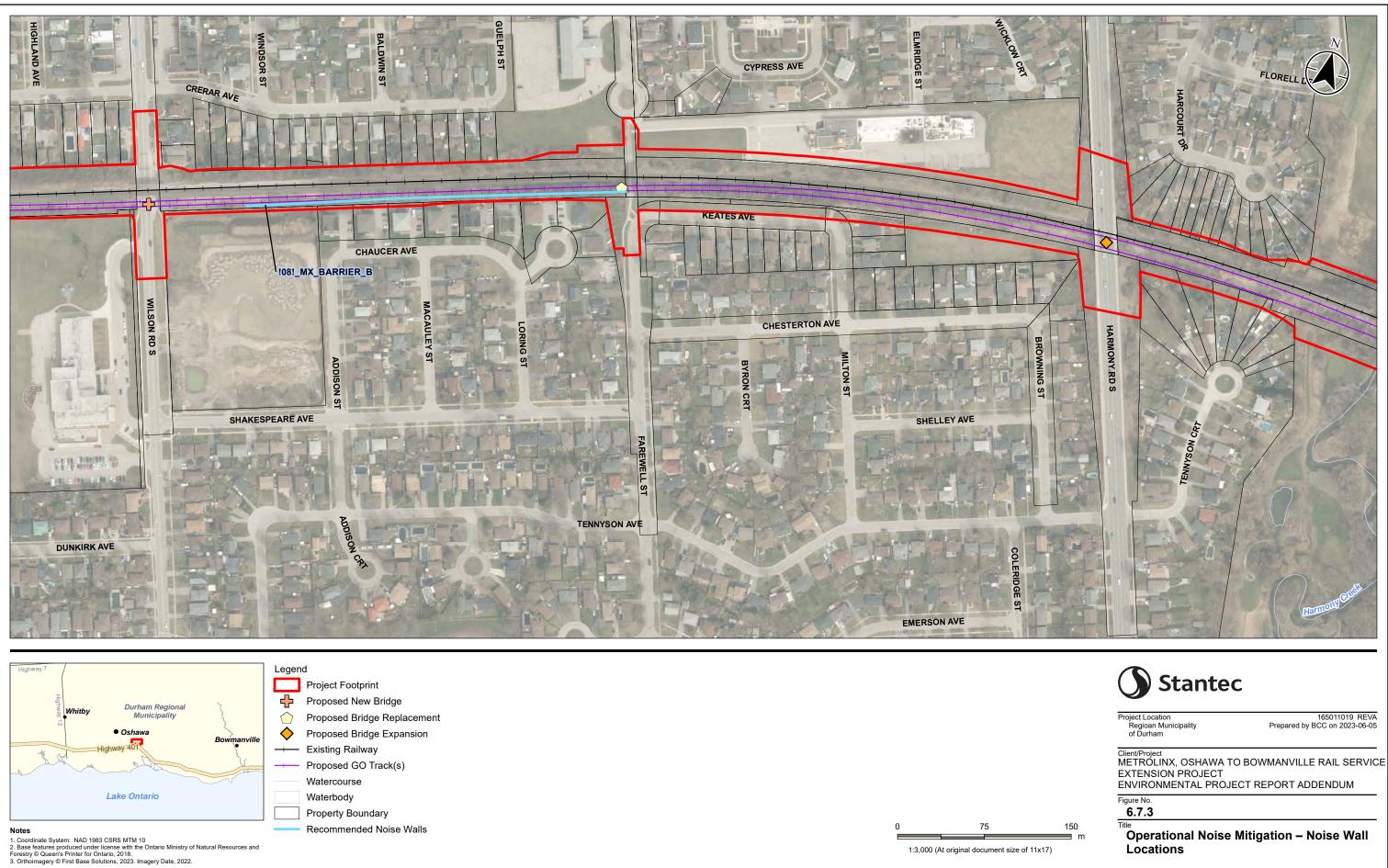
150 m

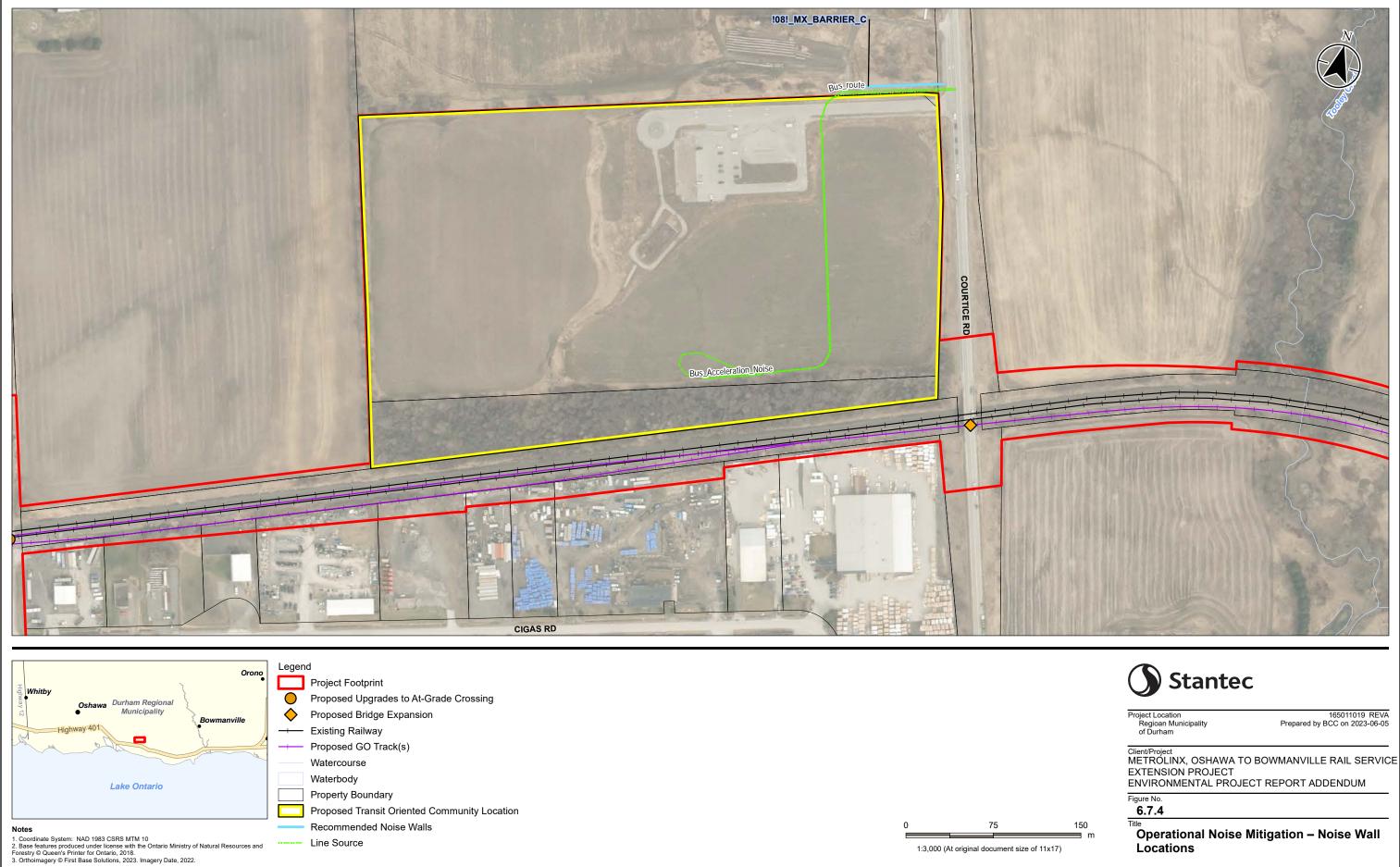

1:3,000 (At original document size of 11x17)

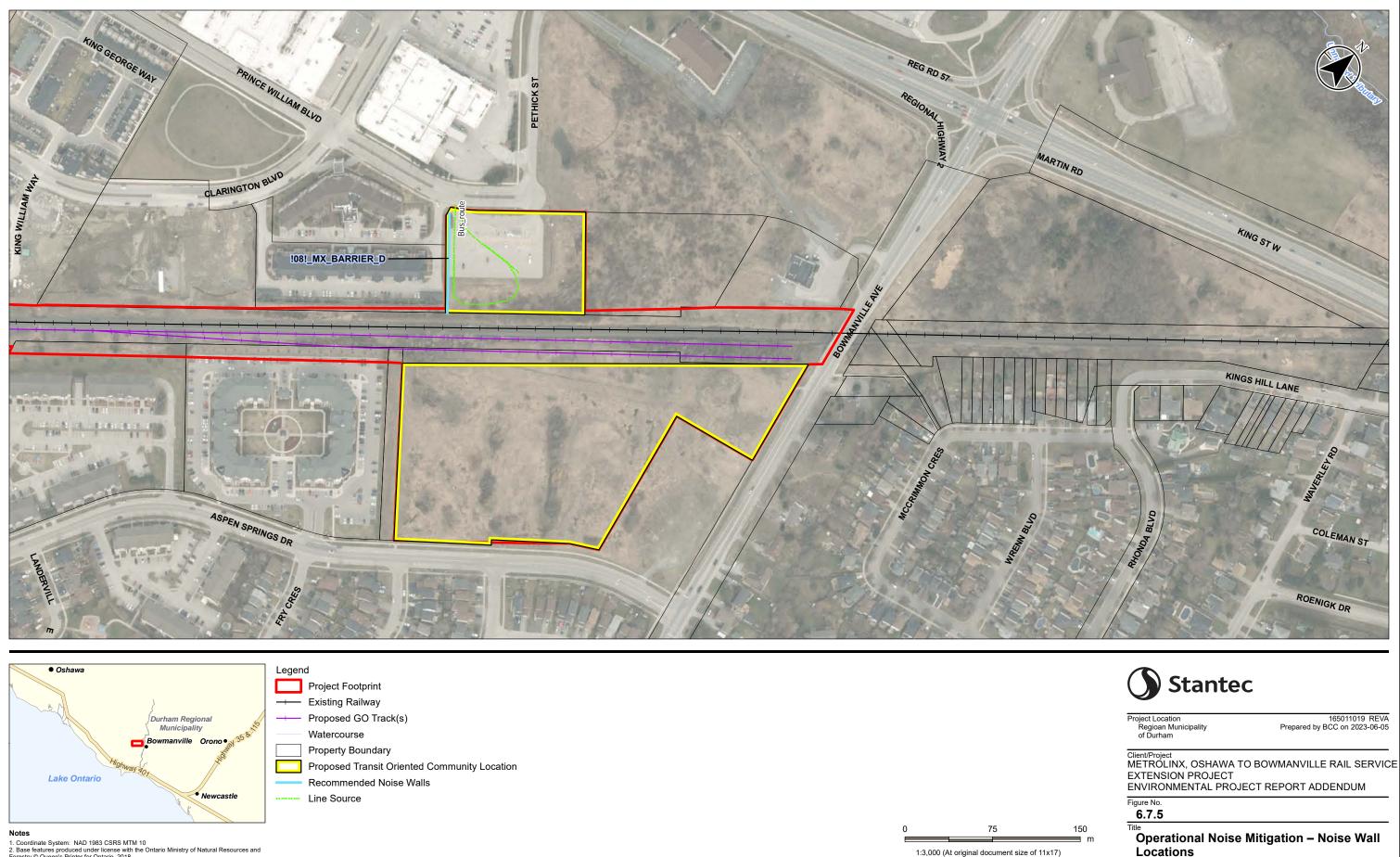

Layover Facility – Nighttime Mitigated Stationary Noise Impact Contour Plot – 4.5 m AG



isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.




Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.


Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.



Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and
 Forestry @ Oueen's Printer for Ontario, 2018.
 3. Orthoimagery @ First Base Solutions, 2023. Imagery Date, 2022.

isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Potential Effects, Mitigation and Monitoring August 24, 2023

Table 6.12: Mitigated Rail Operational Noise Levels

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
POR001	Façade	65	66	60	60	-5	-6
PURUUI	OLA	67	-	60	60	-7	-
POR002	Façade	66	66	64	62	-2	-5
PURUUZ	OLA	67	-	60	59	-8	-
POR003	Façade	63	63	65	63	2	0
PURUUS	OLA	65	-	64	63	-1	-
POR004	Façade	66	66	68	67	3	1
POR004	OLA	67	-	70	69	3	-
POR005	Façade	64	64	66	65	2	1
PURUUS	OLA	65	-	68	67	3	-
DODOOC	Façade	65	63	67	65	2	1
POR006	OLA	66	-	68	66	2	-
00007	Façade	66	64	68	66	3	2
POR007	OLA	67	-	70	68	3	-
DODOO	Façade	65	65	69	67	4	2
POR008	OLA	66	-	70	69	4	-
DOD000	Façade	65	66	70	68	4	2
POR009	OLA	67	-	71	69	4	-
000040	Façade	63	63	65	64	3	1
POR010	OLA	66	-	68	68	2	-

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
POR011	Façade	65	66	68	67	3	1
PORUTI	OLA	66	-	69	68	3	-
POR012	Façade	63	62	65	64	2	1
PURUIZ	OLA	64	-	66	65	2	-
POR013	Façade	65	65	68	67	4	2
PORUIS	OLA	66	-	70	69	4	-
POR014	Façade	66	66	70	68	4	2
PURU14	OLA	67	-	71	70	4	-
	Façade	67	67	69	68	2	1
POR015	OLA	68	-	70	69	2	-
	Façade	65	66	67	67	2	1
POR016	OLA	66	-	69	68	2	-
POR017	Façade	65	66	68	67	2	1
PURUIT	OLA	67	-	69	#N/A	2	-
	Façade	64	63	67	65	3	2
POR018	OLA	60	-	61	60	1	-
POR019	Façade	64	64	68	67	4	2
FURUIS	OLA	60	-	61	59	1	-
POR020	Façade	64	65	68	67	4	2
PURU2U	OLA	64	-	67	66	3	-

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
	Façade	64	64	67	66	4	2
POR021	OLA	60	-	62	61	2	-
POR022	Façade	64	64	68	66	3	2
PURUZZ	OLA	64	-	66	65	3	-
POR023	Façade	66	65	68	66	2	1
PUR023	OLA	64	-	65	62	1	-
POR024	Façade	65	65	67	67	2	1
PUR024	OLA	66	-	69	68	2	-
DODODE	Façade	65	65	67	66	2	1
POR025	OLA	66	-	68	68	2	-
POR026	Façade	67	67	69	68	2	1
PURU20	OLA	69	-	71	70	2	-
POR027	Façade	65	64	66	65	1	0
PURU27	OLA	60	-	60	58	0	-
POR028	Façade	65	65	66	65	1	0
PURU28	OLA	59	-	59	58	0	-
POR029	Façade	63	63	64	64	2	1
PURU29	OLA	59	-	59	58	0	-
POR030	Façade	65	62	66	63	1	1
PURU3U	OLA	64	-	64	60	0	-

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
000004	Façade	65	65	68	67	3	1
POR031	OLA	65	-	67	66	3	-
POR032	Façade	65	64	68	66	3	2
PURU3Z	OLA	63	-	63	60	0	-
POR033	Façade	67	68	70	69	3	1
PURU33	OLA	66	-	69	68	3	-
POR034	Façade	67	68	70	69	3	1
PUR034	OLA	66	-	69	68	3	-
DODO25	Façade	67	67	70	69	3	1
POR035	OLA	64	-	67	66	3	-
DODO26	Façade	63	64	67	66	4	2
POR036	OLA	64	-	68	67	4	-
POR037	Façade	62	63	66	64	3	2
PURU37	OLA	63	-	67	66	4	-
00000	Façade	63	63	65	65	2	1
POR038	OLA	64	-	67	66	3	-
POR039	Façade	65	64	67	65	2	1
FURU39	OLA	66	-	68	66	2	-
	Façade	65	65	68	67	4	2
POR040	OLA	66	-	70	69	4	-

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
POR041	Façade	64	64	68	67	4	3
PUR041	OLA	65	-	70	69	4	-
POR042	Façade	66	67	70	68	3	1
PUR042	OLA	68	-	68	65	0	-
POR043	Façade	66	67	70	69	4	2
PUR043	OLA	66	-	66	64	1	-
POR044	Façade	61	61	64	63	3	2
PUR044	OLA	60	-	62	61	3	-
	Façade	66	66	68	67	2	1
POR045	OLA	-	-	-	-	-	-
	Façade	61	59	62	60	1	1
POR046	OLA	63	-	64	60	0	-
POR047	Façade	66	66	69	68	3	2
PUR047	OLA	67	-	70	69	3	-
	Façade	63	63	66	64	2	1
POR048	OLA	64	-	66	65	2	-
POR049	Façade	63	62	64	63	1	1
PUR049	OLA	64	-	66	65	2	-
DODOFO	Façade	64	65	66	66	2	1
POR050	OLA	66	-	67	67	2	-

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
	Façade	63	63	66	65	2	1
POR051	OLA	65	-	67	66	3	-
POR052	Façade	63	63	64	64	2	1
PURU52	OLA	64	-	66	66	2	-
POR053	Façade	62	62	64	63	2	1
PURU53	OLA	63	-	65	65	2	-
POR054	Façade	64	64	66	65	2	1
PUR054	OLA	65	-	67	67	2	-
POR055	Façade	64	64	65	65	2	1
PURUSS	OLA	65	-	67	67	2	-
POR056	Façade	66	66	68	68	2	1
PURUDO	OLA	67	-	69	69	2	-
POR057	Façade	66	66	67	67	1	1
PURUDI	OLA	66	-	68	67	2	-
POR058	Façade	68	68	69	69	1	1
PURU58	OLA	69	-	70	70	1	-
POR059	Façade	69	70	70	70	1	0
FURUDY	OLA	71	-	71	71	1	-
POR060	Façade	69	69	70	70	1	0
	OLA	70	-	71	71	1	-

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
	Façade	70	70	70	70	1	0
POR061	OLA	71	-	72	71	1	-
	Façade	70	70	71	71	1	0
POR062	OLA	71	-	71	71	1	-
POR063	Façade	57	57	58	58	1	1
PUR063	OLA	57	-	59	58	1	-
POR064	Façade	63	61	65	63	1	1
PUR064	OLA	62	-	64	63	2	-
POR065	Façade	63	63	65	65	2	2
PURU05	OLA	64	-	67	66	3	-
POR066	Façade	62	62	64	63	2	2
PURU66	OLA	63	-	65	64	2	-
POR067	Façade	65	65	68	67	3	2
PURU07	OLA	66	-	69	69	3	-
POR068	Façade	60	61	65	64	4	2
PURU68	OLA	59	-	64	62	4	-
POR069	Façade	61	62	65	64	4	2
PURU69	OLA	62	-	67	65	4	-
POR070	Façade	61	61	65	64	4	2
PURU/U	OLA	61	-	65	64	4	-

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
	Façade	60	61	64	63	5	2
POR071	OLA	58	-	62	61	4	-
POR072	Façade	63	64	66	65	4	2
PURUIZ	OLA	63	-	67	66	4	-
POR073	Façade	62	63	66	65	4	2
PURU/3	OLA	64	-	67	67	4	-
POR074	Façade	62	63	66	65	3	2
PUR074	OLA	63	-	67	66	4	-
POR075	Façade	61	62	65	64	4	2
PUR075	OLA	53	-	54	52	1	-
POR076	Façade	62	63	66	65	3	2
PURU/0	OLA	63	-	66	66	3	-
POR077	Façade	63	64	67	66	3	2
PURUII	OLA	64	-	67	66	3	-
POR078	Façade	64	65	66	66	3	1
PURU/8	OLA	64	-	66	66	2	-
POR079	Façade	63	64	66	65	2	1
PURU/9	OLA	64	-	66	66	2	-
POR080 ²	Façade	63	64	66	65	3	1
FURUOU	OLA	56	-	56	53	0	-

Potential Effects, Mitigation and Monitoring August 24, 2023

Receptor ID	Receptor Location	Project Daytime Sound Levels (dBA) Leq(16)	Project Nighttime Sound Levels (dBA) Leq(8)	Mitigated Project Daytime Sound Levels (dBA) Leq(16)	Mitigated Project Nighttime Sound Levels (dBA) Leq(8)	Daytime Noise Reduction (dB) ¹	Nighttime Noise Reduction (dB) ¹
POR081	Façade	62	63	66	65	4	2
FURUOT	OLA	64	-	68	67	4	-
POR082	Façade	62	63	66	65	4	2
FURU62	OLA	64	-	68	67	4	-
POR083	Façade	63	64	66	65	3	2
PURU03	OLA	55	-	56	53	1	-
000004	Façade	63	64	66	65	4	2
POR084	OLA	56	-	57	54	1	-
POR091	Façade	64	65	66	65	2	1
PURU91	OLA	-	-	-	-	-	-
POR092	Façade	66	67	69	68	3	1
PURU92	OLA	65	65	68	67	3	2
POR093	Façade	63	61	64	62	1	1
PUR093	OLA	-	-	-	-	-	-
	Façade	63	62	64	62	1	0
POR094	OLA	-	-	-	-	-	-
DODOG	Façade	62	62	64	63	2	1
POR095	OLA	-	-	-	-	-	-

¹ Discrepancy in noise reduction is due to sound levels rounded to the nearest whole number

² Noise mitigation is unfeasible due to the height of the POR and proximity to the right-of-way

Potential Effects, Mitigation and Monitoring August 24, 2023

GO Station/ Layover Facility	Receptor ID	Receptor Location	Daytime Impact (dBA) L _{eq(1hr)}	Nighttime Impact (dBA) L _{eq(1hr)}	NPC-300 Class 1 Daytime Criteria (dBA) L _{eq(1hr)}	NPC-300 Class 1 Nighttime Criteria (dBA) L _{eq(1hr)}	Mitigation Needed? (Yes or No)
B1 Station	POR001	Façade	33	29	50	45	No
		OLA	31	-	50	-	No
	POR002	Façade	35	33	50	45	No
		OLA	33	-	50	-	No
	POR003	Façade	38	36	50	45	No
		OLA	37	-	50	-	No
	POR004	Façade	45	44	50	45	No
		OLA	46	-	50	-	No
B2 Station	POR28A	Façade	43	39	50	45	No
		OLA	43	-	50	-	No
	POR28B	Façade	46	44	50	45	No
		OLA	47	-	50	-	No
	POR28C	Façade	46	43	50	45	No
		OLA	48	-	50	-	No
B3 Station	POR063	Façade	32	29	50	45	No
		OLA	29	-	50	-	No
	POR063A	Façade	45	41	50	45	No
		OLA	46	-	50	-	No
	POR063B	Façade	46	42	50	45	No
		OLA	-	-	50	-	No

Table 6.13: Mitigated GO Station/Layover Facility Sound Levels

GO Station/ Layover Facility	Receptor ID	Receptor Location	Daytime Impact (dBA) L _{eq(1hr)}	Nighttime Impact (dBA) L _{eq(1hr)}	NPC-300 Class 1 Daytime Criteria (dBA) L _{eq(1hr)}	NPC-300 Class 1 Nighttime Criteria (dBA) L _{eq(1hr)}	Mitigation Needed? (Yes or No)
	POR063C	Façade	40	37	50	45	No
		OLA	-	-	50	-	No
B4 Station	POR080	Façade	43	42	50	45	No
		OLA	35	-	50	-	No
	POR080A	Façade	48	44	50	45	No
		OLA	35	-	50	-	No
	POR084	Façade	43	42	50	45	No
		OLA	23	-	50	-	No
	OLA093	Façade	42	39	50	45	No
		OLA	-	-	50	-	No
B4 Layover	POR080	Façade	37	49	55	55	No
Facility	POR080A	OLA	40	51	55	55	No
	POR084	Façade	36	48	55	55	No
	POR084a	OLA	32	52	55	55	No
		Façade	32	43	55	55	No
	POR084b	OLA	32	-	55	-	No
	POR093	Façade	40	59	55	55	Yes
		OLA	-	-	55	-	No

Conclusions August 24, 2023

7.0 Conclusions

Stantec was retained by Metrolinx to complete a Noise and Vibration Technical Report for the Project to support an Addendum to the Oshawa to Bowmanville Rail Service Extension EPR. The addendum is required to account for modifications to the Project which are inconsistent with the 2011 EPR. The Project will include expansion of approximately 21-kilometre (km) of rail corridor from Oshawa to Bowmanville, four proposed GO station locations, a layover facility with fueling capability, bridges, at-grade crossing widenings, and modifications to structures and utilities in order to facilitate the Project.

The emission-based noise assessment was completed for the construction equipment and the sound levels were compared to the MECP NPC-115 and NPC-118 limits. The construction equipment exceeding the MECP limits requires an investigation of additional noise control for the construction phase. Prior to start of construction, noise emissions of the construction equipment considered for the Project should be reviewed to confirm that they are within the NPC-115 and NPC-118 limits. If the limits cannot be met, noise control options should be investigated and implemented to bring them into compliance.

Receptor-based construction noise and vibration impacts for the Project were assessed with Metrolinx Environmental Guide criteria by establishing a ZOI. Project construction activities are expected to occur from 08:00 to 17:00 on weekdays; therefore, the noise ZOIs were established using the noise exposure limits for weekday construction during daytime only (e.g., 85 dBA, 80 dBA, 75 dBA, 70 dBA) for the applicable surrounding types of land uses (e.g., Industrial, Commercial, Residential, and Institutional). In the absence of construction activity/phase specific work areas, the noise ZOIs were established on the Project Footprint.

The results of the construction noise assessment indicate that some residential, commercial and institutional land uses fall within the established ZOI. The potential residential, commercial and institutional areas impacted by the Project construction are identified in this report. Further, for each phase, the assessment provides the minimum setback distances for noise compliance with the applicable noise exposure limits. Noise wall in place of construction hoarding and construction noise. Construction noise monitoring is recommended for the areas where sound levels are expected to exceed after mitigation.

Conclusions August 24, 2023

Construction vibration impacts were evaluated by establishing vibration ZOI per the applicable vibration criteria provided in the Metrolinx Environmental Guide for structural damage. The assessment identifies potential areas impacted by the construction vibration and minimum setback distances required for the most impactful construction equipment for vibration compliance. Vibration monitoring is recommended for those areas potentially impacted by construction vibration if the minimum setback distances cannot be maintained.

Noise and vibration impact from the Project rail operations were assessed by completing pre-Project noise modelling and vibration measurements. The noise effects due to Project rail operations were predicted at 89 representative PORs and compared to the pre-project sound levels, as required by the guidelines. The analysis of the noise modeling results indicate that predicted effects resulted were above the MOEE/GO Draft Protocol limits at several PORs. Therefore, noise mitigation measures are recommended (Section 6.4) at two locations for Project rail operations.

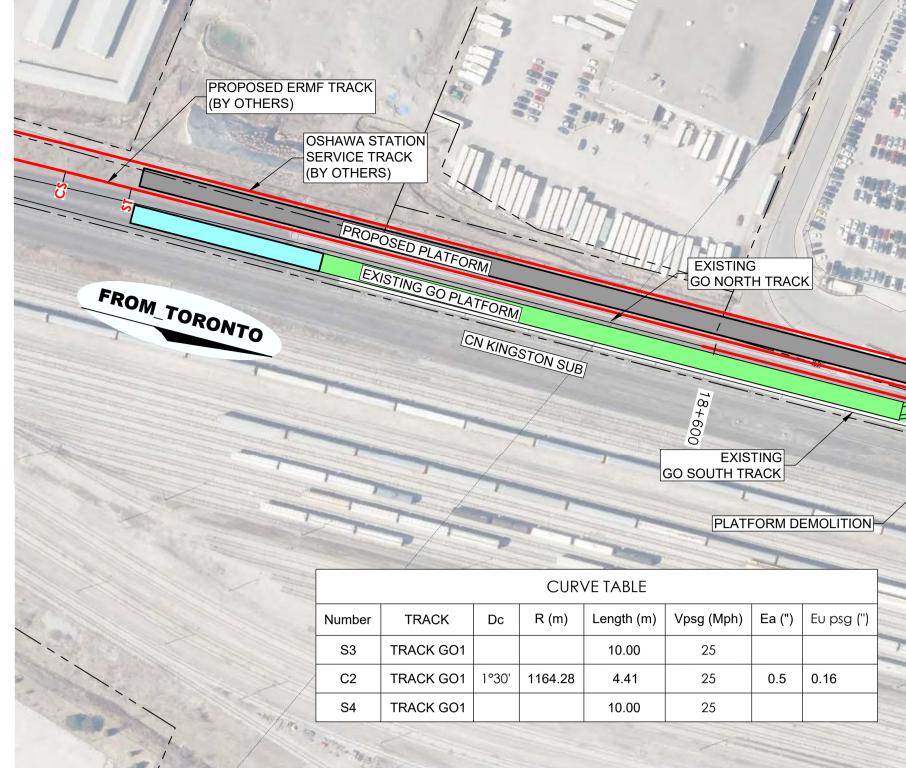
In addition to the PORs considered for the corridor noise assessment, nine additional PORs were considered for assessing stationary noise impact from stations associated with the GO stations. GO stations are expected to be developed for mixed use with potential commercial and residential use. At the time of preparing this report, no information was available for GO stations. Therefore, they are not considered as receptors in this assessment. Stantec recommends further detailed studies be conducted once the design of the GO stations is advanced to evaluate compliance with the applicable MECP noise limits.

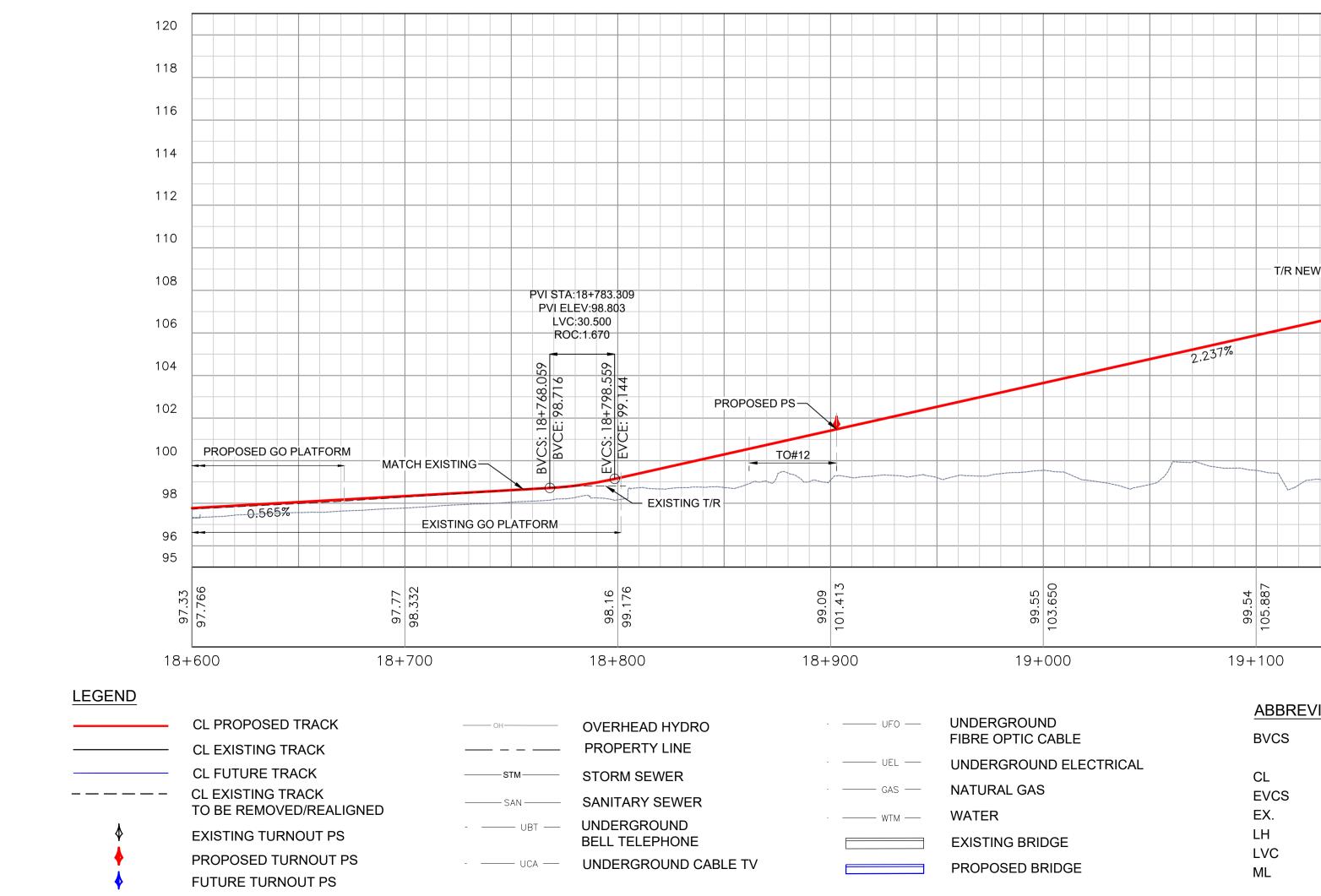
Stationary noise sources at the GO stations were assessed by predicting noise levels at the surrounding receptors and comparing with the applicable MECP limits. The assessment indicates that the sound levels generated by GO stations and layover facility operations are expected to exceed daytime and nighttime limits at some of the PORs in the area surrounding GO Station B2, B3 and B4, and the layover facility. As a result, noise walls are recommended for these GO stations and the layover facility (Section 6.4). Idling locomotives for the layover facility were modeled at the east end of trains stationed at the layover facility. If the locomotives are relocated to the west end of trains, sound levels at the PORs adjacent to the B4 GO Station are expected to exceed applicable criteria. It is recommended that the locomotives stationed at the layover facility be kept at the east end of the trains.

Conclusions August 24, 2023

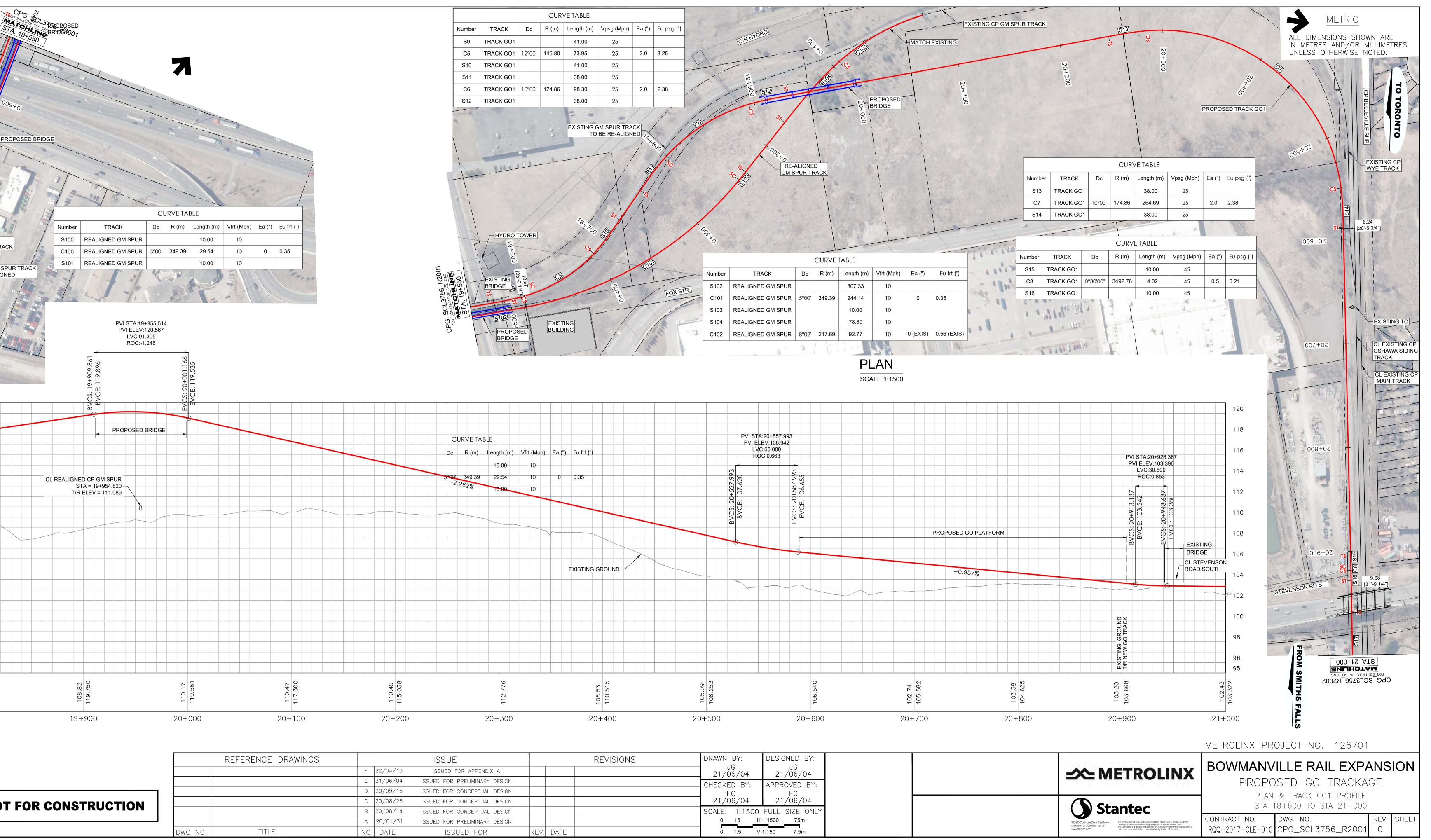
The Project vibration impact from rail operations was assessed using measurements from two representative locations along the corridor. The future setback distances from the proposed GO rail track to the receptors were identified and pre-project measured vibration levels for that setback were used to assess potential vibration impact from the proposed GO rail operations. Based on the measured vibration levels from the existing CP Rail track, a criterion of 0.175 mm/s was considered for assessment of the Project vibration from operations at the existing PORs. A criterion of 0.14 mm/s was considered for the operation vibration assessment of the new developments.

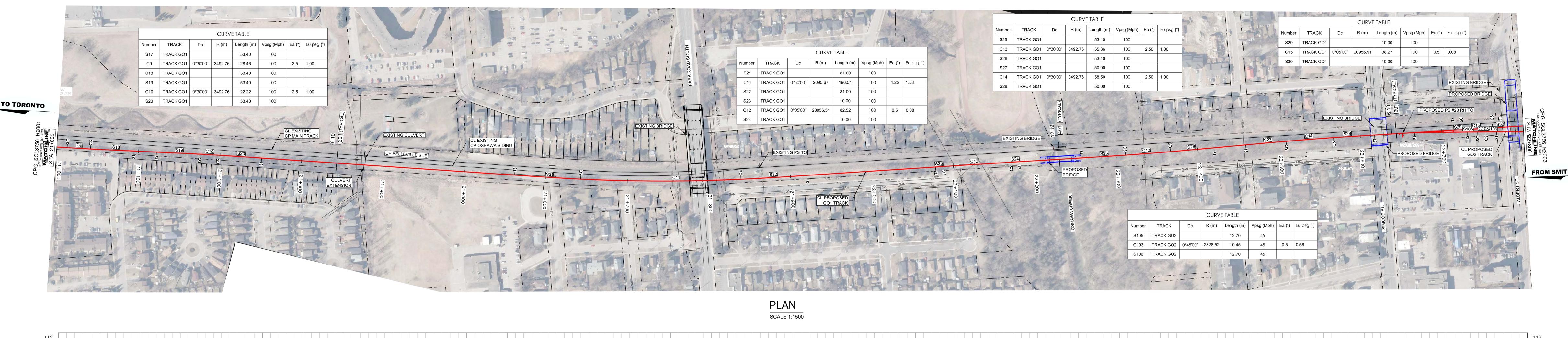
Vibration levels are expected to be higher than the criteria limits at the receptors (dwellings) located within 30 m from the centerline of the proposed GO track. Ballast mats are recommended, subject to feasibility, as vibration mitigation for Project (Section 6.4).

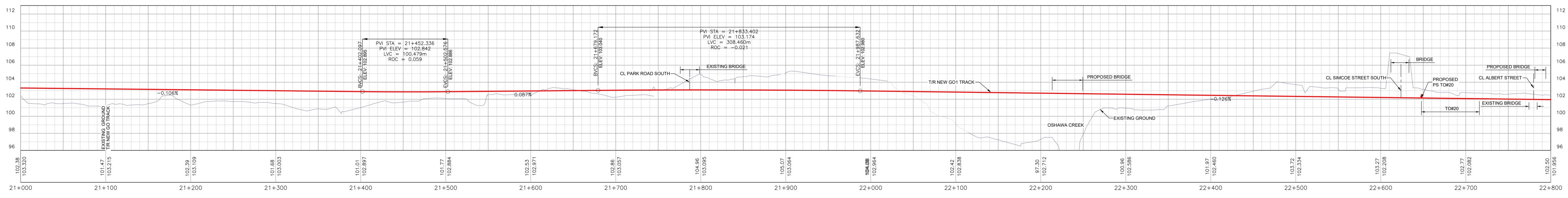

References August 24, 2023


8.0 References

- City of Toronto By-law No.514-2008, Building Construction and Demolition, Toronto Municipal Code, City of Toronto. 2008.
- Federation of Canadian Municipalities/Railway Association of Canada, Proximity Initiative: Guidelines for Development in Proximity to Railway Operations. Ontario, Canada. May 2013.
- Federal Highway Administration (FHWA), U.S. Department of Transportation (DOT), "Construction Noise Handbook." August 2006.
- Federal Highway Administration (FHWA), U.S. Department of Transportation, FHWA Roadway Construction Noise Model User's Guide. January 2006.
- Federal Transit Administration, U.S. Department of Transportation, Transit Noise and Vibration Impact Assessment Manual. September 2018.
- Health Canada (HC), Guidance for Evaluating Human Health Impacts in Environmental Assessment. 2017.
- International Organization for Standardization (ISO), ISO 1996-2. Acoustics Description, measurement and assessment of environmental noise – Part 2: Determination of sound pressure levels. Geneva, Switzerland. 2017.
- International Organization for Standardization (ISO), ISO 9613-2. Attenuation of sound during propagation outdoors Part 2: General method of calculation. Geneva, Switzerland. December 1996.
- Metrolinx, Environmental Guide: Recommended Approach for Assessing and Mitigating Noise and Vibration for Metrolinx Public Transit Projects. September 2019.
- Ontario Ministry of the Environment and Energy /GO Transit, MOEE/GO Transit Noise and Vibration Protocol (Draft #9). January 1995.
- Ontario Ministry of the Environment, Conservation and Parks (MECP), ORNAMENT -Ontario Road Noise Analysis Method for Environment and Transportation, reprinted September 1999. October 1989.
- Ontario Ministry of the Environment, Conservation and Parks (MECP), Model Municipal Noise Control By-Law, including Publication NPC-115, Construction Equipment. August 1978.
- Ontario Ministry of the Environment, Conservation and Parks (MECP) Publication NPC-118 for Motorized Conveyances. August 1982.




Appendix A Project Drawings and Zoning Map



	CURVE	Length (m) Vpsg (Mph) Ea (") Eu psg (") 10.00 25 0.50 0.38 10.00 25 V V V V V V V V V V V V V V V V V V	Number TRACK S5 TRACK GG C3 TRACK GG S6 TRACK GG S7 TRACK GG S8 TRACK GG S8 TRACK GG G S6 G S6 S8 TRACK GG G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G <th>O1 10.00 25 O1 1°30' 1164.28 52.86 25 O1 10.00 25 O1 41.00 25 O1 12°00' 145.80 177.10 25 O1 41.00 25</th> <th>bh Ea (") Eu psg (") 0.5 0.16 2.0 3.25 SED TRACK GO1 1 ST 2 1 ST</th> <th>HYDRO TOWER HYDRO TOWER HYDRO TOWER MATCH EXISTING EXISTING BRIDGE</th> <th>EXISTING BRIDGE O 19+500 09+0 19+500 009+0 FRDGE PROPOS 400 51 002+0 RE-ALIGNED SN 002+0 SN 002+0 SN 002+0 SN 002+0 SN 002+0 SN 002+0</th> <th>ED BRIDGE ED BRIDGE TRACK S100 REALIGNED GM SPUR S101 REALIGNED GM SPUR</th> <th>R 10.00 R 5°00' 349.39 29.54 R 10.00</th> <th>Image: Non-State of the state of the st</th> <th></th> <th>Number TRACK Dc S9 TRACK GO1 12°00' S10 TRACK GO1 12°00' S11 TRACK GO1 10°00' S12 TRACK GO1 10°00'</th> <th>CURVE TABLE R (m) Length (m) Vpsg (Mph) Ea (*) I 145.80 73.95 255 2.0 3 145.80 73.95 255 2.0 1 174.86 98.30 25 2.0 2 174.86 98.30 25 2.0 2 174.86 98.30 25 2.0 2 IV IV IV IV IV EXISTING GM SPUR TRACK IV IV IV IV IV IV I</th> <th>OHH</th>	O1 10.00 25 O1 1°30' 1164.28 52.86 25 O1 10.00 25 O1 41.00 25 O1 12°00' 145.80 177.10 25 O1 41.00 25	bh Ea (") Eu psg (") 0.5 0.16 2.0 3.25 SED TRACK GO1 1 ST 2 1 ST	HYDRO TOWER HYDRO TOWER HYDRO TOWER MATCH EXISTING EXISTING BRIDGE	EXISTING BRIDGE O 19+500 09+0 19+500 009+0 FRDGE PROPOS 400 51 002+0 RE-ALIGNED SN 002+0 SN 002+0 SN 002+0 SN 002+0 SN 002+0 SN 002+0	ED BRIDGE ED BRIDGE TRACK S100 REALIGNED GM SPUR S101 REALIGNED GM SPUR	R 10.00 R 5°00' 349.39 29.54 R 10.00	Image: Non-State of the state of the st		Number TRACK Dc S9 TRACK GO1 12°00' S10 TRACK GO1 12°00' S11 TRACK GO1 10°00' S12 TRACK GO1 10°00'	CURVE TABLE R (m) Length (m) Vpsg (Mph) Ea (*) I 145.80 73.95 255 2.0 3 145.80 73.95 255 2.0 1 174.86 98.30 25 2.0 2 174.86 98.30 25 2.0 2 174.86 98.30 25 2.0 2 IV IV IV IV IV EXISTING GM SPUR TRACK IV IV IV IV IV IV I	OHH
//R NEW GO1 T		O/H POWER LINE	A:19+373.158 LEV:111.997 C:30.500 DC:-0.765 80 80 80 10 10 10 10 10 10 10 10 10 1					CL REALIGNED CP GM SPUR STA = 19+954.820 T/R ELEV = 111.089				$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: state stat	
STA CEN S END EXIS LEFT	0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	PS POINT OF SWITCH PVI POINT OF SWITCH INTERSECTION RH RIGHT HAND ROC RATE OF CHANGE ON STA. STATION TO TURNOUT	PC PT SC CURVE ST	Image: Constraint of the second s				0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0		EFERENCE DRAWINGS	F 22/04/13 I E 21/06/04 ISSUI D 20/09/18 ISSUI C 20/08/26 ISSUI	SSUED FOR APPENDIX A ED FOR CONCEPTUAL DESIGN ED FOR CONCEPTUAL DESIGN	I I	0 0

LEGEND						ABBREVIA
	CL PROPOSED TRACK	OH	OVERHEAD HYDRO	UFO		
	CL EXISTING TRACK		PROPERTY LINE		FIBRE OPTIC CABLE	BVCS
	CL FUTURE TRACK	STM	STORM SEWER	· UEL	UNDERGROUND ELECTRICAL	CL
	CL EXISTING TRACK	SAN	SANITARY SEWER	GAS	NATURAL GAS	EVCS
Å	TO BE REMOVED/REALIGNED	UBT	UNDERGROUND	· WTM	WATER	EX.
¥	EXISTING TURNOUT PS		BELL TELEPHONE		EXISTING BRIDGE	LH LVC
• • • • • • • • • • • • • • • • • • •	PROPOSED TURNOUT PS	UCA	UNDERGROUND CABLE TV		PROPOSED BRIDGE	ML
•	FUTURE TURNOUT PS					

EVIATION

- **BEGIN VERTICAL CURVE** STATION CENTRE LINE END VERTICAL CURVE STATION EXISTING LEFT HAND LENGTH OF VERTICAL CURVE MAINLINE
- PS POINT OF SWITCH PVI POINT OF VERTICAL INTERSECTION RH RIGHT HAND ROC RATE OF CHANGE ON CURVE STA. STATION TO TURNOUT
- T/R TOP OF RAIL
- CS CURVE TO SPIRAL PC POINT OF CURVE
- PT POINT OF TANGENT
- SC SPIRAL TO CURVE
- ST SPIRAL TO TANGENT
- TS TANGENT TO SPIRAL

PROFILE SCALE H 1:1500 V 1:150

	REFERENCE DRAWINGS	ISSUE	REVISIONS	DRAWN
				21/0
		E 21/06/04 ISSUED FOR PRELIMINARY DESIGN		CHECKE
		D 20/09/18 ISSUED FOR CONCEPTUAL DESIGN		E
NOT FOR CONSTRUCTION		C 20/08/26 ISSUED FOR CONCEPTUAL DESIGN		21/0
NOT FOR CONSTRUCTION		B 20/08/14 ISSUED FOR CONCEPTUAL DESIGN		SCALE:
		A 20/01/31 ISSUED FOR PRELIMINARY DESIGN		0
	DWG NO. TITLE	NO. DATE ISSUED FOR	REV. DATE	0

NOT F

METRIC

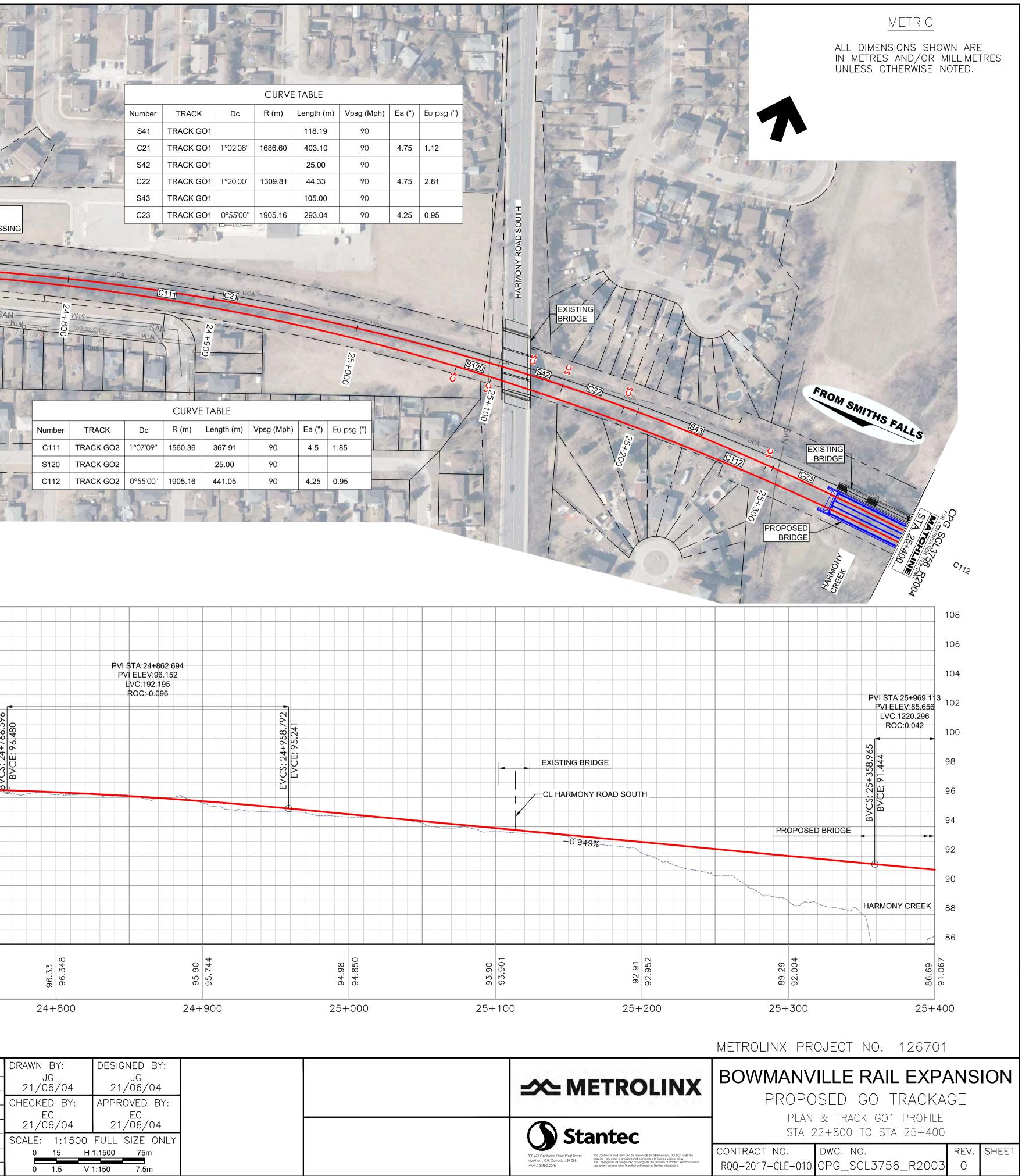
ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

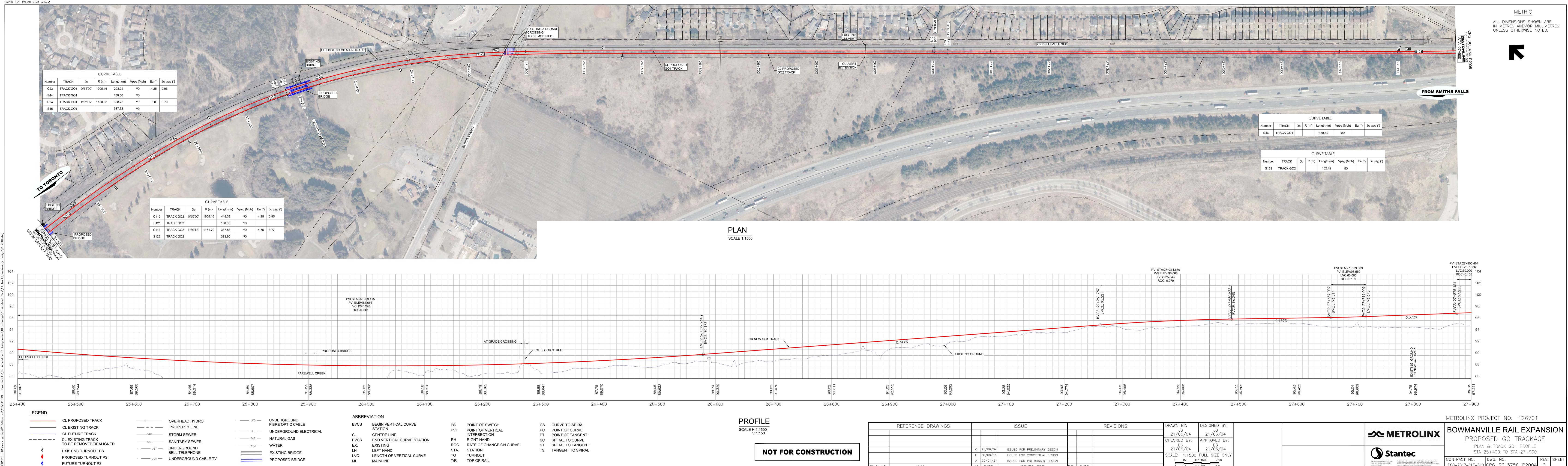
AWN BY: DESIGNED BY: BOWMANVILLE RAIL EXPANSION ->>> METROLINX 21/06/04 21/06/04 IECKED BY: APPROVED BY: PROPOSED GO TRACKAGE EG /06/04 PLAN & TRACK GO1 PROFILE 21/06/04 **Stantec** STA 21+000 TO STA 22+800 LE: 1:1500 FULL SIZE ONLY REV. SHEET
 0
 15
 H 1:1500
 75m

 0
 1.5
 V 1:150
 7.5m
 CONTRACT NO. DWG. NO. 300-675 Cachrane Drive West Tower Markham, ON, Canada, L3R 088 www.stantec.com RQQ-2017-CLE-010 CPG_SCL3756_R2002 0

METROLINX PROJECT NO. 126701

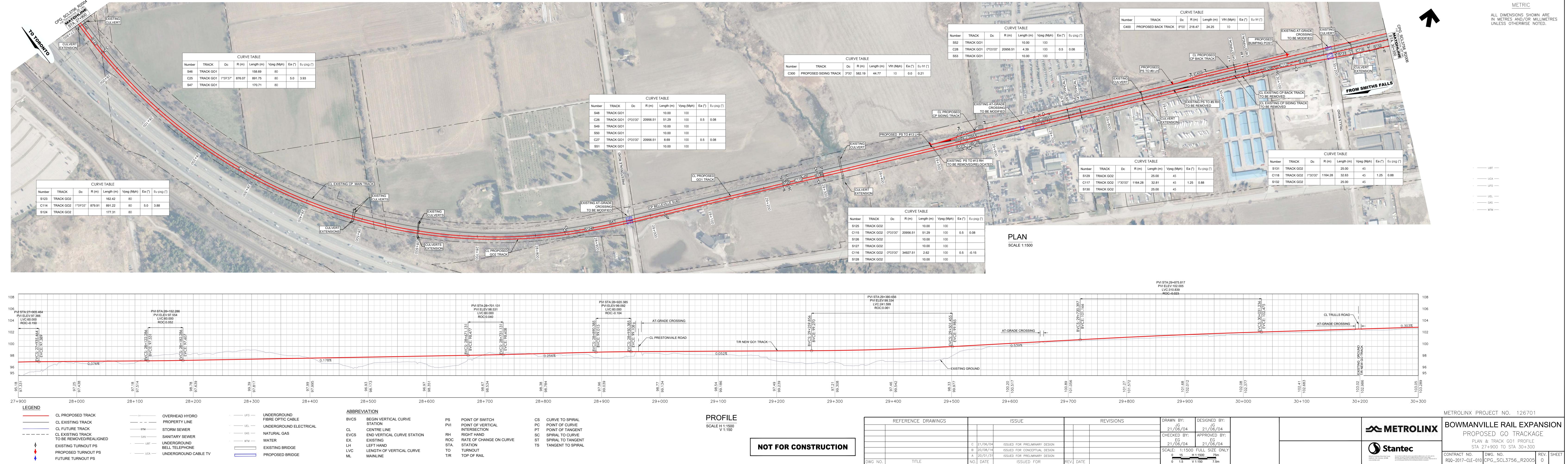
PAPER SIZE	(22.00 x 73 Inches)		Sin			1-4	-
		Number TRACK Do	CURVE TABLE R (m) Length (m) Vpsg (Mph)	Ea (") Eu psg (")	LALET	多有的有	TUT
	- 0-	S31 TRACK GO1 C16 TRACK GO1 0°05'	10.00 100 00" 20956.51 24.09 100	0.5 0.08		B IERI	Eh.L_
	300 8772	S32 TRACK GO1	10.00 100	SAN	450 SAI		150 WTM -
R2002 NE.		PROP	OSED STRIAN BRIDGE	and the second s	SMN SWA	GASSAN_	TUNNEL LINER
3756 Ation See	N	C16 S32		/ILLE SUB UCA	CL PRO GO1 TR		
	22+	C104 S108 22+					
	800			TRACK +	430 M 80 SA	NI	
						a company	
		Num		Length (m) Vpsg (Mph) Ea (") Eu psg ("			
	19		04 TRACK GO2 1°30'00'' 1164.28	23.70 45 46.87 45 1.25 0.88 23.70 45		CURVE TABLE	
	TO TORO	WICH	nnu		Number TRACK S109 TRACK GO2	Dc R (m) Length (m)	Vpsg (Mph) Ea (") Eu 45
					C105 TRACK GO2 S110 TRACK GO2		45 1.25 0.8 45
					S111 TRACK GO2 C106 TRACK GO2 S112 TRACK GO2	2 1°30'00'' 1164.28 37.70	45
108 106		A:22+865.807 LEV:101.873 /C:60.000 DC:-0.046		Image: Sector			
104	3VCS: 22+835.807 BVCE: 101.911		NEW GO PLATE	ORM			CL R
102 100	-0.126%		DGE				
98							
96							
94 92							
90		SROUND D TRACK					
88		EXISTING GROUND T/R NEW GO TRACK					
102.51 98	01.956	101.65 E	100.20	100.87	100.57	100.32	100.41
	800	22+900	23+000	23+100	23+200	23+300	23+
	LEGEND	- CL PROPOSED TRAC	К — он — — он — — — — — — — — — — — — — —	- OVERHEAD HYDRO	· UFO UNDEI	RGROUND	ABBREV
22+		 CL EXISTING TRACK CL FUTURE TRACK 	STM	— PROPERTY LINE	FIBRE	OPTIC CABLE RGROUND ELECTRICAL	BVCS CL
		- CL EXISTING TRACK TO BE REMOVED/REA EXISTING TURNOUT F	UBT	SANITARY SEWERUNDERGROUND	• WTM WATE		EVCS EX. LH
	♦	PROPOSED TURNOU FUTURE TURNOUT PS	T PS UCA -	BELL TELEPHONE - UNDERGROUND CABLE TV		ING BRIDGE OSED BRIDGE	LVC ML

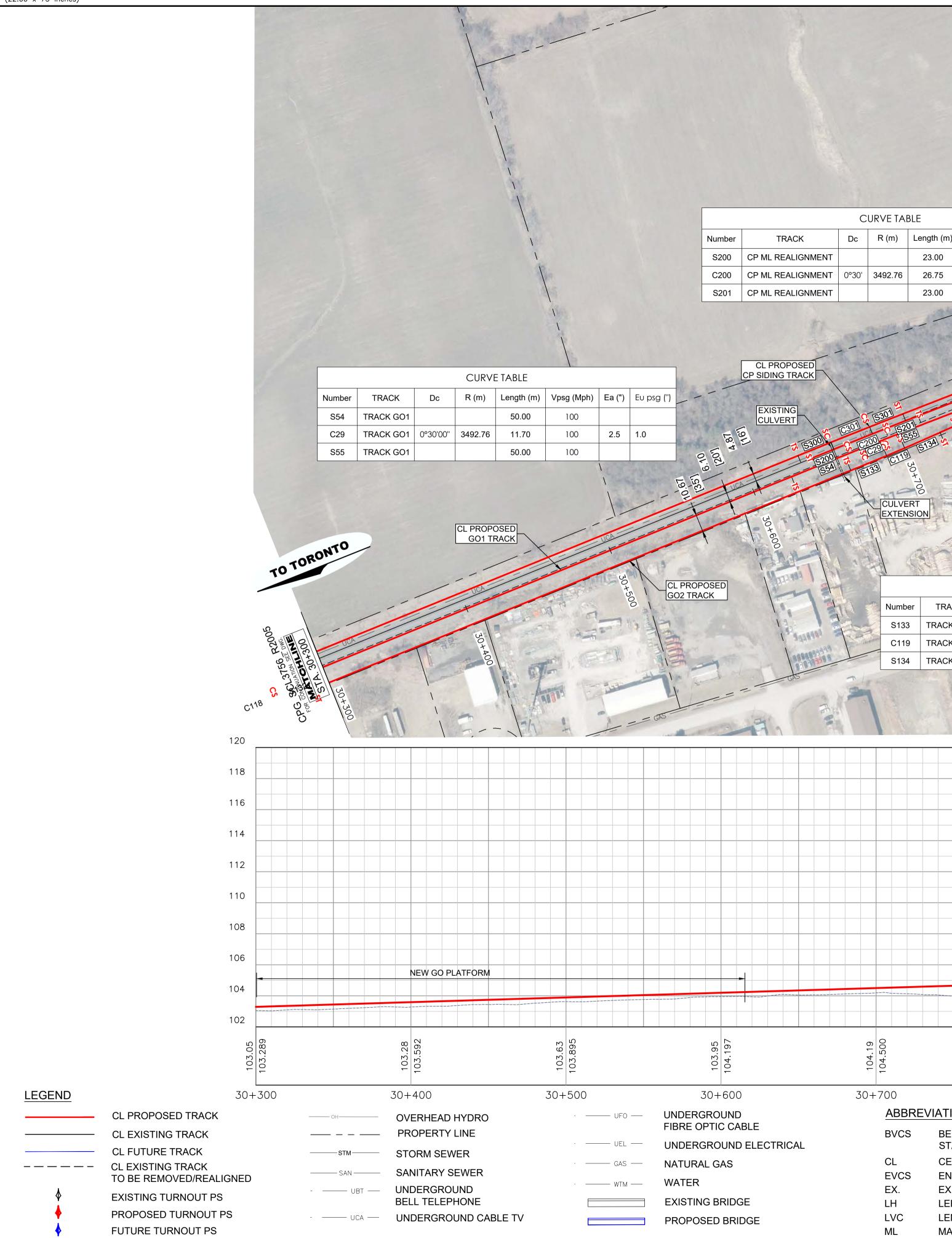

PLAN


SCALE 1:1500

7			2		17			FREE				1 a	K	F/	-		H.	F			and any	A.	南		
	CURV	E TABLE				14		States and			1 and	A CAR	1			-1-			15		14	the second			
Dc	R (m)	Length (m)	Vpsg (Mph)	Ea (")	Eu psg ('')			21		1	-			CURVE	TABLE					11	E	1/1		Enter Enter	
		53.40	100				L F		- plat	12	Number	TRACK	Dc	R (m)	Length (m)	Vpsg (Mph)	Ea (")	Eu psg (")		-		2	E T	1 10- 1	
0°30'00	" 3492.76	8.18	100	2.5	1.00	No.	3				S37	TRACK GO1			53.40	100							3	A STATE	4/
		53.40	100			P) T A		withen .	-		C19	TRACK GO1	0°30'00''	3492.76	6.94	100	2.5	1.00			10		NHX	3413 7	
		53.40	100			and surplus	3	The last		and the	S38	TRACK GO1			53.40	100					1			a state	~
0°30'00	" 3492.76	9.10	100	2.5	1.00			67 2			S39	TRACK GO1			53.40	100					1			,1	
		53.40	100			-	120	4	28 A.		C20	TRACK GO1	0°30'00''	3492.76	6.73	100	2.5	1.00				Y		1 9 84	1
		TOP 1	- all	71	-			-	- Trace	2 4	S40	TRACK GO1			53.40	100				PROPO PEDEST		A	1/201	1 legen	-/
			1		10 44 10	A STAN	5 - MBT-	EXIS	STING	The Part of				7	10 - 1 de	STEL.	1		BRIDG	SE CROSS					_
							1.1	BRID						CL PROPC	SED GO1 TF	RACK	07			Real			EXISTIN PEDEST	RIAN	
S34 114			JCA — –	<u>8</u>	_ 11 2	- UCA		9.14 [30']		8 (UCA —— –	and the second		CA	m Trippe	<u>s</u> - /	Ra de	1 1	and and a second	[]					
114		~ ~	S35 S65	C18 C18 C108	<u>S36</u>	5115			S37 [C19, C109	S38 S117	S		2	\$ <u>39</u>	20 S40		<mark>13 S1</mark>		S41	Weet States	11	U	0.00	
TT			and the state of	-0-2-	10 m								Contraction of the Party of the	0110		U	S70	Contraction of the second	March Carl				S	UCA	
/	22		POSED	S U	Care	.	THE REPORT	2 <mark>1</mark>		- <u>N-N</u>				S	<u> </u>	9	1. 1.		10	and the second second	Contraction of the			and the second	
	4+1	CL PRO GO2 TR		24+	PROP		WIN	<mark>SI</mark> 24+		- 2 2	24-			TS T	S ^C C	C C			× <mark></mark>			- L			
/	/ +			N			STO T	<mark>\$1</mark> 24+300		- N- 2	24+			13- 15- 15- 15- 15- 15- 15- 15- 15- 15- 15		S		- <mark>-1S</mark> 24+60	2			S 24+		- WIS	300 3
	4+1			24+			WIN	<mark>SI</mark> 24+300		- N- 2				115- 115- 115-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C C C C C C C C C C C C C C C C C C C		-15 -15 -15	S.			- L		- WIS SAN WIM	300
	4+1			24+			750 417	<mark>SI</mark> 24+300		- 8- 8	24+				SCC	3	Ţ	- <mark>15</mark> 24+600	<u>s</u>			S 24+70		WIS- SAN- MIA	JUD DUCA
	4+1			24+			750 WIN	<mark>SI</mark> 24+300		- N- Ω	24+		CURVE	+300	S S S S S S S S S S S S			-15 -24+600	5			5 24+700		WISAN- SAN- 73	SUUCA D WAR
CURVE	4+100			24+			WIN	<mark>SI</mark> 24+300		-♀-♂	24+400			TABLE) Ea (") E	црзд (")		5			5 24+700		WISAN SAN 73	300 S
	4+100	GO2 TR	ACK	24+200			WIN GAS GAS -	<mark>SI</mark> 24+300		Number	24+400 TRACK	Dc		TABLE Length (m)	Vpsg (Mph) Ea (") E	tu psg (")		S			5 24+700		WISAN - WIN VIN	300 s
	TABLE		ACK	24+200			WIM GAS GAS	<mark>SI</mark> 24+300		Number S116	TRACK TRACK GC	Dc 2	R (m)	TABLE Length (m) 53.40	Vpsg (Mph 100							5 24+700		WISSAN- WIA	300 s
	TABLE Length (m)	Vpsg (Mph)	ACK	24+200 psg (")			WIM GAS GAS	<mark>SI</mark> 24+300		Number S116 C109	TRACK TRACK GC TRACK GC	Dc 2 2 0°30'00''		TABLE Length (m) 53.40 6.94	Vpsg (Mph 100 100		iu psg (") .00					5 24+700		WIS AN- WIA	
R (m)	TABLE Length (m) 53.40	Vpsg (Mph)	<u>АСК</u> Еа (") Е∪	24+200 psg (")			WIM GAS GAS	<mark>\$1</mark> 24+300		Number S116	TRACK TRACK GC TRACK GC TRACK GC	Dc 2 2 2 2 0°30'00'' 2	R (m)	TABLE Length (m) 53.40	Vpsg (Mph 100							5 24+700		WISAN MIA VIA	Num
R (m)	++100 TABLE Length (m) 53.40 8.18	GO2 TR Vpsg (Mph) 100 100	<u>АСК</u> Еа (") Е∪	24+200 psg (")			WIS JAN 057 CAS - DAVING CAS - DAVING CAS - DAVING CAS	<mark>\$1</mark> 24+300		Number S116 C109 S117	TRACK TRACK GC TRACK GC	Dc 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R (m)	TABLE Length (m) 53.40 6.94 53.40	Vpsg (Mph 100 100 100	2.5 1						S 24+70		WISAN MIA VIA	Num C1
R (m)	++100 TABLE Length (m) 53.40 8.18 53.40	GO2 TR Vpsg (Mph) 100 100 100	<u>АСК</u> Еа (") Е∪	24+200 psg (") 00			MIS AN OZ CAS	<mark>\$1</mark> 24+300		Number S116 C109 S117 S118	TRACK TRACK GC TRACK GC TRACK GC TRACK GC	Dc 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R (m) 3492.76	TABLE Length (m) 53.40 6.94 53.40 53.40	Vpsg (Mph 100 100 100 100	2.5 1	.00					5 24+700		WISAN MIA	Num C1 ⁻ S12
R (m) 192.76	++00 TABLE Length (m) 53.40 8.18 53.40 53.40 53.40	GO2 TR Vpsg (Mph) 100 100 100 100 100	ACK Ea (") Eu 2.5 1.0	24+200 psg (") 00			H WIM GAS	<mark>\$1</mark> 24+300		Number S116 C109 S117 S118 C110	TRACK TRACK GC TRACK GC TRACK GC TRACK GC TRACK GC	Dc 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R (m) 3492.76	TABLE Length (m) 53.40 6.94 53.40 53.40 12.10	Vpsg (Mph 100 100 100 100 100	2.5 1	.00					5 24+700		WISAN- MIA	Num C1
R (m) 192.76	++00 TABLE Length (m) 53.40 8.18 53.40 53.40 9.10	GO2 TR Vpsg (Mph) 100 100 100 100 100 100 100 100 100	ACK Ea (") Eu 2.5 1.0	24+200 psg (") 00			H WIM GAS	SI 24+300		Number S116 C109 S117 S118 C110	TRACK TRACK GC TRACK GC TRACK GC TRACK GC TRACK GC	Dc 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R (m) 3492.76	TABLE Length (m) 53.40 6.94 53.40 53.40 12.10	Vpsg (Mph 100 100 100 100 100	2.5 1	.00					5 24+700		WISAN MIA	

ISCHED END

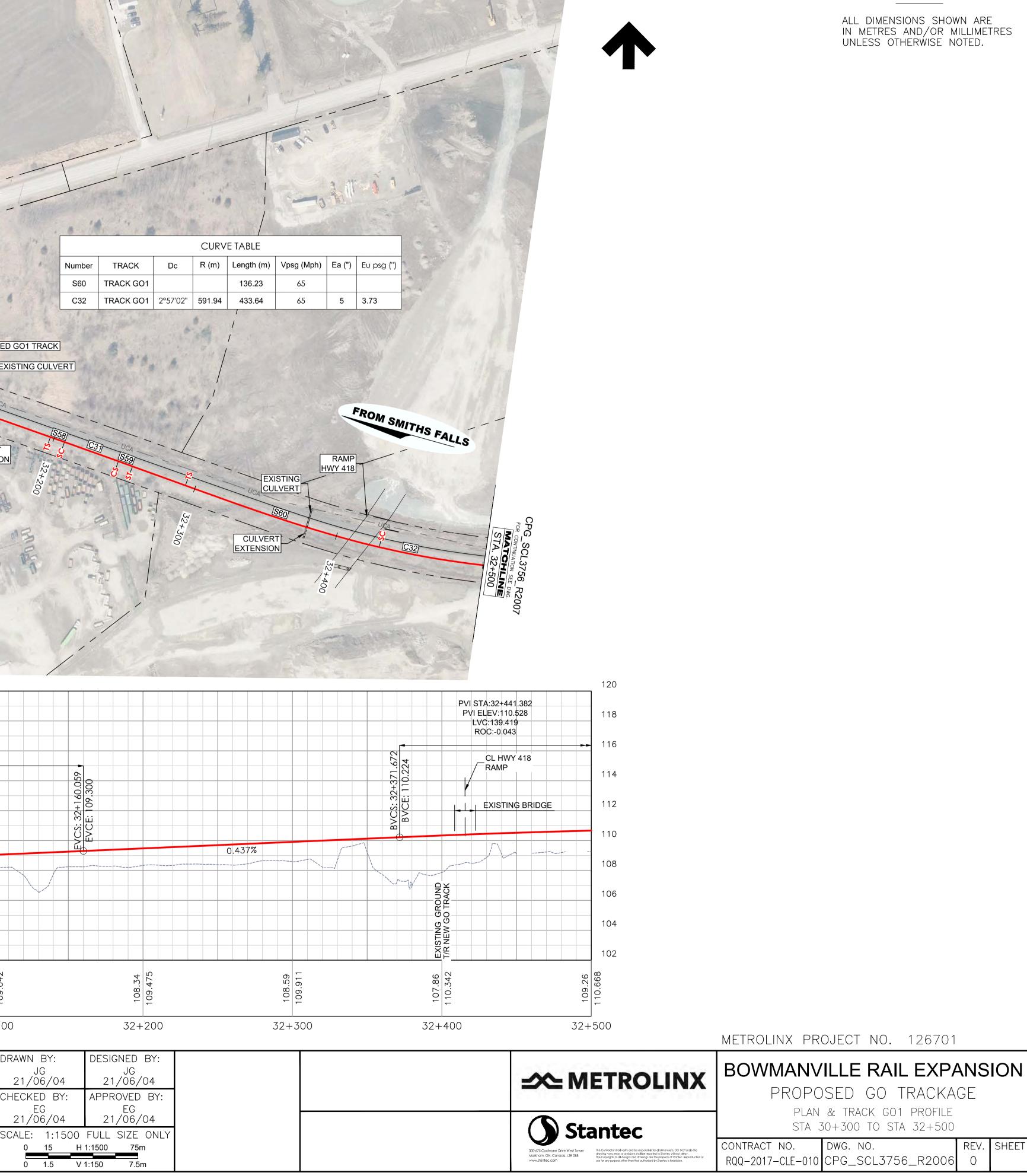



					CPC CPC
UCA		27+700		546 5123 27+800	SCL3
	-				FROM SMITHS FALLS
Number TRACK S46 TRACK GO1	CURVE T Dc R (m) Lengt	h (m) Vpsg (Mph)	Ea (") Eu psg (")		
Number TRACK S123 TRACK GO2		TABLEngth (m)Vpsg (Mph)62.4280	Ea (") Eu psg (")		
The Ar					
A CONTRACTOR					

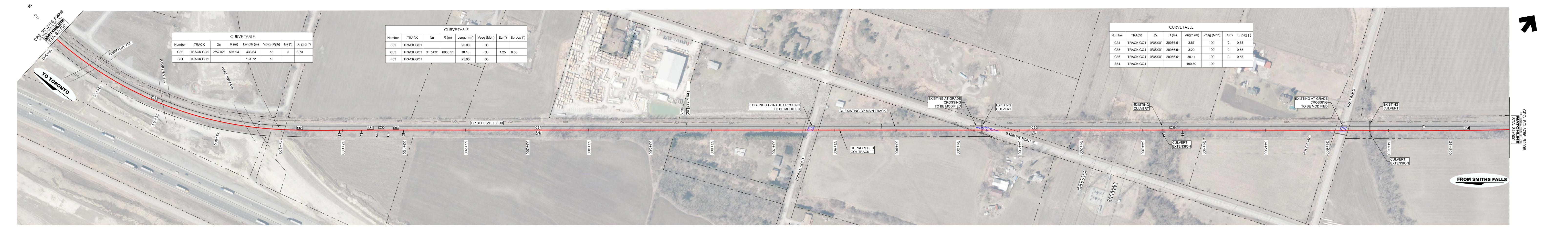
JG 21/06/04	JG 21/06/04						
ECKED BY: FG	APPROVED BY: FG			PROPC	SED GO TRACKA & track go1 profile		
21/06/04 ALF: 1:1500	21/06/04 FULL SIZE ONLY		Stantec		25+400 TO STA 27+900		
0 15 H	1:1500 75m 1:150 7.5m		300-675 Cachrane Drive West Tower Markham, ON, Canada, LSR 088 www.stanlec.com		DWG. NO. CPG_SCL3756_R2004	REV. SH O	HEET

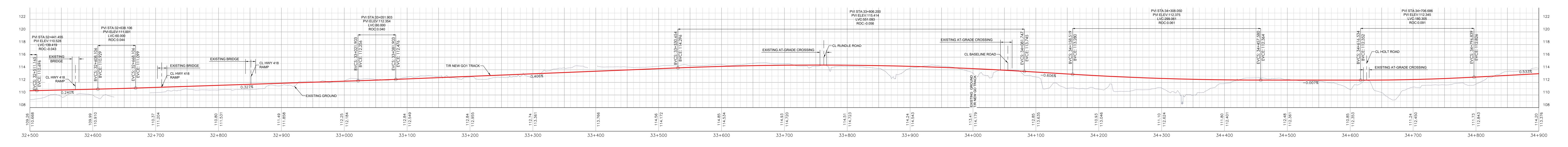
IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

NTRACK CURVETABLE EXISTING CULVERTS EXISTING AT GRADE DOWNERS TRACK GO1 TRACK GO1 TO 0												A States
NTRACK EXISTING EXISTING EXISTING EXISTING					_				_ (II)			
N TRACK EXISTING EXISTING AL-GRADE		Aller The State St			Dc	R (m)			Ea (")	Eu psg (")		
S49 TRACK GO1 10.00 100 100 S50 TRACK GO1 10.00 100 0.5 0.08 S51 TRACK GO1 10.00 100 0 0 0			Charles and the second s		0°05'00''	20956.51			0.5	0.08		
C27 TRACK GO1 0'0500' 20956.51 8.69 100 0.5 0.08 S51 TRACK GO1 0 10.00 100 0 0											d	
IN TRACK			S50	TRACK GO1			10.00	100			de la companya de la	
IN TRACK EXISTING AT-GRADE		CARLEN PROPERTY PROPERTY IN THE REAL	100 M		0°05'00''	20956.51			0.5	0.08		
IN TRACK EXISTING AT-GRADE			S51				10.00	100	7.000	al mark		
EXISTING CULVERTS CULVER CULVERTS CULVERTS CULVERTS CULVERTS CULVERTS CULVERTS CULVE	EXISTING CULVERTS UCA UCA UCA CULVERTS			ADE			STST		PROPC	ZACK UCA		1 1 29+200


CURVE TABLE Number TRACK Dc R (m) Length (m) Vfrt (Mph) Ea (") Eu frt (") S300 PROPOSED SIDING TRACK 0 23.00 10 0.0 0.04 C1 PROPOSED SIDING TRACK 0'30' 3492.76 26.75 10 0.0 0.04 S301 PROPOSED SIDING TRACK 0'30' 3492.76 23.00' 10' 0.0' 0.04' CL PROPOSED SIDING TRACK 0'30' 3492.76' 23.00' 10' 0' 0' CL PROPOSED SIDING TRACK 0'30' 3492.76' 26.75' 10' 0.0' 0.04' 0'	CL EXISTING CP SIDING TRACK TO BE REMOVED C302 TRACC302 C201 C30 CL EXIS C201 C30 CL EXIS C201 C30 CL EXIS C201 C30 CL EXIS C302 CL EXISTING C302 CL EXISTING CC CL EXISTING CC	Number TRACK Dc R (m) Length (m) Vfrt (Mph) Ea (") Eu frt (") S302 PROPOSED SIDING TRACK u 107.00 10 u C302 PROPOSED SIDING TRACK 2°45' 635.85 344.31 10 0.0 0.19 S303 PROPOSED SIDING TRACK u 107.00 10 u u C303 PROPOSED SIDING TRACK 3'00' 582.19 45.54 10 0.0 0.21
BE CL PROPOSED GO1 TRACK 23.00 60 0.5 0.76 23.00 60 0 0 0	S S CURVE TABLE Number TRACK Dc R (m) Length (m) V frt (Mph) Ea (") Eu frt (") S	PROPOSED PS TO #13 RH BASELINE ROAD W BASELINE ROAD W EXISTING AT-GRADE CROSSING TO BE MODIFIED
So Troo	Number TRACK Dc R (m) Length (m) Vpsg (Mph) Ea (") Eu psg (") 556 TRACK GO1 2°54'00" 602.26 266.17 65 5.0 3.58 557 TRACK GO1 200.00 65 1	EXISTING PS TO #13 LH TO BE REMOVED/RELOCATED
CURVE TABLE Der TRACK Dc R (m) Length (m) Vpsg (Mph) Ea (") Eu psg (") 3 TRACK G02 1 25.00 45 1 1 9 TRACK G02 1'30'00' 1164.28 12.63 45 1 4 TRACK G02 1 25.00 45 1 1	PLAN SCALE 1:1500	S58 TRACK GO1 10.00 65 1 C31 TRACK GO1 0°1500° 6985.51 38.32 65 0.5 0.24 S59 TRACK GO1 10.00 65 1
	Market	Image: Sector of the sector
	A GO1 TRACK	
105.92 105.00 105.02 105.106 105.02 105.106	106.76 107.225 107.225	107.21 107.541 107.541 107.64 108.18 108.632 109.042
30+800 30+900 31+000 31+100 31+20 BREVIATION STATION PS POINT OF SWITCH CS CURVE TO SPIRAL STATION PVI POINT OF VERTICAL PC POINT OF CURVE CENTRE LINE INTERSECTION PT POINT OF TANGENT S END VERTICAL CURVE STATION RH RIGHT HAND SC SPIRAL TO CURVE EXISTING ROC RATE OF CHANGE ON CURVE ST SPIRAL TO TANGENT LEFT HAND STA. STATION TS TANGENT TO SPIRAL LENGTH OF VERTICAL CURVE TO TURNOUT T/R TOP OF RAIL	10 31+300 31+400 31+500 31+600 PROFILE SCALE H 1:1500 V 1:150 NOT FOR CONSTRUCTION	31+700 31+800 31+900 32+000 32+100 REFERENCE DRAWINGS ISSUE REVISIONS DRAWN B JG JG JG JG JG L I ISSUE ISSUE CHECKED L ISSUE ISSUED FOR APPENDIX A ISSUED FOR APPENDIX A CHECKED L ISSUED FOR PRELIMINARY DESIGN ISSUED FOR CONCEPTUAL DESIGN ISSUED FOR CONCEPTUAL DESIGN SCALE: TITLE NO. DATE ISSUED FOR REV. DATE ISSUED FOR REV. DATE ISSUED FOR

METRIC


ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.


REV. SHEET

RQQ-2017-CLE-010 CPG_SCL3756_R2006 0

300-675 Cochrane Drive West Tower Markham, ON, Canada, L3R 088 www.stantec.com use for any purpose other than that outhorized by Stantec is forbidden.

LEGEND			
	CL PROPOSED TRACK	OH	OVE
	CL EXISTING TRACK		PR
	CL FUTURE TRACK	STM	STC
	CL EXISTING TRACK TO BE REMOVED/REALIGNED	SAN	SAN
\$	EXISTING TURNOUT PS	UBT	UND BEL
•	PROPOSED TURNOUT PS	UCA	UNE
\	FUTURE TURNOUT PS		

RACK	OH	OVERHEAD HYDRO PROPERTY LINE	UFO	UNDERGROUND FIBRE OPTIC CABLE	<u>ABB</u> BVCS
CK ACK	STM	STORM SEWER	· UEL · GAS	UNDERGROUND ELECTRICAL	CL EVCS
/REALIGNED	UBT	SANITARY SEWER UNDERGROUND	· WTM	WATER	EVCS EX. LH
NOUT PS	UCA	BELL TELEPHONE UNDERGROUND CABLE TV		EXISTING BRIDGE PROPOSED BRIDGE	LVC ML
JT PS					

ABBREVIATION

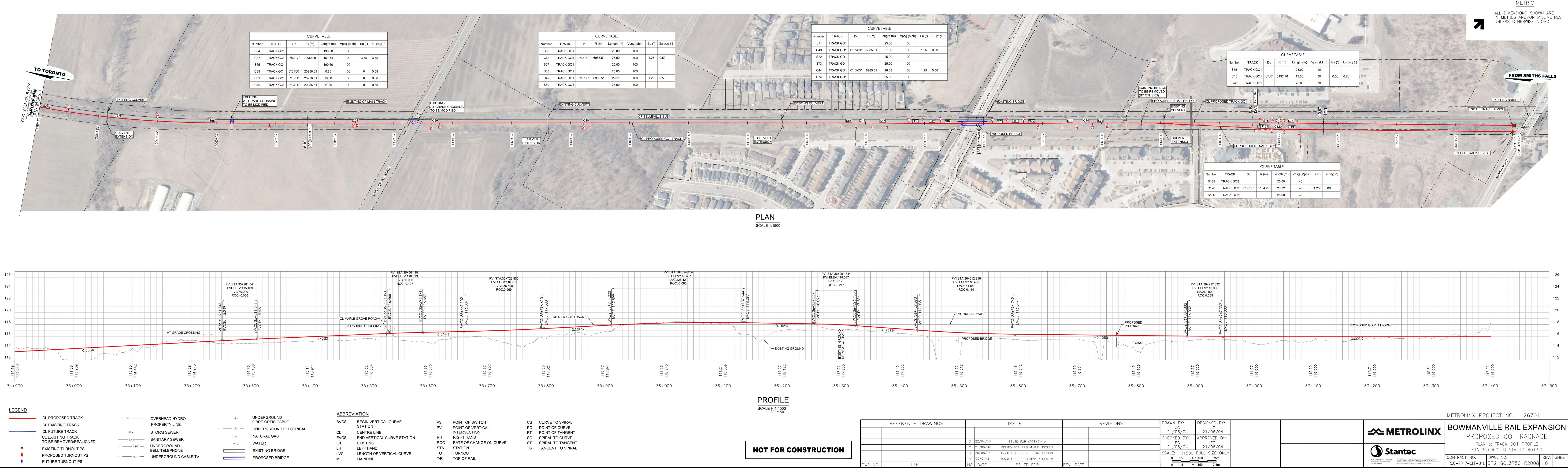
- BVCS BEGIN VERTICAL CURVE STATION CENTRE LINE EVCS END VERTICAL CURVE STATION EXISTING LEFT HAND LENGTH OF VERTICAL CURVE T/R TOP OF RAIL
 - PS POINT OF SWITCH PVI POINT OF VERTICAL INTERSECTION RH RIGHT HAND ROC RATE OF CHANGE ON CURVE STA. STATION TO TURNOUT
- PC POINT OF CURVE PT POINT OF TANGENT
- SC SPIRAL TO CURVE
- ST SPIRAL TO TANGENT TS TANGENT TO SPIRAL

CS CURVE TO SPIRAL

PROFILE SCALE H 1:1500 V 1:150

		REFERENCE DRAWINGS			ISSUE			REVISIONS	DRAWN B
									JG 21/06,
						_			CHECKED
ION			С	21/06/04	ISSUED FOR PRELIMINARY DESIGN				EG 21/06,
			В	20/08/14	ISSUED FOR CONCEPTUAL DESIGN				SCALE: ´
			A	20/01/31	ISSUED FOR PRELIMINARY DESIGN				0 1
	DWG NO.	TITLE	NO.	. DATE	ISSUED FOR	REV.	DATE		0 1

NOT FOR CONSTRUCTIO


DESIGNED BY: **BOWMANVILLE RAIL EXPANSION** ->>> METROLINX 21/06/04 06/04 PROPOSED GO TRACKAGE KED BY: APPROVED BY: PLAN & TRACK GO1 PROFILE **Stantec** 21/06/04 06/04 STA 32+500 TO STA 34+900 , , , 1:1500 FULL SIZE ONLY REV. SHEET CONTRACT NO. DWG. NO.
 15
 H 1:1500
 75m

 1.5
 V 1:150
 7.5m
 300-675 Cochrane Drive West Tower Markham, ON, Canada, L3R 0B8 www.stantec.com RQQ-2017-CLE-010 CPG_SCL3756_R2007 0

METROLINX PROJECT NO. 126701

METRIC

ALL DIMENSIONS SHOWN ARE IN METRES AND/OR MILLIMETRES UNLESS OTHERWISE NOTED.

	REFERENCE DRAWINGS			ISSUE			REVISIONS	DRAWN B
								JG 21/06
								CHECKED
		D	22/04/13	ISSUED FOR APPENDIX A				EG
		С	21/06/04	ISSUED FOR PRELIMINARY DESIGN				21/06
		В	20/08/14	ISSUED FOR CONCEPTUAL DESIGN				SCALE:
		А	20/01/31	ISSUED FOR PRELIMINARY DESIGN				0 1
DWG NO.	TITLE	NO.	DATE	ISSUED FOR	REV.	DATE		0 1

Section 3: Zones and Zone Symbols

3.1 Establishment of Zones

3.1.1 For the purposes of this By-law and the maps contained in Schedule "A" hereto, the following zones are established and may be referred to by class, symbol or name:

(a) Class: Residential

<u>Symbol</u>	Name
R1	R1 Residential Zone
R2	R2 Residential Zone
R3	R3 Residential Zone
R4	R4 Residential Zone
R5	R5 Residential Zone
R6	R6 Residential Zone
R7	R7 Residential Zone
R8	R8 Residential Zone

(b) Class: Office

<u>Symbol</u>	<u>Name</u>
SO	Specialized Office Zone
OC	Office Conversion Zone

(c) Class: Commercial

<u>Symbol</u>	Name
CBD	Central Business District Zone
PCC	Planned Commercial Centre Zone
PSC	Planned Strip Commercial Zone
SPC	Special Purpose Commercial Zone
CC	Convenience Commercial Zone
SSC	Automobile Service Station Zone
HMC	Hamlet Commercial Zone
HBC	Harbour Commercial Zone

(d) Class: Institutional

<u>Symbol</u>	<u>Name</u>
CIN	Community Institutional Zone
MIN	Major Institutional Zone

(e) Class: Open Space

<u>Symbol</u>	Name
OS	Open Space Zone
OSU	Urban Open Space Zone
OSR	Rural Open Space Zone
OSP	Park Open Space Zone
OSH	Hazard Lands Open Space Zone
OSE	Environmentally Sensitive Open Space Zone
OSW	Waterfront Open Space Zone
OSB	Open Space Buffer Zone
OS-ORM	Oak Ridges Moraine Open Space Zone

(38-2006, 138-2008)

(f) Class: Industrial

<u>Symbol</u>	<u>Name</u>
PI	Prestige Industrial Zone
SI	Select Industrial Zone
GI	General Industrial Zone
SPI	Special Industrial Zone
HI	Hamlet Industrial Zone

(g) Class: Other

<u>Symbol</u>	Name
AG	Agricultural Zone
AP	Airport Zone
UT	Utilities Zone
MA	Mineral Aggregate Zone
CE	Cemetery Zone
UR	Urban Reserve Zone
EU	Existing Use Zone
SW	Special Waterfront Zone
AG-ORM	Oak Ridges Moraine Agricultural Zone
	(00.00

(62-2000, 38-2006)

(h) Class: Regulatory

<u>Symbol</u>	<u>Name</u>
D	Density
F	Lot Frontage
T	Floor Space Index
L	Lot Area
Т	Height
Υ	Front Yard Depth
R	Rear Yard Depth
DB	Density Block
С	Lot Coverage

(4-1998)

(i) Class: Mixed Use

SymbolNameMUMixed Use Zone

3.2 Zone Variations and Special Conditions

- 3.2.1 The term "zone variations" is used to describe the subdivisions of the zones established by Subsection 3.1. For example, the R6 Residential Zone has zone variations which include R6-A, R6-B, R6-C and R6-D. Each zone variation has different regulations applicable to the permitted uses within that zone or the uses permitted in each zone variation are different. Table 11.2 sets out the regulations for each R6 zone variation. The word "zone" includes each of the zone variations within the zone.
- 3.2.2 A "special condition" permits additional uses or further restricts the use of specific property in various zones and zone variations or provides regulations applicable to uses permitted at specific locations that differ from the regulations applicable to the standard zones or zone variations. An example is the R6-C(1) Zone established under Article 11.3.1.

3.3 Regulatory Zones

3.3.1 **Explanation**

3.3.1(1) The T, I, D, F, L, Y, R, DB and C regulatory zones provide individual regulations with respect to height (T), floor space index (I), density (D), minimum lot frontage (F), minimum lot area (L), minimum front yard depth (Y), minimum rear yard depth (R), density in blocks in a registered plan of subdivision (DB) and maximum lot coverage (C). These regulatory zones are used in conjunction with one or more use zones. The regulatory zones take precedence over any applicable maximum height, maximum floor space index, maximum density, minimum lot frontage, minimum lot area, minimum front yard depth, minimum rear yard depth and maximum lot coverage regulations set out in the relevant use zone. **(4-1998)**

3.3.2 **T – HEIGHT**

- 3.3.2(1) The maximum height of main buildings and main structures permitted on any lot is determined by the HEIGHT regulatory zone. If no height regulatory zone is noted on the zoning maps, the height regulations of the applicable use zone apply.
- 3.3.2(2) Each T HEIGHT regulatory zone permits a maximum building height expressed in "metres", indicated by the number following the letter T on the zoning maps attached to this By-law.

3.3.3 I – FLOOR SPACE INDEX

- 3.3.3(1) The maximum floor space index permitted on any lot is determined by the FLOOR SPACE INDEX regulatory zone. If no floor space index zone is noted on the zoning maps, the floor space index regulations of the applicable use zone apply.
- 3.3.3(2) Each I Floor Space Index regulatory zone permits a maximum floor space index, indicated by the number following the letter I on the zoning maps attached to this By-law.

3.3.4 **D – DENSITY**

- 3.3.4(1) The maximum number of dwelling units permitted on any lot is determined by the DENSITY regulatory zone. If no density zone is noted on the zoning maps, the density regulations of the applicable use zone apply.
- 3.3.4(2) Each D Density regulatory zone permits a maximum number of dwelling units per hectare, indicated by the number following the letter D on the maps attached to this By-law.

3.3.5 **F – FRONTAGE**

- 3.3.5(1) The minimum lot frontage of any lot is determined by the LOT FRONTAGE regulatory zone. If no lot frontage is noted on the zoning maps, the frontage regulations of the applicable use zone apply.
- 3.3.5(2) Each F Frontage regulatory zone requires the minimum lot frontage expressed in metres (m), indicated by the number following the letter F on the zoning maps attached to this By-law.

3.3.6 **L – LOT AREA**

- 3.3.6(1) The minimum lot area of any lot is determined by the LOT AREA regulatory zone. If no minimum lot area is noted on the zoning maps, the lot area regulations of the applicable use zone apply.
- 3.3.6(2) Each L Lot Area regulatory zone requires the minimum lot area expressed in square metres (m²), indicated by the number following the letter L on the zoning maps attached to this By-law. (58-1996)

3.3.7 Y – FRONT YARD DEPTH

3.3.7(1) The minimum front yard depth requirement of any lot is determined by the FRONT YARD DEPTH regulatory zone. If no front yard depth zone is noted on the zoning maps, the front yard depth regulations of the applicable use zone apply.

3.3.7(2) Each Y - Front Yard Depth regulatory zone requires the minimum front yard depth expressed in metres (m), indicated by the number following the letter Y on the zoning maps attached to this By-law.

3.3.8 **R – REAR YARD DEPTH**

- 3.3.8(1) The minimum rear yard depth requirement of any lot is determined by the REAR YARD DEPTH regulatory zone. If no rear yard depth zone is noted on the zoning maps, the rear yard depth regulations of the applicable use zone apply.
- 3.3.8(2) Each R Rear Yard Depth regulatory zone requires the minimum rear yard depth expressed in metres (m), indicated by the number following the letter R on the zoning maps attached to this By-law.

3.3.9 DB – DENSITY IN BLOCKS IN A REGISTERED PLAN OF SUBDIVISION

- 3.3.9(1) The maximum density requirement in any block in a registered plan of subdivision can be determined by the DENSITY BLOCK regulatory zone. If no density block zone is noted on the zoning maps, the density regulations of the applicable use zone apply.
- 3.3.9(2) Each DB Density Block regulatory zone permits a maximum number of dwelling units per hectare in the applicable block within a registered plan of subdivision, indicated by the number following the letters DB on the maps attached to this By-law.

3.3.10 **C – LOT COVERAGE**

(4-1998)

- 3.3.10(1) The maximum lot coverage of any lot is determined by the LOT COVERAGE regulatory zone. If no lot coverage regulatory zone is noted on the zoning maps, the lot coverage regulations of the applicable use zone apply.
- 3.3.10(2) Each C Lot Coverage regulatory zone permits a maximum lot coverage expressed in a percentage of the lot area indicated by the number following the letter C on the zoning maps attached to this By-law.

3.3.11 DBR – DENISTY BLOCK RANGE IN BLOCKS IN A REGISTERED PLAN OF SUBDIVISION (119-2018)

3.3.11(1) The density block range (minimum density to maximum density requirement) in any block in a registered plan of subdivision can be determined by the DENSITY BLOCK RANGE regulatory zone. If no density block range zone is noted on the zoning maps, the density regulations of the applicable use zone apply.

3.3.11(2) Each DBR - Density Block Range regulatory zone permits a minimum and maximum number of dwelling units per hectare in the applicable block within a registered plan of subdivision, indicated by the number following the letters DBR on the maps attached to this By-law.

3.4 Schedules and Tables

3.4.1 All Schedules and Tables attached to this By-law form part of the By-law except as may be noted elsewhere in this By-law.

3.5 Holding "h" Zones

3.5.1 Use of "h" Symbol

3.5.1(1) Where the symbol "h" appears on a zoning map as a suffix to a zone, a zone variation or a compound zone applying to certain lands, notwithstanding the provisions of that zone unless this By-law has been amended to remove the "h" symbol, those lands shall not be developed or used except in compliance with the provisions of the applicable zone for existing uses, or for such other uses set out in the relevant Holding Zone Provisions of Article 3.5.2. The relevant Holding Zone Provisions are denoted by the number immediately following the symbol "h" on the zoning map.

3.5.2 Holding Zone Provisions

3.5.2(1)h-1 Zone (west of Stevenson Road South, north of Champlain
Avenue)(102-2005)

<u>Purpose:</u> To ensure that:

- (a) An appropriate site plan agreement is executed with the City which addresses such matters as:
 - (i) Approval for driveway access all to the satisfaction of the MTO and the Region;
 - (ii) Agreement in principle for mutual access/egress to Champlain Avenue through the lands to the west and any other access/egress through adjacent lands to the north to the City's satisfaction, by way of registered access easements;
 - (iii) Agreement in principle for storm servicing acceptance points, the provision of stormwater quality and quantity control on the adjacent lands and registered servicing easements with the adjacent owner for both the major and minor storm flows generated from the subject site. The approved overall scheme for stormwater management as prepared for the Champlain East Sector shall form the basis

of any agreement for site servicing and necessary easements;

- (iv) Agreement in principle for the proposed site grading adjacent to the abutting lands and approval in writing from MTO and the Region for the proposed site grading adjacent to Stevenson Road South and Champlain Avenue;
- (v) Preparation of a comprehensive stormwater management report and site servicing brief. The proposal shall comply with City's policies and by-laws with regard to stormwater management and also the approved overall scheme for stormwater management for the Champlain East Sector. Additionally, the report shall have regard for previous studies/reports already done for the abutting lands north and west of the subject site. The report must address all of the water resource issues identified below:
 - Water quality and quantity control;
 - Overland flow routes including lands external to the site;
 - A physical storm sewer outfall for the site;
 - Erosion and sedimentation control for the site;
- (vi) Noise mitigation to the City's satisfaction; and
- (vii) Building siting and landscaping to the City's satisfaction.

Permitted Interim Uses:

- (a) All uses permitted in an UR Zone.
- 3.5.2(2) h-2 Zone (certain lands located adjacent to Branch 6 of the Harmony Creek immediately south of Highway 401 and Bloor Street East and east of Farewell Street above the 1:100 year storm floodline under future development conditions) (OMB Z950159)

<u>Purpose:</u> To ensure that:

- (a) Engineering and environmental studies shall be prepared to the satisfaction of the Central Lake Ontario Conservation Authority and the City to address floodplain and stormwater management issues and any potential environmental impacts of the proposed development on the Harmony Creek and Second Marsh;
- (b) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services to serve the development; and
- (c) An appropriate site plan agreement shall be executed.

Permitted Interim Uses:

(a) All uses permitted in an OSE Zone.

3.5.2(3) h-3 Zone (south of Taunton Road East, west of Langley Circle) (17-2021)

<u>Purpose:</u> To ensure that:

- (a) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services and facilities to serve this development and included in a subdivision agreement which is executed.
- (b) Verification is provided to the satisfaction of the City and Region which indicates the soils of the subject site are suitable for the proposed use. A Record of Site Condition acknowledged by the Ministry of the Environment, Conservation and Parks shall be required if required by the Region's Site Contamination Protocol.
- (c) Noise mitigation to the satisfaction of the City and Region.
- (d) Dust and odour mitigation to the satisfaction of the City and Region.
- (e) An archaeological assessment is completed to the satisfaction of the Ministry of Heritage, Sport, Tourism and Culture Industries.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law, provided that for those lands where an "h-74" holding symbol also applies, the "h-79" holding symbol is removed.
- (c) All permitted interim uses under the "h-81" holding symbol, for those lands where the "h-81" holding symbol applies.

3.5.2(4) h-4 Zone (671 Bloor Street East)

(71-1997)

<u>Purpose:</u> To ensure that:

- (a) The City is advised, in writing, by the Central Lake Ontario Conservation Authority (CLOCA) that the owner has addressed CLOCA's concerns on the installation of a backflow prevention device; and
- (b) The City has granted site plan approval for an apartment building.

Permitted Interim Uses:

(a) All uses permitted in a R2 Zone. (82-1998, 44-1999)

3.5.2(5) h-5 Zone (McKim Street and James Street, north of Stacey Avenue) (71-1996)

<u>Purpose:</u> To ensure that:

- (a) A servicing agreement is executed with the City;
- (b) Verification is provided to the satisfaction of the City and the Ministry of Environment, Conservation and Parks which indicates that the soils of the subject site are suitable for the proposed residential development; and
- (c) A noise study is prepared to the satisfaction of the City and the Canadian National Railway.

Permitted Interim Uses:

(a) All existing uses.

3.5.2(6) h-6 Zone (918 to 926 Simcoe Street North)

Purpose: To ensure that:

(a) A fence and certain rear yard landscape improvements are installed and completed to the satisfaction of the City of Oshawa.

Permitted Interim Uses:

(a) All uses permitted in a R1-A Zone.

3.5.2(7) **h-7 Zone (63 Albany Street)**

Purpose: To ensure that:

- (a) For any apartment building having more than 65 apartments or more than 4 storeys in height:
 - (i) An appropriate site plan agreement is executed with the City;
 - (ii) Appropriate arrangements shall be made for the provision of adequate water, sanitary, storm, foundation drainage and transportation services to the development to the satisfaction of the City; and,
 - (iii) Noise and vibration mitigation to the satisfaction of the City and Region.

Permitted Interim Uses:

- (a) All existing uses.
- (b) All uses permitted in a R2 Zone.
- (c) All uses permitted in a R3-A.F5.5 Zone.

(124-2019)

(d) An apartment building permitted under the R6-B(2) Zone and any variances thereto specific to the subject site, in accordance with the Site Plan Approval obtained pursuant to file SPA-2017-21 and any registered site plan agreement(s) associated therewith.

3.5.2(8) h-8 Zone (southeast Quadrant of Taunton Road East and Clearbrook Drive) (17-2021)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City which addresses such matters as landscaping, fencing and lighting.
- (b) A noise study is completed to the satisfaction of the City.
- (c) Dust and odour mitigation to the satisfaction of the City and Region.
- (d) Cross access easements are granted to lands to the east known municipally as 679, 695, 725, 737, 741, 745 and 757 Taunton Road East to the satisfaction of the City and Region.
- (e) The building design(s) is compatible with the operation of the Oshawa Executive Airport.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(9)h-9 Zone (southern portion of 135 Bruce Street)(66-1996)

<u>Purpose:</u> To ensure that:

- (a) A subdivision agreement is executed with the City;
- (b) Verification is provided to the satisfaction of the City and the Ministry of Environment, Conservation and Parks which indicates that the soils of the subject site are suitable for the proposed residential development; and
- (c) A noise study for the entire site and a vibration study for all building envelopes within 75.0m of the railway right-of-way, are prepared to the satisfaction of the City and CN.

Permitted Interim Uses:

(a) All existing uses.

3.5.2(10) h-10 Zone (721 King Street West) (25-2006)

Purpose: To ensure that:

(a) The City has granted site plan approval for an apartment building.

Permitted Interim Uses:

(a) All uses permitted in a R2 Zone.

3.5.2(11) h-11 Zone (133 Ritson Road North)

Purpose: To ensure that:

(a) Site plan approval is obtained from the City that addresses such matters as landscaping, fencing and lighting levels;

(56-2020)

- (b) Arrangements have been made to the satisfaction of the Region of Durham and the City on any necessary transportation improvements (e.g. driveway entrance design and related road improvements);
- (c) A noise study is completed to the satisfaction of the City;
- (d) A vibration study is completed to the satisfaction of the City to review the impact of the construction of the proposed development on adjacent buildings, and any necessary mitigation measures are implemented in the site plan agreement;
- (e) Sufficient lands are conveyed to the City at no cost to accommodate an appropriate termination and 0.3m reserve for the cul-de-sac for Colborne Street East at the southeast corner of the site to the satisfaction of the Commissioner of Development Services;
- (f) Stormwater management matters are addressed to the satisfaction of the City, Region of Durham and Central Lake Ontario Conservation Authority;
- (g) Any necessary cross-access easements are created in favour of the lands to the north to the satisfaction of the City; and,
- (h) A Record of Site Condition acknowledged by the Ministry of the Environment, Conservation and Parks is provided to the satisfaction of the City and the Region of Durham, indicating that the site is suitable for residential development in accordance with the appropriate Provincial guidelines/criteria.

Permitted Interim Uses:

(a) All existing uses.

3.5.2(12) h-12 Zone (2029-2043 Simcoe Street North)

Purpose: To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Appropriate arrangements shall be made for the provision of adequate water, sanitary, storm, foundation drainage and transportation services to the development to the satisfaction of the City and Region;
- (c) Driveway access to the satisfaction of the City and Region;
- (d) Noise mitigation to the City's satisfaction; and
- (e) Any necessary cross-access easements are created to the satisfaction of the City. (89-2014)

Permitted Interim Uses:

- (a) Any single detached dwelling existing as of April 11, 2011 on a lot existing as of April 11, 2011. The regulations in Table 6.2 and the relevant provisions of this By-law applicable to the R1-C Zone shall apply to such use, including any expansion to the dwelling.
- (b) Notwithstanding the definition of a "Lodging House" in Section 2, to the contrary, a lodging house with a maximum of 5 lodging units in an existing single detached dwelling as of July 1, 2012. The regulations in Table 12.2 and the relevant provisions of this By-law applicable to a lodging house in a R7-A Zone shall apply to such use. (45-2012, 89-2014)

3.5.2(13) h-13 Zone (part of the former Gifford Farm located within 40.0m of the Lake Ontario Shoreline) (OMB Z960129)

<u>Purpose:</u> To ensure that:

- (a) A study shall be completed to the satisfaction of the City of Oshawa that indicates that:
 - (iv) Policy 3.1.3 of the Provincial Policy Statement, 1996 regarding lands subject to erosion hazards is met;
 - (v) Development will not have an adverse impact on the ecological function of the shoreline area; and
 - (vi) Development will not significantly interfere with the view of Lake Ontario from the crest of the Gifford Hill; and
- (b) An appropriate site plan agreement is executed with the City.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(14) **h-14 Zone (various locations)**

Purpose: To ensure that:

(a) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services and facilities to serve this development and included in a subdivision agreement which is executed. (39-2004)

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(15)h-15 Zone (west of Thornton Road South, north and south of the
future Consumers Drive extension)(79-2009)

<u>Purpose:</u> To ensure that:

- (a) Development of these lands does not proceed until the alignment of the Consumers Drive extension has been finalized to the satisfaction of the City of Oshawa and the Region of Durham; and
- (b) Suitable arrangements have been made with the Region for the acquisition of the land required from the subject site for the extension of Consumers Drive.

Permitted Interim Uses:

(a) All existing uses.

3.5.2(16) h-16 Zone (north of Shankel Road, west of Townline Road North) (12-2018)

Purpose: To ensure that:

- (a) An appropriate subdivision agreement is executed with the City which addresses such matters as:
 - (i) Appropriate arrangements are made for the provision of adequate sanitary, water, storm and transportation services and facilities to serve this development;
 - (ii) Any conveyance/easement necessary for the stormwater management pond, outfall and pipe and access to the pond/pipe/outfall;
 - (iii) Appropriate arrangements with respect to the installation of traffic signals at the Shankel Road and Townline Road North intersection to be paid for by the owner;

- (iv) The necessary arrangements to implement the proposed improvements to the pick-up/drop-off area for the College Park Elementary School;
- (v) Noise mitigation to the satisfaction of the City including offsite stationary noise mitigation related to the woodworking shop at Kingsway College.
- (vi) A Record of Site Condition (RSC) acknowledged by the Ministry of the Environment, Conservation and Parks, has been provided to the satisfaction of the City, indicating that the soils of the site are suitable for residential development.

(a) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(17) h-17 Zone (west side of Fox Street)

(54-2008)

- (a) Site plan approval is obtained from the City;
- (b) Appropriate arrangements are made for the provision of adequate sanitary, water, storm and transportation services to serve this development to the satisfaction of the City and the Region of Durham;
- (c) Appropriate engineering and environmental studies are prepared to address any potential environmental impacts of the proposed development to the satisfaction of the City;
- (d) Written confirmation is received from GO Transit that the proposed development is acceptable;
- (e) A market study is prepared to the satisfaction of the City to ensure the additional medical office/clinic floor space mentioned in Sentence 19.3.12(7) will not have a negative impact on the Oshawa Main Central Area;
- (f) An archaeological study is completed to the satisfaction of the Ministry of Tourism, Culture and Sport; (92-2016)
- (g) A vibration study is completed to the satisfaction of the City, if necessary; (92-2016)
- (h) The environmental condition of the site is suitable for the proposed uses to the satisfaction of the City and Region; and **(92-2016)**
- Upon completion of an Environmental Assessment to determine the final road alignment the owner conveys to the City or Region any lands required for the future east west Type "C" Arterial road to connect Thornton Road North to Laval Drive. (69-2019)

(a) All uses permitted in a UR Zone.

3.5.2(18) h-18 Zone (southwest Quadrant of Taunton Road East and Clearbrook Drive) (17-2021)

Purpose: To ensure that:

- (a) Site plan approval is obtained from the City which addresses such matters as building siting, landscaping, fencing and lighting.
- (b) Appropriate arrangements are made for municipal servicing, including stormwater management matters;
- (c) A noise study is completed regarding noise from the proposed development and implementation of noise mitigation from existing abutting industrial and commercial facilities for existing and planned residential lands to the east, to the satisfaction of the City.
- (d) Satisfactory arrangements are made with the City and Region on any transportation improvements.
- (e) An odour study is completed for any restaurant use.
- (f) All waste storage shall be located within an enclosed building or a partially in-ground waste storage bin.
- (g) The building design(s) is compatible with the operation of the Oshawa Executive Airport.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.
- (c) All permitted interim uses under the "h-81" holding symbol.

3.5.2(19) h-19 Zone (northwest corner of Taunton Road West and Thornton Road North) (74-2008)

Purpose: To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Appropriate arrangements are made for the provision of adequate sanitary, water, storm and transportation services to serve this development to the satisfaction of the City and the Region of Durham; and

(c) Appropriate engineering and environmental studies are prepared to address any potential environmental impacts of the proposed development to the satisfaction of the City.

Permitted Interim Uses:

(a) All uses permitted in the SPC-A/SSC-C(1) Zones within existing buildings and structures and uses permitted in the UR Zone.

3.5.2(20) h-20 Zone (west of Harmony Road North, south of Taunton Road East) (4-1998)

<u>Purpose:</u> To ensure that:

(a) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services and facilities to serve this development and included in a subdivision agreement which is executed and registered.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(21) h-21 Zone (southwest of Bruce Street and Drew Street) (32-2006)

<u>Purpose:</u> To ensure that:

(a) Site plan approval is obtained from the City.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(22) h-22 Zone (south of Taunton Road East, west of Harmony Road North) (23-2005)

<u>Purpose:</u> To ensure that:

(a) An appropriate site plan agreement or subdivision agreement is executed with the City.

Permitted Interim Uses:

(a) All existing R1-A uses as of February 28, 2005. Minor enlargements to existing single detached dwellings may be permitted in compliance with Article 38.2.2 of this By-law. Any minor enlargement shall comply with the R1-A regulations.

3.5.2(23) h-23 Zone (various locations)

Purpose: To ensure that:

- (a) Site plan approval is granted by the City;
- (b) Appropriate arrangements are made for servicing, including storm water management;
- (c) An archaeological study is completed to the satisfaction of the City, if necessary;
- (d) An environmental study is completed, if necessary, to the satisfaction of the Central Lake Ontario Conservation Authority and the City since a portion of the subject site is located within 120.0m of a Provincially Significant Wetland located north and south of Taunton Road West within the Goodman Creek valley;
- (e) The site design is compatible with the operation of the Oshawa Airport; and
- (f) Verification has been provided to the satisfaction of the City that the site is suitable for the proposed uses in accordance with the relevant Provincial guidelines in effect immediately prior to the issuance of any building permit or use of the site. A Record of Site Condition, if necessary, must be submitted to the Ministry of the Environment, Conservation and Parks.

Permitted Interim Uses:

(a) All uses permitted in the UR Zone.

3.5.2(24) **h-24 Zone (135 Bruce Street)**

(117-2018)

Purpose: To ensure that:

- (a) Site plan approval is obtained from the City that addresses such matters as landscaping, fencing and lighting levels;
- (b) Appropriate arrangements are made for municipal servicing, including sanitary/water and stormwater management matters to the satisfaction of the City and the Region; and
- (c) A new Record of Site Condition acknowledged by the Ministry of the Environment, Conservation and Parks, is provided to the satisfaction of the City and the Region, indicating that the site is suitable for residential development in accordance with the appropriate Provincial guidelines/criteria.

Permitted Interim Uses:

(a) All uses permitted in an UR Zone.

(b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(25) h-25 Zone (5055 Simcoe Street North)

<u>Purpose:</u> To ensure that:

- (a) A site plan agreement is executed with the City; and
- (b) A Record of Site Condition (RSC) acknowledged by the Ministry of the Environment, Conservation and Parks, has been provided to the satisfaction of the City, indicating that the soils of the site are suitable for commercial development in accordance with the Provincial guidelines in effect immediately prior to the issuance of a building permit.

Permitted Interim Uses:

(a) All AG-ORM uses.

(38-2006)

3.5.2(26) h-26 Zone (south of King Street West and east of Thornton Road South) (63-2011)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City for any apartment building or block townhouse which addresses such matters as:
 - Appropriate arrangements are made for the provision of adequate water, sanitary, storm, foundation drainage, and transportation services to the development to the satisfaction of the City and Region;
 - (ii) A traffic impact study is prepared, as necessary, to the satisfaction of the City and Region;
 - (iii) Driveway access is in a location to the satisfaction of the City and Region; and
 - (iv) Noise mitigation is addressed to the City's satisfaction.

Permitted Interim Uses:

- (a) All uses permitted in a R2 Zone.
- (b) Notwithstanding the definition of a "Lodging House" in Section 2, to the contrary, a lodging house with a maximum of 5 lodging units in an existing single detached dwelling as of July 1, 2012. The regulations in Table 12.2 and the relevant provisions of this By-law applicable to a lodging house in a R7-A Zone shall apply to such use. (45-2012)

3.5.2(27) h-27 Zone (185 Hillcroft Street)

Purpose: To ensure that:

- (a) Site plan approval is obtained from the City that addresses such matters as landscaping, fencing, lighting levels and the removal of asphalt on the City lands immediately south of the site and replacing it with sod;
- (b) A noise study is completed to the satisfaction of the City;
- (c) Appropriate arrangements are made for municipal servicing, including sanitary/water and stormwater management matters, to the satisfaction of the City and the Region; and
- (d) A Record of Site Condition, acknowledged by the Ministry of the Environment, Conservation and Parks, has been provided to the satisfaction of the City, indicating that the site is suitable for residential development in accordance with the appropriate Provincial guidelines.

Permitted Interim Uses:

(a) All legally existing uses as of June 23, 2014.

3.5.2(28) h-28 Zone (southeast corner of Ritson Road South and King Street East) (72-1999)

<u>Purpose:</u> To ensure that:

(a) Verification has been provided to the satisfaction of the City that the soils of the subject site are suitable for residential development in accordance with the relevant Provincial guidelines in effect immediately prior to the issuance of a building permit for a single detached dwelling.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) A parking lot in accordance with the relevant provisions of this Bylaw pertaining to the R1-C(7) Zone provided a site plan agreement has been executed with the City for the parking lot.

3.5.2(29) h-29 Zone (1827 Thornton Road North)

(70-2018)

<u>Purpose:</u> To ensure that:

(a) Site plan approval is obtained from the City that addresses such matters as building siting, landscaping, fencing, lighting levels and

any necessary easements for overland flow and maintenance access are created to the satisfaction of the City;

- (b) A noise study is completed to the satisfaction of the City;
- (c) An archaeological assessment is completed to the satisfaction of the Ministry of Tourism, Culture and Sport;
- (d) Appropriate arrangements are made for the provision of adequate water, sanitary, foundation drainage and transportation services including driveway access to the development at no cost to and to the satisfaction of the City and Region; and
- (e) Appropriate arrangements shall be made for the management of stormwater at no cost to the City and to the satisfaction of the City, Region and CLOCA.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(30) **h-30 Zone (various locations)**

(119-2018, 69-2020)

(62-2012)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City; and
- (b) Urban design guidelines are prepared to the satisfaction of the City.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(31) h-31 Zone (671-723 Conlin Road East)

Purpose: To ensure that:

- (a) Site plan or subdivision approval is obtained from the City that addresses such matters as landscaping, fencing and lighting;
- (b) A traffic impact study is completed to the satisfaction of the City;
- (c) A noise study regarding noise from Conlin Road East is completed to the satisfaction of the City;
- (d) An archaeological assessment is completed to the satisfaction of the Ministry of Tourism, Culture and Sport;
- (e) Storm water management and environmental matters are addressed to the satisfaction of the City and the Central Lake Ontario Conservation Authority;
- (f) The Oshawa Creek valley lands/floodplain and related environmental buffer are conveyed to the City at no cost and in a physical condition acceptable to the City;

- (g) A Record of Site Condition acknowledged by the Ministry of Environment, Conservation and Parks, as may be required, to the satisfaction of the City indicating that the soils of the site are suitable for residential development in accordance with the appropriate Provincial guidelines;
- (h) Adequate municipal water and sanitary services are provided to the satisfaction of the Region of Durham;
- (i) Tree and vegetation preservation is implemented to the satisfaction of the City and the Central Lake Ontario Conservation Authority;
- A parking plan for any street townhouses shall be provided to the City's satisfaction which may lead to a restriction on the number of street townhouses. Also street townhouses will not be permitted with direct frontage on Conlin Road East;
- (k) An Urban Design Study is prepared to the satisfaction of the City showing, amongst other matters, how any development addresses Conlin Road East and how any development can be integrated with development on the subject lands and adjacent lands to the east.

(a) Any single detached dwelling existing as of June 25, 2012 on a lot existing as of June 25, 2012. The regulations in Table 6.2 and the relevant provisions of this By-law applicable to the R1-A Zone shall apply to such use, including any expansion to the dwelling.

3.5.2(32) h-32 Zone (north side of King Street West, west of Goodman Creek) (62-2000)

<u>Purpose:</u> To ensure that:

(a) Floodplain hazard issues are addressed to the satisfaction of the City and the Central Lake Ontario Conservation Authority.

Permitted Interim Uses:

- (a) All existing uses.
- (b) All uses permitted in an OSH Zone.

3.5.2(33) **h-33 Zone (370 Conant Street)**

(66-2001)

<u>Purpose:</u> To ensure that:

(a) An appropriate site plan agreement is executed with the City.

Permitted Interim Uses:

(a) A Works Yard operated by the City.

3.5.2(34)h-34 Zone (former Montgomery Road Allowance, north of Bloor
Street East)(45-2012)

<u>Purpose:</u> To ensure that:

(a) Verification has been provided to the satisfaction of the City that the site is suitable for the proposed uses in accordance with the relevant Provincial guidelines in effect immediately prior to the issuance of any building permit or residential use of the site. A Record of Site Condition must be submitted to the Ministry of the Environment, Conservation and Parks.

Permitted Interim Uses:

(a) All uses permitted in the EU Zone.

3.5.2(35) h-35 Zone (Bloor Street West and Champlain Avenue) (39-2004)

<u>Purpose:</u> To ensure that:

(a) A Traffic Impact Study is undertaken to the City's and Region's satisfaction, and the development of retail warehouse space is phased.

Permitted Interim Uses:

- (a) All existing uses;
- (b) All SI-C uses on the lands also zoned SI-C along the north side of Champlain Avenue and along the south side of Bloor Street West; and
- (c) All SI-A and GI uses on the lands also zoned SI-A/GI located on the south side of the future Consumers Drive extension, west of Thornton Road South.

and provided that the maximum gross floor area of retail warehouses does not exceed:

- (i) 4,646m² until January 1, 2006
- (ii) 13,940m² until January 1, 2011

in the entire areas zoned SPC-A(6) and SPC-A(7). (79-2009)

3.5.2(36) h-36 Zone (northwest corner of Hospital Court and Simcoe Street North) (47-2002)

<u>Purpose:</u> To ensure that:

(a) A site plan agreement is executed with the City.

(a) All lawfully existing uses as of April 29, 2002.

3.5.2(37)h-37 Zone (southeast corner of Adelaide Avenue East and Ritson
Road North)(127-2013 – OMB PL140074)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City that addresses such matters as landscaping, fencing, lighting levels, hours for refuse pickup and hours for loading and unloading;
- (b) Satisfactory arrangements are made with the Region of Durham and City on any transportation improvements (e.g. driveway entrance design and related road improvements);
- (c) A noise study is completed to the satisfaction of the City;
- Sufficient lands are conveyed to the City at no cost to accommodate an appropriate termination and 0.3m reserve for Elgin Street East at the southeast corner of the site to the satisfaction of the Commissioner of Development Services;
- (e) Stormwater management matters are addressed to the satisfaction of the City, Region of Durham and Central Lake Ontario Conservation Authority; and
- (f) Any necessary cross-access easements are created in favour of the lands to the south to the satisfaction of the City.

Permitted Interim Uses:

(a) All legally existing uses as of December 16, 2013.

3.5.2(38) h-38 Zone (east of Simcoe Street North and north of Britannia Avenue) (83-2012)

<u>Purpose:</u> To ensure that:

(a) Site plan approval is obtained from the City.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(39)h-39 Zone (north side of Taunton Road West, east and west of
Stevenson Road North)(6-2008)

<u>Purpose:</u> To ensure that:

- (a) Appropriate provisions have been made for municipal servicing, including stormwater management issues, and transportation facilities and services; and
- (b) Site plan approval is obtained from the City.

Permitted Interim Uses:

(a) All existing uses in accordance with the EU Zone.

3.5.2(40)h-40 Zone (southeast corner of Taunton Road East and Harmony
Road North)(57-2005)

- (a) An appropriate site plan agreement is executed with the City which addresses such matters as:
 - (i) Noise mitigation to the City's satisfaction;
 - (ii) Building siting to the City's satisfaction;
 - (iii) Driveway access to the Region's satisfaction;
 - (iv) A stormwater management study, as necessary, to the City's and CLOCA's satisfaction; and
 - (v) The following site design matters for any Oil and lubrication centre:
 - The building will be located in the centre of the southerly 0.4ha of the site with the drive-through doors oriented in an east-west manner;
 - Fascia signage will only be permitted on the north and west face of the building;
 - Any proposed pylon sign will be located at the common driveway entrance from Harmony Road North;
 - The driveway entrance from Harmony Road North as constructed for the car wash, convenience store and fuel bar will be maintained as the only access to the subject site from Harmony Road North;
 - All refuse/recyclable storage is to be internal to the building;
 - Parking for any Oil and lubrication centre is to be located north of the southerly limit of the main building;

- Landscaping strips shall be provided having a minimum width of 8.5m from the east lot line and 6.0m from the south lot line and 6.0m abutting Harmony Road North. Coniferous planting shall be provided in the south-east area of the site, and said landscaping strip shall be greater in this area;
- A minimum 1.8m high acoustic fence shall be constructed along the south property line; and
- Noise mitigation measures, as appropriate, related to the use of air tools.

- (a) A car wash, fuel bar, and convenience store are permitted on the northerly 0.8ha.
- (b) All uses permitted in a UR Zone are permitted on the southerly 0.4ha. (57-2005)

3.5.2(41)h-41 Zone (southeast corner of Taunton Road East and Grandview
Street North)(OMB PL020751)

<u>Purpose:</u> To ensure that:

(a) Site plan approval is obtained from the City.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(42) h-42 Zone (1226 King Street East)

(73-2014)

<u>Purpose:</u> To ensure that:

(a) Site plan approval is obtained from the City and that the site plan agreement contain provisions requiring the owner to convey Part 5, Plan 40R-14385 as valleyland and an appropriate access easement from King Street East to the valley land to the City's satisfaction and at no cost and in a condition acceptable to the City.

Permitted Interim Uses:

(a) All uses permitted in an EU Zone.

3.5.2(43)h-43 Zone (southwest corner of Conlin Road East and Townline Road
North)(21-2012)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City.
- (b) Written confirmation is received from Trans-Canada Pipeline and Enbridge Pipeline that the proposed development is acceptable.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- 3.5.2(44)h-44 Zone (northwest of Stevenson Road South and Champlain
Avenue)(2-2004)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services to serve this development to the satisfaction of the City and the Region of Durham;
- (c) Appropriate arrangements are made for the acquisition and development of the east-west collector road designated in the Oshawa Official Plan to the satisfaction of the City of Oshawa;
- (d) Appropriate engineering and environmental studies are prepared that address any potential environmental impacts of the proposed development to the satisfaction of the City;
- (e) Written confirmation is received from the Ministry of Transportation that the proposed development is acceptable;
- (f) Written confirmation is received from GO Transit that the proposed development is acceptable;
- (g) Written confirmation is received from Oshawa PUC Networks Inc. that suitable arrangements have been made for access to its storage yard; and
- (h) Written confirmation is received from Canadian Pacific Railways that suitable arrangements have been made for access.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(45) h-45 Zone (Certain lands north and south of Winchester Road East and east of Bridle Road) (73-2014)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services to serve the development; and
- Upon completion of an Environmental Assessment to determine the final road alignment the owner conveys to the City any lands required for the future north south Collector Road to connect Windfields Farm Drive West to Winchester Road West. (69-2019)

Permitted Interim Uses:

(a) All uses permitted in an EU Zone.

3.5.2(46) h-46 Zone (1464 Thornton Road North)

(64-2012)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City including appropriate fencing, landscaping and lighting;
- (b) Appropriate arrangements are made for municipal servicing, including stormwater management matters;
- (c) A Record of Site Condition, acknowledged by the Ministry of the Environment, Conservation and Parks, has been provided to the satisfaction of the City, indicating that the soils of the site are suitable for industrial/commercial development in accordance with the appropriate Provincial guidelines;
- (d) All of the requirements of Central Lake Ontario Conservation Authority are satisfied;
- (e) A noise study is completed to the satisfaction of the City;
- Land use compatibility with respect to the Oshawa Municipal Airport is achieved through such matters as the location and design of the refuse enclosures (e.g. all refuse enclosures will be wildlife/bird proof);
- (g) Opportunities for appropriate cross access easements are provided.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(47)h-47 Zone (north side of Bloor Street East, east of Harmony Road
South and west of the Harmony Creek)(126-2004)

<u>Purpose:</u> To ensure that:

- (a) An appropriate site plan agreement shall be executed with the City;
- (b) A traffic impact study is completed to the satisfaction of the City and Region;
- (c) A noise study is completed to the satisfaction of the City;
- (d) An up-dated cut and fill analysis is completed to the satisfaction of the Central Lake Ontario Conservation Authority;
- (e) A stormwater management report is completed to the satisfaction of the City and the Central Lake Ontario Conservation Authority;
- (f) An archaeological assessment is completed to the satisfaction of the Ministry of Tourism, Culture and Sport;
- (g) An odour study is completed to the satisfaction of the City; and,
- (h) An illumination study is completed to the satisfaction of the City.

Permitted Interim Uses:

(a) All uses permitted in an OSH Zone.

3.5.2(48)h-48 Zone (east and west side of Simcoe Street North, south of
Conlin Road and southeast corner of Simcoe Street North and Conlin
Road East)(106-2006, OMB PL060815)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Appropriate arrangements shall be made for the provision of adequate water, sanitary, storm, foundation drainage, and transportation services to the development to the satisfaction of the City and Region;
- (c) Driveway access to the satisfaction of the City and Region;
- (d) Noise mitigation to the City's satisfaction;
- (e) Any necessary cross-access easements are created to the satisfaction of the City.

Permitted Interim Uses:

- (a) All lawfully existing uses in existing buildings as of July 17, 2006.
- (b) Notwithstanding the definition of a "Lodging House" in Section 2, to the contrary, a lodging house with a maximum of 5 lodging units in an existing single detached dwelling as of July 1, 2012. The

regulations in Table 12.2 and the relevant provisions of this By-law applicable to a lodging house in a R7-A Zone shall apply to such use. (45-2012)

(c) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law. (118-2018)

3.5.2(49)h-49 Zone (east side of Simcoe Street North, south of Taylorwood
Road)(106-2006, OMB PL060815)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Appropriate arrangements shall be made for the provision of adequate water, sanitary, storm, foundation drainage, and transportation services to the development to the satisfaction of the City and Region;
- (c) Driveway access to the satisfaction of the City and Region;
- (d) Noise mitigation to the City's satisfaction; and
- (e) Any necessary cross-access easements are created to the satisfaction of the City.

Permitted Interim Uses:

- (a) Any single detached dwelling existing as of July 17, 2006 on a lot existing as of July 17, 2006. The regulations in Table 6.2 and the relevant provisions of this By-law applicable to the R1-C Zone shall apply to such use, including any expansion to the dwelling.
- (b) Notwithstanding the definition of a "Lodging House" in Section 2, to the contrary, a lodging house with a maximum of 5 lodging units in an existing single detached dwelling as of July 1, 2012. The regulations in Table 12.2 and the relevant provisions of this By-law applicable to a lodging house in a R7-A Zone shall apply to such use. (45-2012, 89-2014)

3.5.2(50) h-50 Zone (1600 Simcoe Street North) (106-2006, OMB PL060815)

- (a) Site plan approval is obtained from the City for an apartment building; and
- (b) The automobile repair garage use is terminated prior to the development of an apartment building.

(a) An automobile repair garage and two flats in the building existing as of July 17, 2006 or in a replacement building on the building footprint existing as of July 17, 2006. In addition, a maximum of two used vehicles comprised of automobiles, vans or passenger trucks can be displayed for sale as an accessory use to an automobile repair garage.

3.5.2(51) h-51 Zone (155 First Avenue)

(123-2014)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City for both 144 and 155 First Avenue.
- (b) Satisfactory arrangements are made with the Region of Durham, Ministry of Transportation and the City on any transportation improvements (e.g. road widening, driveway entrance design, potential traffic signals, safe pedestrian crossing and related road improvements).
- (c) Stormwater management matters are addressed to the satisfaction of the City and the Central Lake Ontario Conservation Authority; and
- (d) The environmental condition of the site is suitable for the proposed flea market use to the satisfaction of the City and Region of Durham.

Permitted Interim Uses:

(a) All uses permitted in a GI Zone and professional offices.

3.5.2(52) h-52 Zone (north side of Harbour Road, east of Simcoe Street South) (27-2007)

- (a) An appropriate site plan agreement or subdivision agreement, where applicable, is executed with the City.
- (b) Verification has been provided to the satisfaction of the City and the Region, in the form of a Record of Site Condition acknowledged by the Ministry of the Environment, Conservation and Parks, that the soils of the subject site are suitable for development in accordance with the relevant Provincial guidelines in effect immediately prior to the issuance of a building permit;
- (c) A stormwater management study is prepared to the satisfaction of the City and the Central Lake Ontario Conservation Authority;

(e) An archaeological assessment is completed to the satisfaction of the Ministry of Tourism, Culture and Sport for lands within 300.0m of a waterway or waters within the Oshawa Harbour.

Permitted Interim Uses:

- (a) All lawfully existing uses as of April 10, 2007 subject to Articles 38.2.2, 38.2.3, 38.2.4 and 38.2.5.
- (b) Outdoor recreational uses without buildings or structures.

3.5.2(53)h-53 Zone (north of Harbour Road, east of Simcoe Street South and
Nelson Street)(27-2007)

- (a) A development plan and related urban design guidelines are prepared to the satisfaction of the City showing public or private roads, lotting patterns, mix and variety of dwelling unit types, building heights, building, parking area and amenity area footprints for the entire area subject to "h-53".
- (b) A transportation study that meets the requirements of the Municipal Class Environmental Assessment process, is completed to the satisfaction of the City showing a public or private road pattern, including addressing emergency access, for the entire area subject to "h-53". Appropriate arrangements in the form of a plan of subdivision and subdivision agreement shall be made to the satisfaction of the City to implement any public roads identified in the transportation study. Appropriate arrangements to the City's satisfaction shall be made to implement any private roads identified in the approved transportation study, including provision of any required cross-access easements. Notwithstanding the foregoing, implementation of the public or private road pattern may be phased, provided the City is satisfied that appropriate arrangements and agreements are in place to ensure adequate access, including provision for emergency access, is available for adjacent properties subject to the "h-53".
- (c) Environmental studies are undertaken and appropriate arrangements are made with the City, in the form of a subdivision or other agreement, to address the mitigation of noise, odour and vibration for the area subject to "h-53". The development of the area and the removal of the "h" may be phased provided that the City is satisfied appropriate arrangements and agreements are in place to ensure development of adjacent lands is not compromised.

(d) Verification has been provided to the satisfaction of the City and the Central Lake Ontario Conservation Authority and appropriate arrangements have been made to implement any required mitigation to ensure that that there will be no negative impacts from development or site alteration on the Provincially Significant Oshawa Creek Wetland Complex, as per policy 2.1.3 and 2.1.6 of the Provincial Policy Statement, 2005.

Permitted Interim Uses:

- (a) All lawfully existing uses as of April 10, 2007 subject to Articles 38.2.2, 38.2.3, 38.2.4 and 38.2.5.
- (b) Outdoor recreational uses without buildings or structures.

3.5.2(54) h-54 Zone (south of Wellington Avenue East, west of Nelson Street) (27-2007)

<u>Purpose:</u> To ensure that:

(a) Environmental studies are undertaken and appropriate arrangements are made with the City, in the form of a subdivision or other agreement, to address the mitigation of noise, odour and vibration.

Permitted Interim Uses:

- (a) All lawfully existing uses as of April 10, 2007 subject to Articles 38.2.2, 38.2.3, 38.2.4 and 38.2.5.
- (b) Outdoor recreational uses without buildings or structures.

3.5.2(55) h-55 Zone (lands south of Winchester Road, east and west of Simcoe Street North) (84-2012)

- (a) Site plan approval is obtained from the City that addresses such matters as landscaping, fencing, lighting and compliance with the approved Urban Design Guidelines;
- (b) The site plan is generally consistent with the overall long term intent of the Region of Durham's Transit Oriented Development Guidelines to the satisfaction of the Region;
- (c) Driveway access to the satisfaction of the City and the Region;
- (d) Noise mitigation to the satisfaction of the City and the Region; and
- (e) Urban Design Guidelines are prepared to the satisfaction of the City and the Region.

(a) All uses permitted in the UR Zone.

3.5.2(56) h-56 Zone (lands south of Winchester Road, west of Simcoe Street North) (84-2012)

<u>Purpose:</u> To ensure that:

- (a) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services and facilities to serve this development and included in a subdivision agreement which is executed.
- (b) A Master Environmental Servicing Plan is completed to the satisfaction of the City, the Region of Durham and the Central Lake Ontario Conservation Authority.

Permitted Interim Uses:

(a) All uses permitted in the UR Zone.

3.5.2(57) h-57 Zone (lands south of Winchester Road, east and west of Simcoe Street North) (84-2012)

Purpose: To ensure that:

(a) A Retail Market Study and peer review is completed to the City's and Region of Durham's satisfaction for any additional gross leasable floor area above 120,770m² and the development of gross leasable floor area is phased.

Permitted Interim Uses:

(a) Any PCC-A(4) use with a maximum of 120,770m² of gross leasable floor area provided the "h-14", "h-55" and "h-56" holding symbols are removed.

3.5.2(58) h-58 Zone (71 Bruce Street)

(86-2015)

<u>Purpose:</u> To ensure that:

(a) Verification has been provided to the satisfaction of the City that the site is suitable for the proposed uses in accordance with the relevant Provincial guidelines in effect immediately prior to the issuance of any building permit or residential use of the site. A Record of Site Condition must be submitted to the Ministry of the Environment, Conservation and Parks.

(a) All uses permitted in the UR(1) Zone.

3.5.2(59) h-59 Zone (360 Simcoe Street North)

(68-2013)

Purpose: To ensure that:

- (a) Site Plan approval is obtained from the City;
- (b) Appropriate arrangements are made for the provision of adequate sanitary, water and storm services, including foundation drainage, to serve this development to the satisfaction of the City and the Region of Durham;
- A noise study is completed to the satisfaction of the City and any (c) recommendations are implemented through a site plan agreement;
- Any easements from the City required for stormwater management, (d) servicing or fencing on the City-owned reserve are conveyed; and
- A 0.3m reserve along the north property boundary is conveyed to (e) the City.

Permitted Interim Uses:

All uses permitted in a R1-C Zone. (a)

3.5.2(60) h-60 Zone (north side of Taunton Road West, east and west of **Stevenson Road North)** (68-2013)

Purpose: To ensure that:

- (a) Site Plan approval is obtained from the City for a retail store;
- A transportation impact study is prepared to the satisfaction of the (b) Region of Durham and the City; and
- A retail impact study is prepared to the satisfaction of the City in (c) accordance with Subsection 2.4.5.17 of the Oshawa Official Plan.

Permitted Interim Uses:

Any use permitted in a compound zone on the property subject to (a) any holding provisions.

3.5.2(61) h-61 Zone (64 Park Road North and 284 Buena Vista Avenue) (61-2016)

<u>Purpose:</u> To ensure that:

(a) The City is advised, in writing, by the Region of Durham that the owner has conveyed a corner sight triangle road widening to the satisfaction of the Region of Durham.

Permitted Interim Uses:

(a) A dwelling unit on the second floor of the existing building and all uses permitted in the OC-B(4) Zone in the balance of the existing main building.

3.5.2(62) h-62 Zone (north of Britannia Avenue West, west of Windfields Farm Drive) (87-2018)

<u>Purpose:</u> To ensure that:

(a) Site Plan approval is obtained from the City which addresses such matters as stormwater management, noise mitigation, building siting and appropriate landscaping and fencing to the satisfaction of the City.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(63) h-63 Zone (24 Beatrice Street West)

(43-2016)

- (a) Site plan approval is obtained from the City that addresses such matters as landscaping, fencing and lighting levels;
- (b) A noise study is completed to the satisfaction of the City;
- (c) Any necessary cross access easements are created to the satisfaction of the City;
- (d) Appropriate arrangements are made for the provision of adequate water, sanitary, foundation drainage and transportation services including driveway access to the development at no cost to and to the satisfaction of the City and Region;
- (e) Appropriate arrangements shall be made for the management of stormwater at no cost to the City and to the satisfaction of the City and Region;

(f) A qualified person under the Environmental Protection Act and related regulations verifies, to the satisfaction of the City and Region, that the site is suitable for the proposed use. A Record of Site Condition acknowledged by the Ministry of Environment, Conservation and Parks shall only be required if required by the Region's Site Contamination Protocol.

Permitted Interim Uses:

(a) All uses permitted in an R2 Zone.

3.5.2(64) h-64 Zone (3151 Wilson Road North) (43-2018)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City including provisions for adequate septic system, storm water management and firefighting services.
- (b) A hydrological/well water supply report is prepared to the satisfaction of the City demonstrating that the well for the property has sufficient capacity to accommodate an agri-tourism and will not adversely impact neighbouring wells;
- (c) That any necessary Environmental Site Assessment (ESA) and, if required by the ESA report, a Record of Site Condition acknowledged by the Ministry of the Environment, Conservation and Parks, are submitted to the satisfaction of the City regarding the conversion of the former barn into hotel rooms.

Permitted Interim Uses:

(a) All uses permitted in an AG-A Zone.

3.5.2(65) h-65 Zone (east of Bridle Road, south of Winchester Road East) (72-2018)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City that addresses such matters as lighting, landscaping and fencing, including appropriate provisions related to golf course compatibility; and
- (b) A noise study is completed to the satisfaction of the City.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(66) h-66 Zone (450-464 Taunton Road West and 620 Taunton Road West) (72-2019, 10-2020)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City:
- (b) Appropriate provisions have been made for municipal servicing, including stormwater management issues, and transportation facilities and services;
- An environmental impact study is completed to the satisfaction of the Central Lake Ontario Conservation Authority, the Region and the City;
- (d) An archaeological assessment is completed to the satisfaction of the Ministry of Tourism, Culture and Sport;
- (e) Any necessary cross-access easements to the west and east are created to the satisfaction of the City; and,
- (f) A copy of the Region's Site Screening Questionnaire and any other additional supporting information in accordance with the Region's Site Contamination Protocol is provided to the satisfaction of the Region.

Permitted Interim Uses:

(a) All existing uses in accordance with the EU Zone.

3.5.2(67) h-67 Zone (Southwest corner of King Street West and Cabot Street) (69-2019)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) A Flood Study, including hydraulics and balanced cut and fill analysis, is prepared and completed to the satisfaction of the City and CLOCA;
- (c) An appropriate Vegetative Compensation Plan for the removal of any Natural Heritage Features on the property, is prepared to the satisfaction of the City and CLOCA; and
- (d) A constraint map and an Environmental Impact Study demonstrating all proposed development from any environmental features and/or flood and erosion hazards and their appropriate buffers are prepared, to the satisfaction of the City and CLOCA.

Permitted Interim Uses:

(a) All uses permitted in a R2 Zone.

3.5.2(68) h-68 Zone (east of Harmony Road North, north of Conlin Road East) (122-2018)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Urban Design Guidelines are prepared to the satisfaction of the City; and
- (c) Any necessary cross-access easements on Block 47 in favour of the lands to the north are created to the satisfaction of the City.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(69)h-69 Zone (east of Harmony Road North, north of Conlin Road
East)(122-2018)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City;
- (b) Urban Design Guidelines are prepared to the satisfaction of the City; and
- (c) Any necessary cross-access easements on Block 46 in favour of the lands to the south and east are created to the satisfaction of the City.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- 3.5.2(70) h-70 Zone [Not in use]

(123-2020)

3.5.2(71) h-71 Zone (certain lands north of Taunton Road West, east of the Oshawa-Whitby boundary, south of Highway 407 East and west of the Oshawa Creek) (58-2019)

- (a) Site plan approval is obtained from the City that addresses such matters as a stormwater management plan using the results of the Master Stormwater Management Plan Study for the Northwood Business Park prepared by Greck and Associates Limited dated August 2016 as a resource to the satisfaction of the City and the Central Lake Ontario Conservation Authority;
- (b) Appropriate arrangements are made for the provision of adequate sanitary, water and storm services to the satisfaction of the City, the

Region of Durham and the Central Lake Ontario Conservation Authority; and

(c) Appropriate engineering and environmental impact studies are undertaken to address any potential environmental impacts on the natural heritage system to the satisfaction of the City and the Central Lake Ontario Conservation Authority.

Permitted Interim Uses.

- (a) All uses permitted in a UR Zone;
- (b) [Not in use].
- (c) [Not in use].
- (d) Contracting Yard provided that there is a maximum of one building with a maximum gross floor area of 200 square metres (2,153 sq. ft.), processed under site plan control, which may be by way of a Letter of Undertaking. (74-2021)
- (e) Recreational Vehicle Storage provided that there is a maximum of one building with a maximum gross floor area of 200 square metres (2,153 sq. ft.), processed under site plan control, which may be by way of a Letter of Undertaking. (74-2021)

3.5.2(72) h-72 Zone (certain lands north of Conlin Road West, east and west of Thornton Road North) (58-2019)

Purpose: To ensure that:

(a) Appropriate arrangements are made with the City for the acquisition of the land required from the subject site for construction of the Britannia Avenue West extension to the satisfaction of the City.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Contracting Yard provided that there is a maximum of one building with a maximum gross floor area of 200 square metres (2,153 sq. ft.), processed under site plan control, which may be by way of a Letter of Undertaking. (74-2021)
- (c) Recreational Vehicle Storage provided that there is a maximum of one building with a maximum gross floor area of 200 square metres (2,153 sq. ft.), processed under site plan control, which may be by way of a Letter of Undertaking. (74-2021)

3.5.2(73)h-73 Zone (certain lands north of Taunton Road West, east and west
of Thornton Road North)(58-2019)

<u>Purpose:</u> To ensure that:

(a) Appropriate arrangements are made with the City for the acquisition of lands required from the subject lands for construction of the eastwest Type "C" Arterial Road between Stevenson Road North and the Oshawa-Whitby boundary north of the Trans-Northern Pipeline and that a Municipal Class Environmental Assessment is undertaken to determine the alignment of the Type "C" Arterial Road to the satisfaction of the City.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone.
- (b) Contracting Yard provided that there is a maximum of one building with a maximum gross floor area of 200 square metres (2,153 sq. ft.), processed under site plan control, which may be by way of a Letter of Undertaking. (74-2021)
- (c) Recreational Vehicle Storage provided that there is a maximum of one building with a maximum gross floor area of 200 square metres (2,153 sq. ft.), processed under site plan control, which may be by way of a Letter of Undertaking. (74-2021)

3.5.2(74) h-74 Zone (1410 Stevenson Road North)

(58-2019)

<u>Purpose:</u> To ensure that:

- (a) Site Plan approval is obtained from the City for a Place of Worship;
- (b) Appropriate arrangements are made with the City for the acquisition of the land required from the subject site for construction of the Britannia Avenue West extension to the satisfaction of the City; and
- (c) Appropriate arrangements are made with the City for the acquisition of lands required from the subject lands for construction of the eastwest Type "C" Arterial Road between Stevenson Road North and the Oshawa-Whitby boundary north of the Trans-Northern Pipeline and that a Municipal Class Environmental Assessment is undertaken to determine the alignment of the Type "C" Arterial Road to the satisfaction of the City.

Permitted Interim Uses:

- (a) All uses permitted in a UR Zone
- (b) Church

City of Oshawa Zoning By-law Number 60-94

3.5.2(75) h-75 Zone (1680 Stevenson Road North) Purpose: To ensure that:

(a) A land division Committee application LD-2019-11 is completed.

Permitted Interim Uses:

(a) A severance of the lands in accordance with Land Division Committee application A-2019-11.

3.5.2(76) **h-76 Zone (various locations)**

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City; and
- (b) For those lands abutting the Oshawa Creek a constraint map and/or studies demonstrating all proposed development is setback from any environmental features and/or hazard and their appropriate buffers, are prepared and completed to the satisfaction of the City and CLOCA.

Permitted Interim Uses:

(a) All uses permitted in a R1-C Zone.

3.5.2(77) **h-77 Zone (various locations)**

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City; and
- (b) For those lands abutting the Oshawa Creek a constraint map and/or studies demonstrating all proposed development is setback from any environmental features and/or hazard and their appropriate buffers, are prepared and completed to the satisfaction of the City and CLOCA.

Permitted Interim Uses:

(a) All uses permitted in a R2 Zone.

3.5.2(78) **h-78 Zone (various locations)**

<u>Purpose:</u> To ensure that:

(a) Site plan approval is obtained from the City.

(69-2019)

(69-2019)

(69-2019)

(a) All uses permitted in a R1-C/OC-A Zone.

3.5.2(79) h-79 Zone (north of Grand Ridge Avenue, west of Langley Circle) (17-2021)

<u>Purpose:</u> To ensure that:

- (a) Appropriate studies are completed in accordance with Ministry of the Environment, Conservation and Parks guidelines to the satisfaction of the City and Region demonstrating that mitigation measures are no longer required on lands subject to this Holding Zone to provide land use compatibility between nearby industrial and commercial land uses and the residential lands to the east and south.
- (b) Site plan approval is obtained from the City for any block townhouses, which addresses such matters as landscaping, fencing and lighting.
- (c) For any block townhouses, any necessary cross-access easements are created to the satisfaction of the City.

Permitted Interim Uses:

(a) All uses permitted in a UR Zone.

3.5.2(80) h-80 Zone (North of Grand Ridge Avenue, west of Langley Circle) (17-2021)

<u>Purpose:</u> To ensure that:

- (a) Site plan approval is obtained from the City which addresses such matters as landscaping, fencing and lighting.
- (b) A noise study is completed to the satisfaction of the City.
- (c) Dust and odour mitigation to the satisfaction of the City and Region.
- (d) Any cross-access easements are created in favour of the lands to the southeast to the satisfaction of the City.

Permitted Interim Uses:

- (d) All uses permitted in a UR Zone.
- (e) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

h-81 Zone (Southwest quadrant of Taunton Road East and 3.5.2(81) **Clearbrook Drive**)

(17-2021)

Purpose: To ensure that:

- Appropriate studies are completed in accordance with Ministry of (a) the Environment, Conservation and Parks guidelines to the satisfaction of the City and Region demonstrating that mitigation measures are no longer required on lands subject to this Holding Zone to provide land use compatibility between nearby industrial and commercial land uses and the residential lands to the east.
- (b) Site plan approval is obtained from the City which addresses such matters as building siting, landscaping, fencing and lighting.
- (c) Appropriate arrangements shall be made for the provision of adequate water, sanitary, storm, foundation drainage and transportation services to the development to the satisfaction of the City and Region.
- (d) An odour study is completed for any restaurant use.
- (e) Noise mitigation to the City's satisfaction.
- All waste storage shall be located within an enclosed building or a (f) partially in-ground waste storage bin.
- The building design(s) is compatible with the operation of the (g) Oshawa Executive Airport.

Permitted Interim Uses:

- (a) All uses permitted in a PCC-D Zone except for the following:
 - (i) Adult secondary school
 - Apartment building (ii)
 - Back-to-back townhouse (iii)
 - (iv) Block townhouse
 - Church (v)
 - (vi) Commercial school
 - Day care centre (vii)
 - Flat (viii)
 - Funeral home (ix)
 - (x) Hotel
 - Long Term Care Facility (xi)
 - Museum (xii)
 - Nursing home (xiii)
 - Private school (xiv)
 - Retirement home. (xv)
- All permitted interim uses under the "h-18" holding symbol. (b)

3.5.2(82) h-82 Zone (64 Albany Street and 426 Front Street)

<u>Purpose:</u> To ensure that:

- (a) An appropriate site plan agreement is executed with the City;
- (b) Appropriate arrangements shall be made for the provision of adequate water, sanitary, storm, foundation drainage and transportation services to the development to the satisfaction of the City and the Regional Municipality of Durham; and
- (c) Noise and vibration issues have been mitigated to the satisfaction of the City.

Permitted Interim Uses:

- (a) All existing uses permitted as of the date of this By-law.
- (b) A temporary sales office for the sale of units within the proposed building in accordance with the provisions of Subsection 4.13 of this By-law.

3.5.2(83) **h-83 Zone (south of the future Beatrice Street East connection and east of Harmony Road North)** (76-2021)

<u>Purpose:</u> To ensure that:

- (a) Appropriate site plan and subdivision agreements are executed with the City.
- (b) Appropriate arrangements shall be made for the provision of adequate sanitary, water, storm and transportation services and facilities to serve this development and included in a subdivision or site plan agreement which is executed.
- (c) Appropriate arrangements are made with the City for the acquisition of the land required from the subject site for the construction of the future Beatrice Street East connection to the satisfaction of the City.

Permitted Interim Uses:

- (a) All existing uses legally permitted as of the date of this By-law.
- (b) Model homes and a temporary sales office in accordance with the provisions of Subsection 4.13 of this By-law.

3.6 Compound Zones

3.6.1 Notwithstanding any other provision of this By-law, where two or more zoning symbols divided by an oblique line ("/") are shown on the zoning maps as applying to a lot, or as compounded by a Special Condition, that

lot may be used for any use permitted in any one of the zones included in the compound zone symbol, or for any combination of uses permitted in any of the zones included in the compound zone symbol, subject to compliance with the provisions of Articles 3.6.2 and 3.6.3.

- 3.6.2 The provisions prescribed in this By-law for the selected zone in the compound zone symbol in which the use is permitted shall be complied with in the development of the lands. When a combination of uses from two or more zones are to be developed on a lot, the zone provisions applicable to each use shall be complied with.
- 3.6.3 The parking facilities and loading spaces required by this By-law for each of the uses included in the development of the lands, whether for a single use or a combination of uses, shall be provided.

3.7 Multiple Zones

- 3.7.1 Where a lot is divided into two or more zones, each such portion of the lot shall be considered a separate lot for the purposes of this By-law and shall be used in accordance with the provisions of this By-law which are applicable to the zone wherein such portion of the said lot is located.
- 3.7.2 Notwithstanding Article 3.7.1 to the contrary, where a use or uses are permitted by the zones applying to two or more portions of the lot, those portions shall be considered to constitute a single lot as defined herein and the most restrictive zone provisions pertaining to such use or uses in all the pertinent zones shall apply to the whole lot, except as provided in Article 3.7.3.
- 3.7.3 Notwithstanding Article 3.7.2, any building erected or to be erected on a lot, which is divided into separate CBD-A and CBD-B zones, and which building will be partially located in each zone, shall be subject to the regulations set out in Table 16.2 for CBD-A zones, except that not more than twenty-five percent (25%) of the gross floor area or 90m², whichever is the greater, of that portion of the first storey, excluding basements, of the building located in the CBD-B Zone shall be designated or used as retail store floor space.

3.8 Determining Zone Boundaries

- 3.8.1 The extent and boundaries of all zones are set out on the maps comprising Schedule "A" to this By-law.
- 3.8.2 Boundaries of zones shall be determined wherever possible to be concurrent with the following:
 - (a) The lot line of any lot, except where the lot line is a street line then the boundary is the centreline of the street;

- (b) The centreline of a lane, railway right-of-way, transmission line, pipeline or watercourse;
- (c) When running substantially parallel to a street line, where the distance from the street line is not indicated and the circumstances described in clauses (a) and (b) do not pertain, the boundary is parallel to the street line and the distance therefrom shall be determined according to the scale shown on the zoning map;
- (d) The more restrictive of either the regulatory flood line, as determined by the Central Lake Ontario Conservation Authority, or the top of a bank of a valley and, where the top of bank is or becomes the more restrictive, the boundary shall move with any change in such top of bank. (66-1998, 60-2005)
- 3.8.3 Notwithstanding Articles 3.8.1 and 3.8.2 to the contrary, the western boundary of the OSE Zone affecting the area commonly referred to as the Second Marsh and located south of Colonel Sam Drive and north of the Harbour Road Extension is located 60m west of the applicable regulatory floodline on the west side of the Second Marsh, as determined by the Central Lake Ontario Conservation Authority. In the area south of the Harbour Road Extension, the western boundary of the OSE Zone is the applicable regulatory floodline on the west side of the Second Marsh as described above. **(OMB Z960129, 68-2013)**
- 3.8.4 Notwithstanding Articles 3.8.1 or 3.8.2 to the contrary, the northern boundary of the OSW Zone affecting the area generally located along the Lake Ontario Waterfront between Park Road South and Cedar Street shall be the 100 year erosion setback limit as determined by the Central Lake Ontario Conservation Authority.
- 3.8.5 Notwithstanding Articles 3.8.1 or 3.8.2 to the contrary, the boundaries of the OSH Zone along the Goodman Creek between King Street West and Stevenson Road South and between Lots 13 and 14, Concession 1, and Nassau Street shall be located 5.0m from the centreline of the Goodman Creek on both sides of the creek. (43-1998)
- 3.8.6 In the event that a street or lane which forms the boundary is closed or partially closed, the boundary between such zones shall remain as the former centreline of the closed street or lane as of the date of passage of this By-law.
- 3.8.7 Where uncertainty exists as to the location of a zone boundary on Schedule "A" hereto or a Schedule to any amendment to this By-law, reference shall be made to the Schedules at the original scales as contained in the Office of the Clerk.
- 3.8.8 Notwithstanding Articles 3.8.1 and 3.8.2 to the contrary, the boundaries of the lands zoned SI-C south of Bloor Street East, east of the existing west property line, north of Branch No. 6 of the Harmony Creek and west of

Branch No. 1 of the Harmony Creek shall be interpreted as being the 1:100 year storm floodline under future development conditions as determined by the Central Lake Ontario Conservation Authority such that the lands zoned SI-C are above the 1:100 year storm floodline under future development conditions. **(OMB Z950159, 39-2004)**

- 3.8.9 Notwithstanding Articles 3.8.1 and 3.8.2 to the contrary, the easterly boundary of the lands zoned SI-C south of Bloor Street East, east of Farewell Street, north of the CN Rail mainline and west of Branch No. 6 of the Harmony Creek, shall be interpreted as being the 1:100 year storm floodline under future development conditions as determined by the Central Lake Ontario Conservation Authority, such that the lands zoned SI-C are above the 100 year storm floodline under future development conditions (OMB Z950159, 39-2004)
- 3.8.10 Notwithstanding Articles 3.8.1 and 3.8.2 to the contrary, the most easterly boundary of the lands zoned PCC-A(3) shall be interpreted as being 7.5m west of the top of bank of the Harmony Creek Valley as determined by the City. (73-2003, 55-2006, OMB Z050045)
- 3.8.11 Notwithstanding Articles 3.8.1 and 3.8.2 to the contrary, the easterly most boundary of the lands zoned SPC-A north of Bloor Street East, west of the Harmony Creek, shall be concurrent with the easterly limit of Part 2 on Plan 40R-23001. (126-2004)
- 3.8.12 Notwithstanding Articles 3.8.1 or 3.8.2 to the contrary, the boundaries of the OS-ORM Zone shall be interpreted as being 30.0m beyond the edge of the Natural Heritage Feature or Hydrologically Sensitive Feature and incorporates the Minimum Vegetation Protection Zone required by the Oak Ridges Moraine Conservation Plan. (38-2006)
- 3.8.13 Notwithstanding any Article in Subsection 3.8 to the contrary, the boundaries of the SPC-A(9) Zone for the former Fox Street road allowance on the west side of Fox Street, north of Champlain Avenue shall be interpreted as being the western limit of the former Fox Street road allowance rather than the centreline of the road allowance. (42-2017)
- 3.8.14 Notwithstanding any Article in Subsection 3.8 to the contrary, the boundaries of the OSE(1) Zone affecting the area commonly referred to as the Northwood Business Park and generally located north of Taunton Road West, east of the Oshawa-Whitby boundary, south of Highway 407 East and west of the Oshawa Creek may be adjusted following the preparation of either or both of an Environmental Impact Study or Engineering Study to the satisfaction of the City and the Central Lake Ontario Conservation Authority. (58-2019)

3.9 Map Details

- 3.9.1 Any street, address, or other names, notes, property boundaries or physical features shown on the maps are for reference purposes only and do not form part of this By-law. This information may be amended from time to time without a statutory by-law amendment.
- 3.9.2 Any accretions to any land subject to this By-law shall be deemed to be subject to this By-law with respect to the respective zone or zones as shown on the zoning maps to which such accretions immediately abut.

3.10 Hazard Lands

3.10.1 The map comprising Schedules "B", "B-1" and "B-2" is for information purposes only and does not form part of this By-law. This information is intended to assist property owners in knowing if their lands are affected by Hazard Lands as shown in the Oshawa Official Plan and thus likely subject to the provisions of the Conservation Authorities Act. The lands so shaded which lie within Hazard Lands may be subject to flooding and at a minimum may require floodproofing or safe access before any development or redevelopment may occur. Approvals pursuant to the Conservation Authorities Act may be required. Schedules "B", "B-1" and "B-2" may be amended from time to time without a statutory by-law amendment.

3.11 Waste Disposal Assessment Areas

- 3.11.1 Waste Disposal Assessment Areas are symbolically shown on Schedule "C". The map comprising Schedule "C" is for information purposes only and does not form part of this By-law. These areas symbolically indicate the general location of certain former waste disposal areas and their possible areas of influence. Prior to any development or redevelopment near the former waste disposal areas, approval from the Ministry of the Environment, Conservation and Parks may be required. Schedule "C" may be amended from time to time without a statutory bylaw amendment.
- 3.12 Temporary Use Zones

(160-2005)

- 3.12.1 Use of "TEMP" Symbol
- 3.12.1(1) Where the symbol "TEMP" appears on a zoning map as a suffix to a zone, a zone variation or a compound zone applying to certain lands, notwithstanding the provisions of that zone, one or more additional uses are permitted on the land as set out in Article 3.12.2 until the permission granted by the site specific Temporary Use by-law expires. The relevant Temporary Use Zone Provisions are denoted by the number immediately following the symbol "TEMP" on the zoning map.

3.12.2 Temporary Use Zone Provisions

3.12.2(1) **TEMP-1 Zone (1399 Simcoe Street North)** (31-2007, 80-2009, 10-2013, 86-2015, 69-2019, 74-2001)

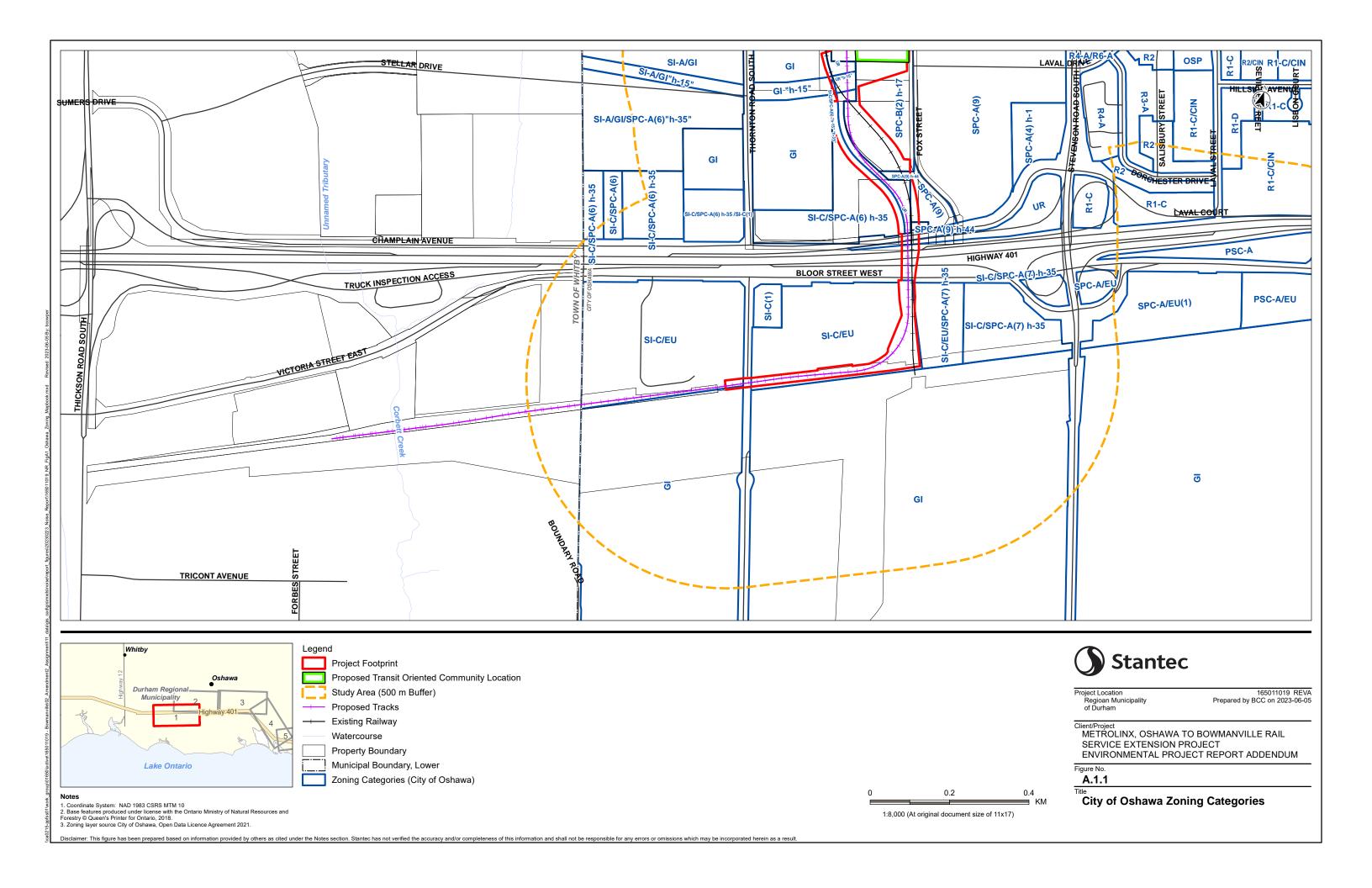
Notwithstanding any other provision of this By-law to the contrary, in any R6-C "Temp-1" Zone, a temporary automobile sales and service establishment for used vehicles shall be permitted until April 10, 2024.

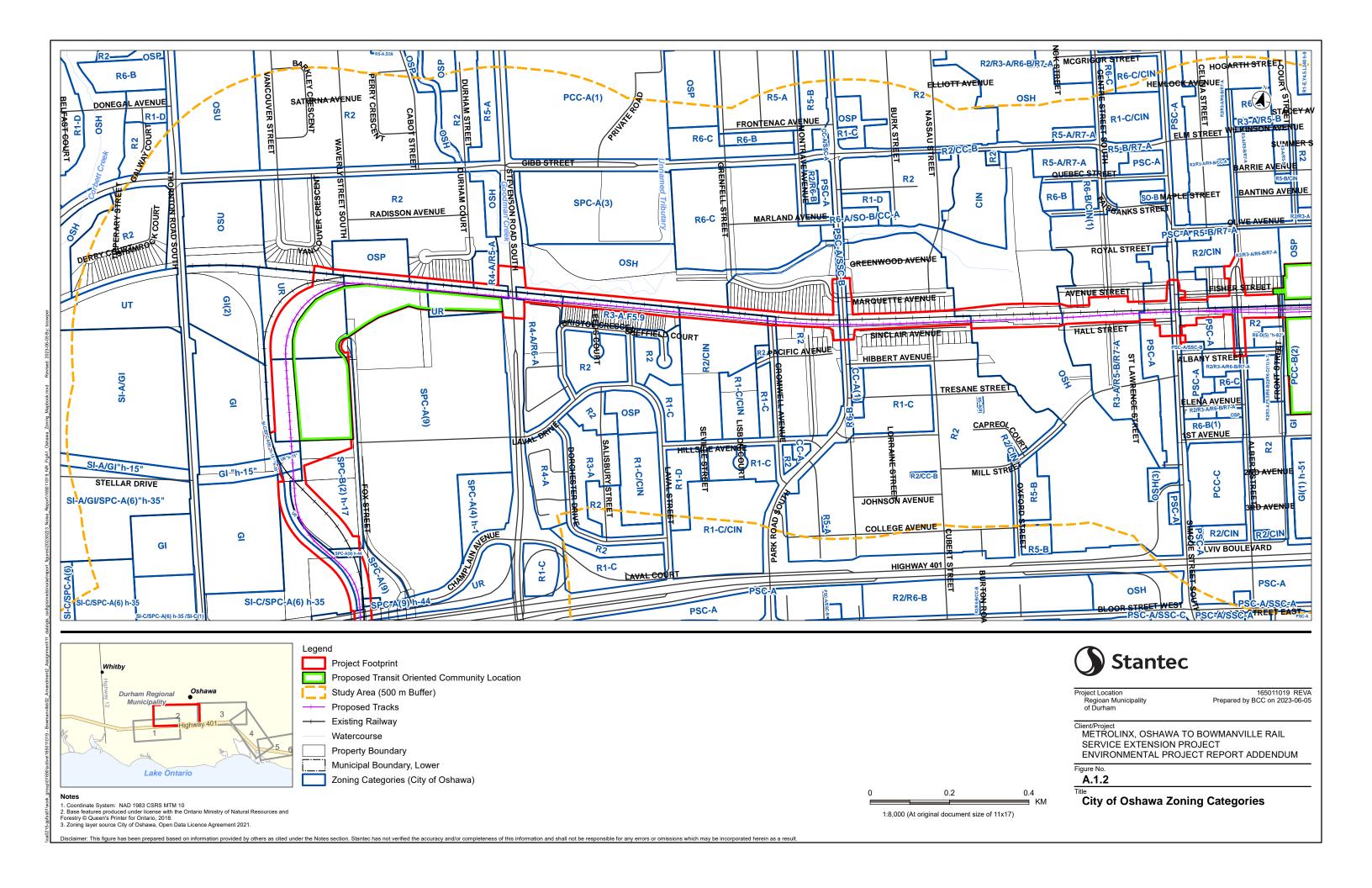
(160-2005)

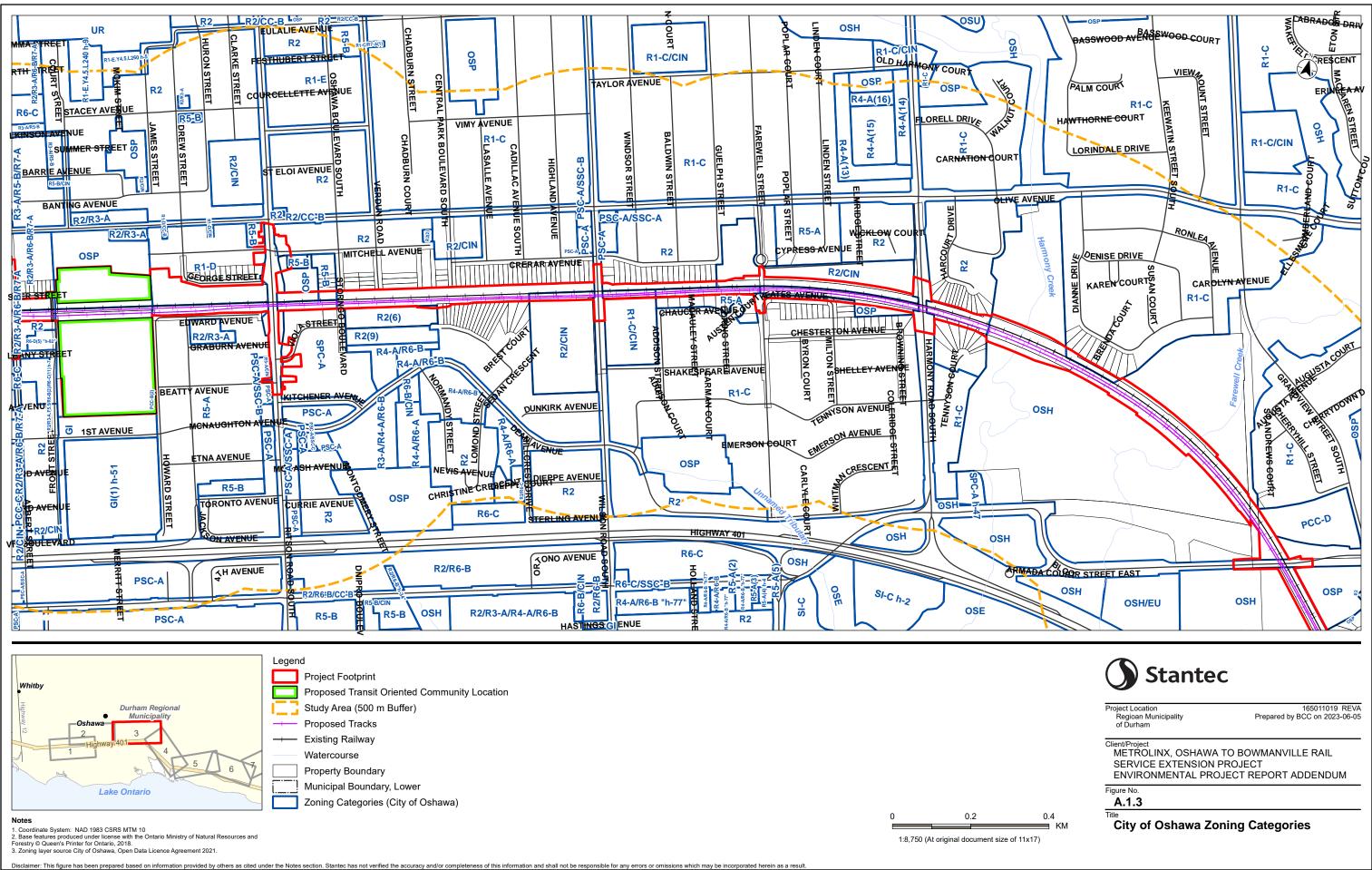
3.12.2(2) TEMP-2 Zone (382 Simcoe Street North) (110-2016)

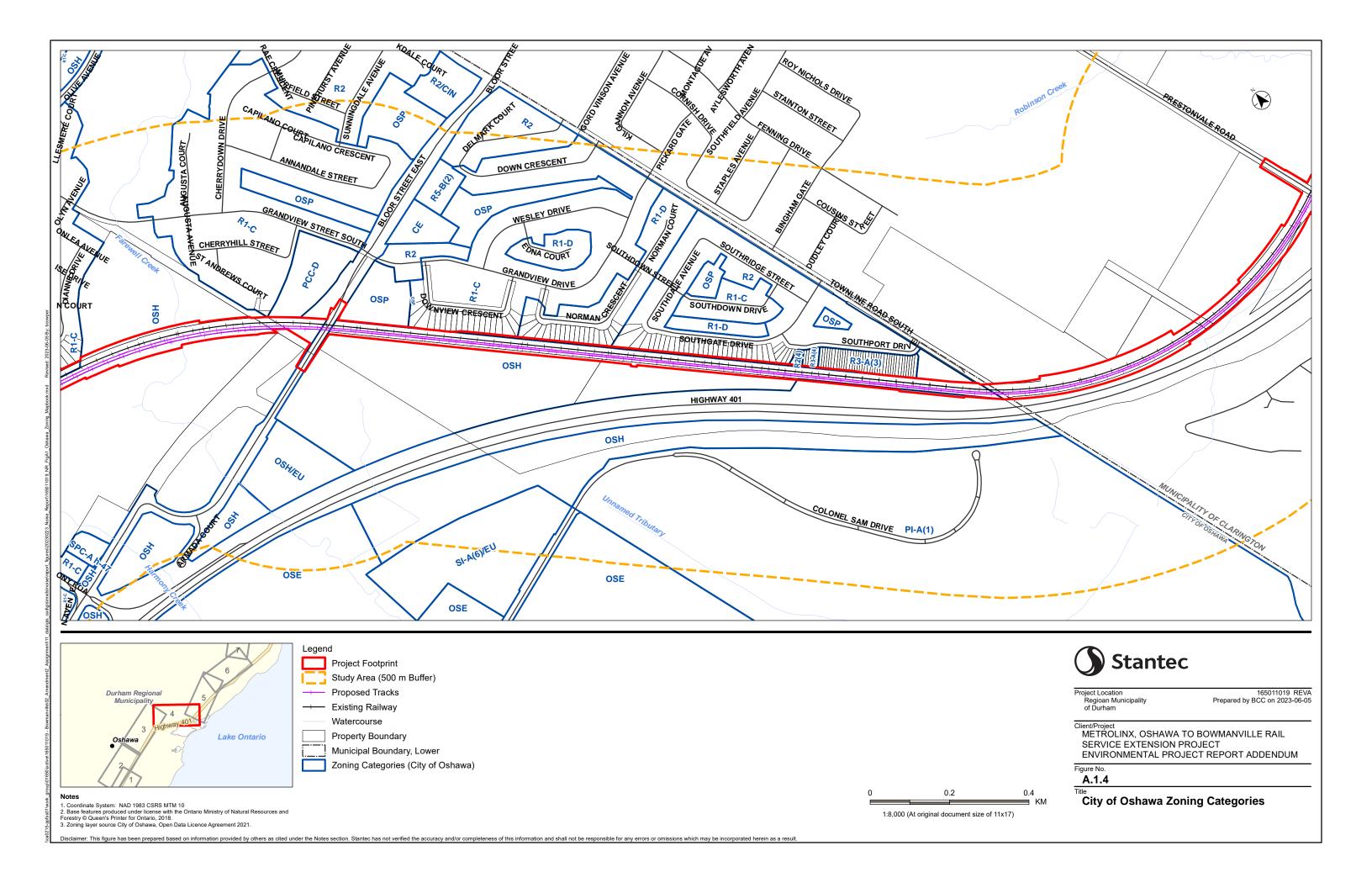
- (a) Notwithstanding any other provision of this By-law to the contrary, in any R1-C "TEMP-2" Zone, as shown on Schedule "A", a temporary administrative office for the Lakeridge Health Foundation shall be permitted in the main building lawfully existing on November 28, 2016 provided site plan approval has been obtained from the City. The temporary administrative office shall only be permitted until November 28, 2024. (69-2019, 74-2021)
- (b) Notwithstanding any other provision of this By-law to the contrary, a minimum of four (4) parking spaces shall be required for an administrative office in a R1-C "TEMP-2" Zone.
- (c) In any R1-C "TEMP-2" Zone, as shown on Schedule "A" to this Bylaw, the following definition shall apply:

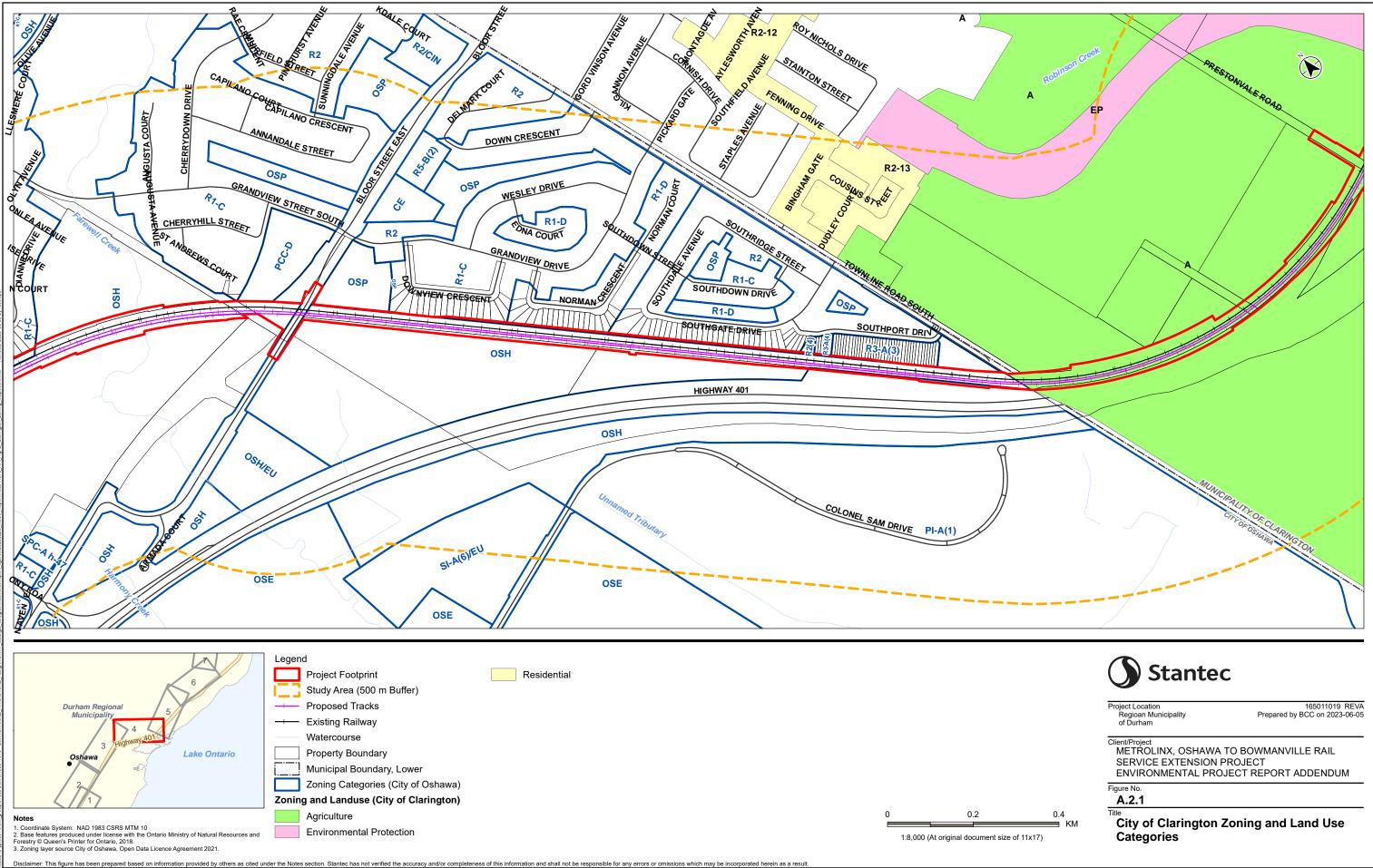
"ADMINISTRATIVE OFFICE" means a building in which one or more persons are employed in the management of the Lakeridge Health Foundation and such activities shall only include budgeting, accounting, event planning, donor communication, and donor meetings.

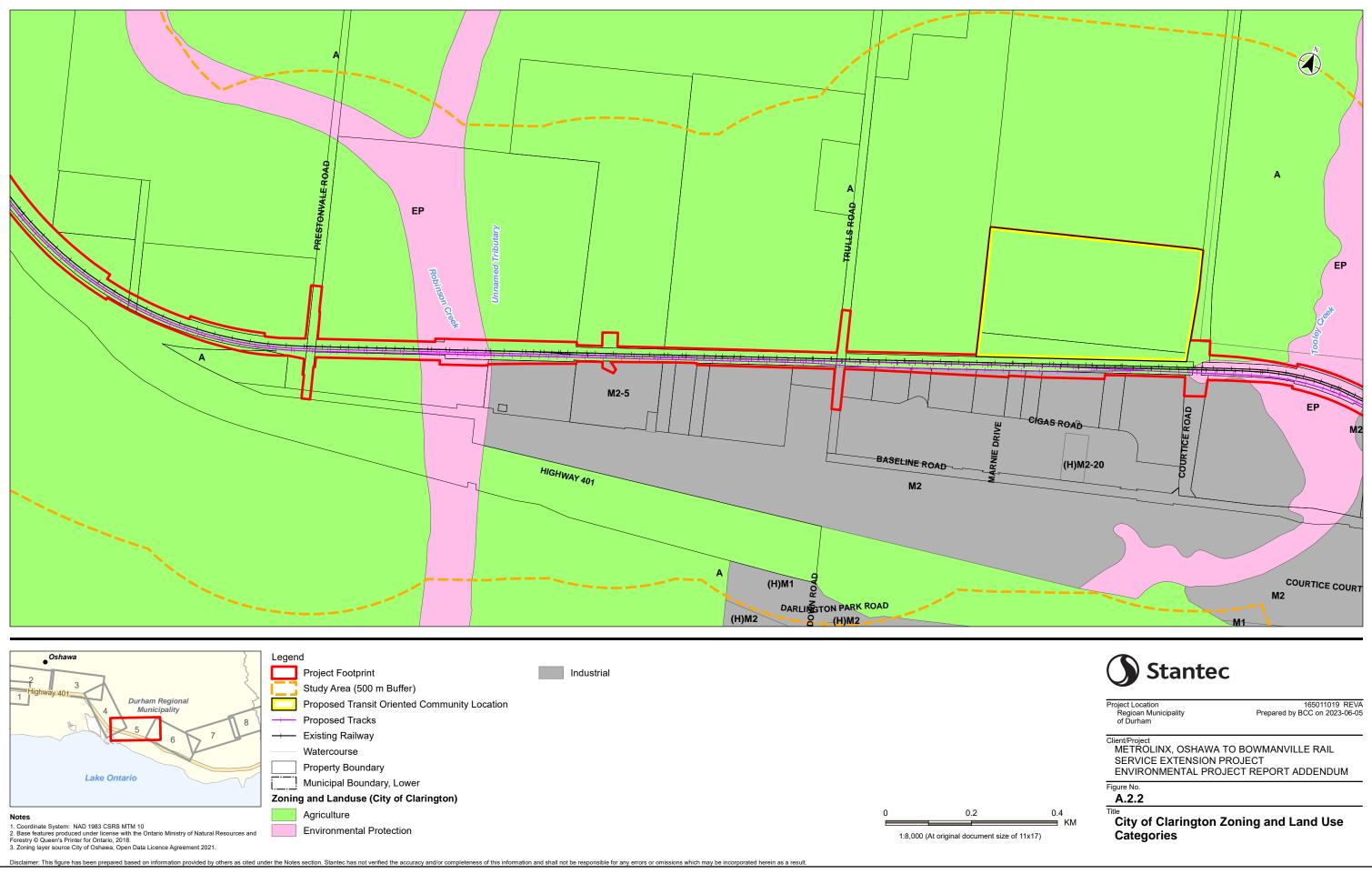

3.12.2(3) **TEMP-3 Zone [Not in use]** (73-2014)

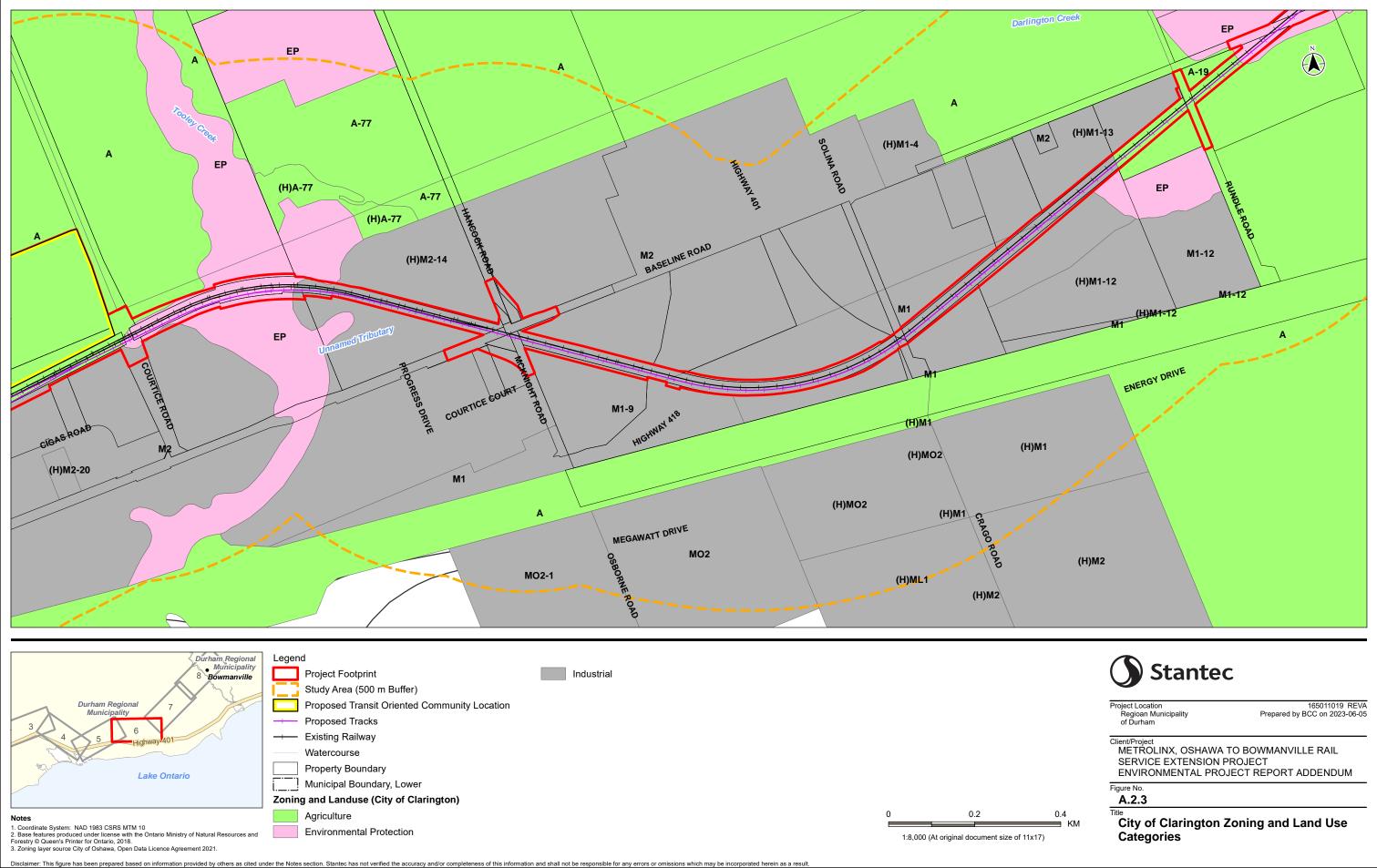

3.13 Oak Ridges Moraine Conservation Plan (38-2006)

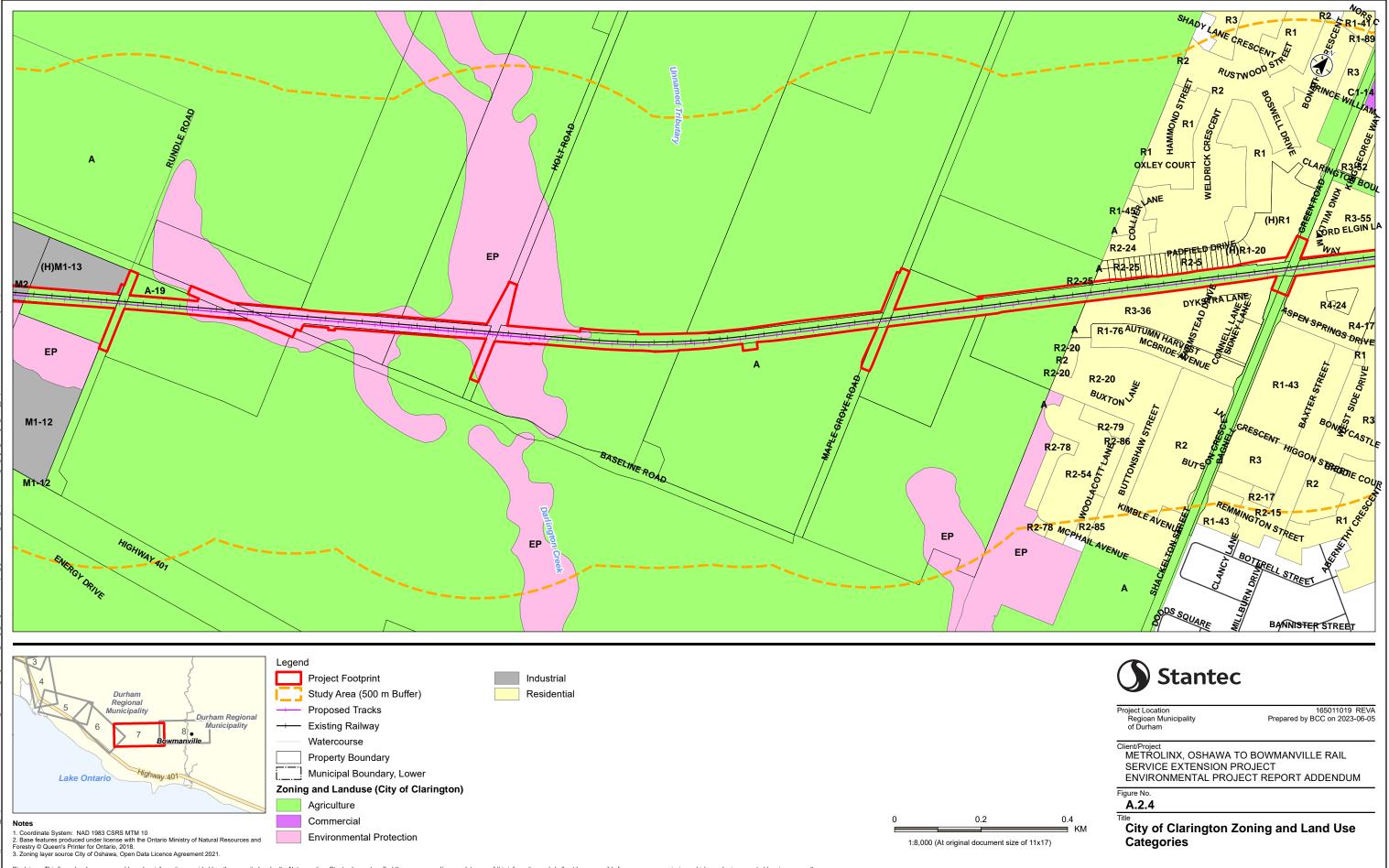

- 3.13.1 Key Natural Heritage Features and Hydrologically Sensitive Features, as identified by the Oak Ridges Moraine Conservation Plan, plus a 120.0m Area of Influence, are shown on Schedule "E". Minimum Vegetation Protection Zones within the Area of Influence are also shown on Schedule "E". Schedule "E" is provided for information purposes only and does not form part of this By-law. Lands identified on Schedule "E" are subject to the Oak Ridges Moraine Conservation Plan policies requiring a natural heritage evaluation and/or hydrological evaluation to be completed to the City's satisfaction prior to development.
- 3.13.2 Key Natural Heritage Features on the Oak Ridges Moraine shall include wetlands, significant portions of the habitat of endangered, rare and threatened species, fish habitat, areas of natural and scientific interest (life

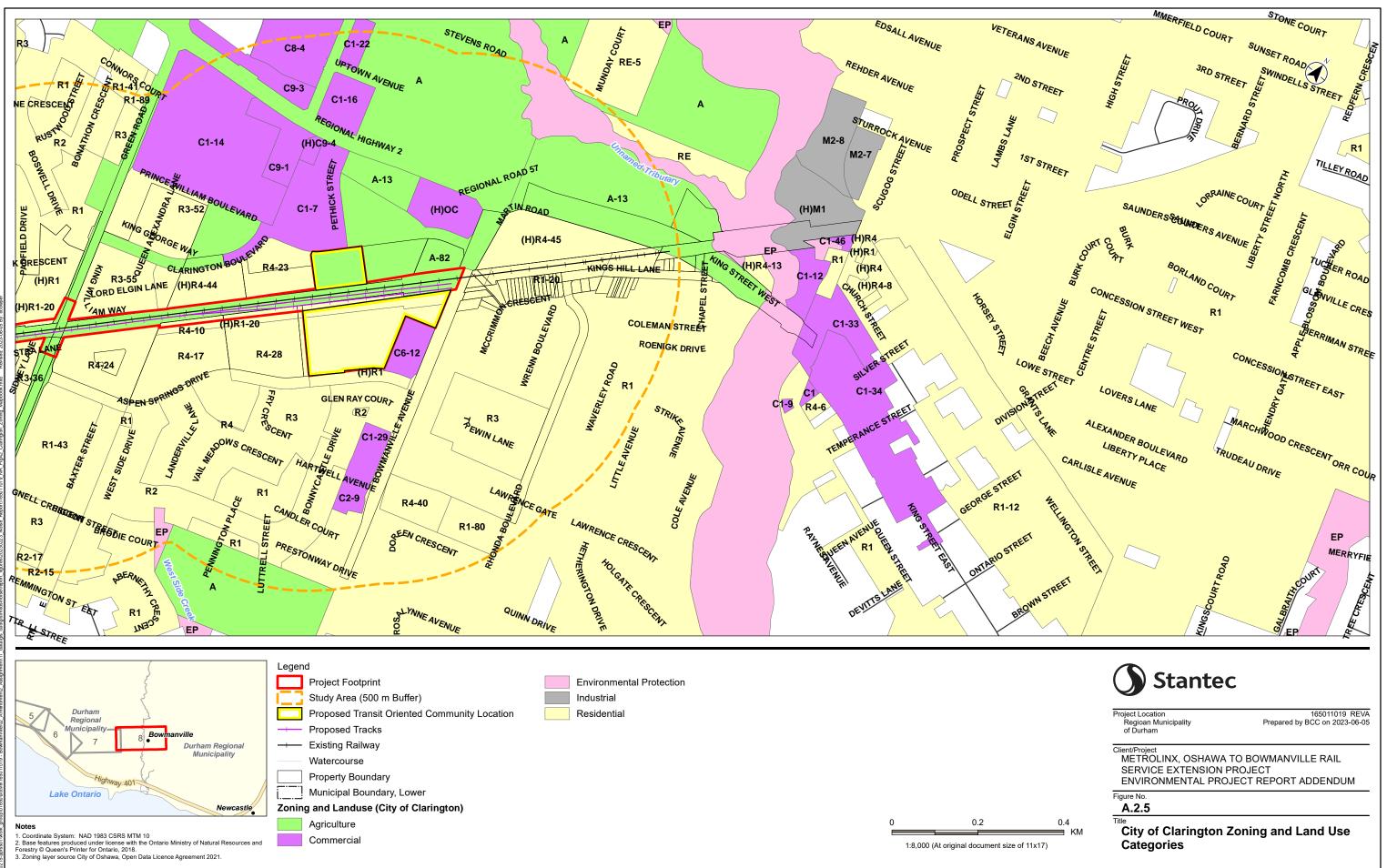

science), significant valleylands, significant woodlots, significant wildlife habitat, and sand barrens, savannahs and tallgrass prairies.


3.13.3 Hydrologically Sensitive Features on the Oak Ridges Moraine shall include permanent and intermittent streams, wetlands, kettle lakes and seepage areas and springs.









Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Noise and Vibration Technical Report

Appendix B Sample Noise Calculations and Modelling Inputs

Stantec

Appendix B.1 - Key Acoustic Modelling Parameters and Sample Calculations

Modelling parameters used to calculate the pre-project and project daytime and nighttime noise impacts are summarized in Table 1.

Parameter	Value	Rationale
Ground Absorption	0.5	Accounts for mostly acoustically reflective surfaces (pavement and hard packed ground) within the Facility property boundary and the industrial area to the south and mostly acoustically absorptive (i.e., grass) surfaces between Facility and representative point of reception.
Temperature	10°C	Ontario standard conditions
Relative Humidity	70%	Ontario standard conditions
Max. Order of Reflection	2	Accounts for building reflections

Appendix B.2 - FTA Cadna Rail Sample Calculations

Receiver

Two Storey Residence on Cromwell Ave. Name:

!00!POR013 ID:

355388.72 m X:

Y: 4860644.04 m

Z: 108.21 m

	/. FTA/FRA. Na	me: "CN EXIS"	TING TR	ACKS	LOC	0". 1	D: "!0	500!B	MV P	ROP	OSED	TRAC	CKS0	0002	LOCO	
Nr.	X	Y		Refl.	DEN		Lw	Ageo		ngle	Agr	Ash		RL	Lr	_
	(m)	(m)	(m)				B(A)	(dB)	_	IB)	(dB)	(dl		(dB)	dB(A)	5
10309	355334.34	4860672.15	105.38	0	D	+	62.1	3.	· ·	10.3	1.3	· ·	0.0	0.0	46.	<u> </u>
10319	355306.06	4860667.02	105.35		D		62.1	3.		13.2	1.2		0.0	0.0	43.	_
10329	355263.66	4860659.33	105.32		D		62.1	3.	_	13.4	1.2	_	0.0	0.0	43.	_
10339	355207.11	4860649.08	105.28	0		++-	62.1	3.		16.7	1.1		0.0	0.0	40.	_
10348	355150.57	4860638.83	105.23		D	+	62.1	3.	_	19.1	1.1	_	0.0	0.0	38.	_
10359	355065.76	4860623.45	105.25		D	++-	62.1	3.		18.7	1.1		0.0	0.0	38.4	_
10359	354952.67	4860602.95	105.08		D	++-	62.1	3.	_	21.4	1.0	-	0.0	0.0	35.	_
									_							_
10377	355314.27	4860668.51	105.36		D		62.1	8.	_	14.1	2.5		0.0	2.0	34.	
10399	355196.77	4860647.21	105.27		D		62.1	11.		17.7	2.7	_	0.0	2.0	28.	_
10700	355429.34	4860690.44	106.09		D		62.1	4.		11.2	1.3		0.0	0.0	45.0	_
10711	355412.01	4860687.07	105.94	0			62.1	4.	_	12.3	1.3		0.0	0.0	44.0	_
10723	355400.46	4860684.82	105.84		D		62.1	4.	_	11.1	1.3		0.0	0.0	45.	_
10734	355388.91	4860682.58	105.74	0			62.1	4.	_	10.2	1.3		0.0	0.0	46.	_
10744	355377.35	4860680.33	105.64		D		62.1	4.	_	10.1	1.3		0.0	0.0	46.	_
10754	355365.80	4860678.08	105.54	0			62.1	4.	_	10.8	1.3		0.0	0.0	46.	_
10766	355354.25	4860675.83	105.44		D		62.1	4.	_	11.9	1.3		0.0	0.0	45.	_
11246	355476.18	4860701.43	106.17		D		62.1	3.	_	16.1	1.2		0.0	0.0	41.3	_
11258	355452.66	4860695.60	106.18		D		62.1	3.		13.9	1.2	2	0.0	0.0	43.4	_
11385	355943.14	4860849.28	106.17		D		62.1	2.	7	23.5	0.9		1.0	0.0	34.	0
11395	355781.76	4860798.17	106.10	0	D		62.1	2.	7	20.5	0.9		0.0	0.0	38.	0
11669	355578.66	4860730.92	106.19	0	D		62.1	2.	7	16.7	0.9)	0.0	0.0	41.	7
11681	355542.45	4860719.98	106.20	1	D		62.1	10.	5	19.9	2.7		0.0	2.0	27.	0
11692	355553.90	4860723.44	106.20	1	D		62.1	10.	6	19.9	2.8	;	0.0	2.0	26.	9
11703	355510.01	4860710.59	106.18	0	D		62.1	3.	1	16.1	1.0)	0.0	0.0	41.	8
12094	355663.16	4860758.81	106.11	0	D		62.1	-0.	3	23.8	0.1		0.0	0.0	38.	5
12105	355671.05	4860761.68	106.10		D		62.1	8.	_	24.6	2.3	_	0.0	2.0	25.	_
12313	354498.93	4860522.16	105.65		D		62.1	3.		22.1	1.1		0.0	0.0	35.	_
12393																
	354796.92	4860575.19	105.58	0	D				_	21.8		_				_
	354796.92	4860575.19	105.58	0	D		62.1	3.	_	21.8	1.0	_	0.0	0.0	35.	_
Railway						0000	62.1	3.	6		1.0)	0.0	0.0	35.	7
Railway Nr.		4860575.19 me: "BMV_PRO Y			KS_L		62.1	3. ID: "!0	6 6!BM	V_PR	1.0 OPOS	ED TI	0.0	0.0 \$\$000	35.	7 000
	r, FTA/FRA, Na X	me: "BMV_PR0 Y	DPOSED Z	TRAC	KS_L		62.1 0_A", Lv	3. ID: "!0 v /	6 6!BM\ \geo	V_PR Aan	1.0 OPOS gle	ED TI Agr	0.0 RACI Ash	0.0 <s000 iield</s000 	35. 01_LO RL	7 CO L
	r, FTA/FRA, Na X (m)	me: "BMV_PRO Y (m)	DPOSED	TRAC Refl	KS_L		62.1 D_A'', I Lv dB(3. ID: "!0 v /	6 6!BM	V_PR Aan (dE	1.0 OPOS gle	ED TI	0.0 RACI Ash	0.0 \$\$000	35. 01_LO	7 CO L dB
Nr. 10409	r, FTA/FRA, Na X	me: "BMV_PR0 Y (m) 4860669.00	DPOSED Z (m)	TRAC Refl	KS_L		62.1 D_A'', I Lv dB(6	3. ID: "!0 v A A) 7.3	6 6!BM [\] Ageo (dB)	V_PR Aan (dE	1.0 OPOS gle 3) 12.0	ED TI Agr (dB)	0.0 RACI Ash	0.0 <s000 iield B)</s000 	35. 01_LO RL (dB)	7 CO L dB
Nr. 10409 10418	r, FTA/FRA, Na X (m) 355358.43 355368.38	me: "BMV_PR0 Y (m) 4860669.00 4860670.90	DPOSED Z (m) 106.03 106.12	TRAC Refl	0 D		62.1)_A'', Lv dB(6 6	3. ID: "!0 w A (A) (7.3 (7.3)	6 6!BM Ageo (dB) 3.0 3.0	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7	ED TI Agr (dB) 1.0 1.0	0.0 RACI Ash	0.0 <s000 iield B) 0.0 0.0</s000 	35. 01_LO RL (dB) 0.0 0.0	7 CO L dB 5
Nr. 10409 10418 10428	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79	DPOSED Z (m) 106.03 106.12 106.21	TRAC Refl	. DE 0 D 0 D 0 D		62.1 D_A", I Lv dB(6 6 6	3. ID: "!0 N A 7.3 7.3 7.3	6 Ageo (dB) 3.0 3.0 3.0	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9	ED TI Agr (dB) 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0	35. 01_LO RL (dB) 0.0 0.0 0.0	7 CO L dB(5 5
Nr. 10409 10418 10428 10439	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 4860674.69	DPOSED Z (m) 106.03 106.12 106.21 106.30	TRAC Refl	CKS_L . Df 0 D 0 D 0 D 0 D		62.1 D_A", I dB(6 6 6 6	3. ID: "!0 N A 7.3 7.3 7.3 7.3 7.3	6 (dB) 3.0 3.0 3.0 3.0 3.0	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 9.9	ED TI Agr (dB) 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0	
Nr. 10409 10418 10428 10439 10451	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860669.00	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77	TRAC	CKS_L . DI 0 D 0 D 0 D 0 D 0 D 0 D		62.1 A'', I Lv dB(6 6 6 6 6 6 6	3. ID: "!0 N A 7.3 7.3 7.3 7.3 7.3 7.3	6 Ageo (dB) 3.0 3.0 3.0 3.0 3.0 3.0	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 9.9 12.0	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0	
Nr. 10409 10418 10428 10439 10451 10463	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 48606674.69 4860669.00 4860670.90	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86	TRAC	CKS_L . Df 0 D 0 D 0 D 0 D 0 D 0 D 0 D		62.1 A", I B(3. ID: "!0 N A 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	6 Ageo (dB) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 9.9 12.0 10.7	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.2 1.2	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Nr. 10409 10418 10428 10439 10451 10463 10472	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 48606674.69 4860669.00 4860670.90 4860672.79	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95	TRAC	CKS_L . DE 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D		62.1 D_A", I LV dB(66 66 66 66 66 66	3. ID: "!0 N A 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	6 Ageo (dB) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 9.9 12.0 10.7 9.9	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 L dBi 5 5 5 5 5 5 5
Nr. 10409 10418 10428 10439 10451 10463 10472 10482	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32 355378.32 355388.27	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860669.00 4860670.90 4860672.79 4860672.79	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05	TRAC	CKS_L . DE 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D		62.1 D_A", I dB(66 66 66 66 66 66 66	3. ID: "!0 N A 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	6 Ageo (dB) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 9.9 12.0 10.7 9.9 9.9 9.9 9.9	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32 355378.32 355388.27 355398.05	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860669.00 4860670.90 4860672.79 4860674.69 4860674.69	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35	TRAC	KS_L . DI 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D		62.1 D_A", I dB(66 66 66 66 66 66 66 66 66 6	3. ID: "!0 N A 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	6 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 12.0 10.7 9.9 9.9 10.7 9.9 9.9 10.9	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.0	0.0 RACI Ash	0.0 (S000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 CO dB t t t t t t t t t t t t t t t t t t
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32 355378.32 355388.27 355398.05 355407.68	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860669.00 4860670.90 4860672.79 4860674.69 4860674.69 4860676.64	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.35	TRAC	KS_L . DI 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D		62.1 D_A", I dB(66 66 66 66 66 66 66 66 66 6	3. ID: "!0 N A 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 9.9 12.0 10.7 9.9 9.9 10.9 10.9 12.2	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0	0.0 RACI Ash	0.0 (S000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 L dB t t t t t t t t t t t t t t t t t t
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355368.38 355368.38 355378.32 355388.27 355388.27 355398.05 355407.68 355422.12	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860669.00 4860670.90 4860672.79 4860674.69 4860674.69 4860678.65 4860681.66	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.36 106.36	TRAC	. DI 0 D		62.1 D_A", I dB(66 66 66 66 66 66 66 66 66 6	3. ID: "!0 N A 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR (dE	1.0 OPOS gle 3) 12.0 9.9 9.9 12.0 10.7 9.9 9.9 10.7 9.9 10.7 9.9 10.9 10.9 11.2	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355368.38 355378.32 355368.38 355378.32 355388.27 355398.05 355407.68 355422.12 355398.05	me: "BMV_PR0 Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860670.90 4860670.90 4860672.79 4860674.69 4860676.64 4860678.65 4860681.66	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.36 106.36 106.36 109.10	TRAC	. DI 0 D		62.1 D_A", I dB(66 66 66 66 66 66 66 66 66 6	3. ID: "!0 N A 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 9.9 9.9 12.0 10.7 9.9 9.9 10.7 9.9 10.7 9.9 10.7 10.7 9.9 11.2 10.9	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593 10603	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355368.38 355378.32 355368.38 355378.32 355388.27 355398.05 355407.68 355422.12 355398.05 355407.68	me: "BMV_PRC Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860670.90 4860672.79 4860674.69 4860674.69 4860676.64 4860678.65 4860676.64	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.35 106.36 106.36 106.36 109.10	TRAC	KKS_L 0		62.1 D_A", Lv, dB((66 66 66 66 66 66 66 66 66	3. ID: "!0 V A 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 9.9 9.9 12.0 10.7 9.9 9.9 10.9 10.9 12.2 11.2 10.9 12.2	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 L d d d t t t t t t t t t t t t t
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593 10603 10613	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32 355388.27 355398.05 355407.68 355422.12 355398.05 355407.68 355422.12	me: "BMV_PRC Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860674.69 4860674.69 4860674.69 4860674.69 4860676.64 4860678.65 4860681.66	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.35 106.36 106.36 106.36 109.10 109.10	TRAC	KS_L . 0		62.1 D_A", Lv, dB((66 66 66 66 66 66 66 66 66	3. ID: "!0 V A 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 12.0 9.9 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.9 12.2 11.2 10.9 12.2 11.2	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 L dB t t t t t t t t t t t t t t t t t t
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593 10603 10613 10625	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32 355388.27 355398.05 355407.68 355422.12 355398.05 355407.68 355422.12 355323.57	me: "BMV_PRC Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860670.90 4860670.90 4860670.90 4860676.64 4860678.65 4860681.66 4860681.66 4860681.66	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.36 106.36 106.36 109.10 109.10 109.10 109.10		KS_L D 0		62.1 D_A", Lv, dB((66 66 66 66 66 66 66 66 66	3. ID: "!0 V / A) 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.9 12.2 10.9 12.2 11.2 10.9 12.2 11.2 11.2 13.7	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 L dB t t t t t t t t t t t t t t t t t t
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593 10603 10613 10625 10636	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32 355388.27 355398.05 355407.68 355422.12 355398.05 355407.68 355422.12 355323.57 355343.49	me: "BMV_PRC Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860670.90 4860670.90 4860670.90 4860676.64 4860676.64 4860678.65 4860681.66 4860662.66 4860662.66	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.36 106.36 106.36 106.36 109.10 109.10 109.10 109.10 105.47		KS_L D 0		62.1 D_A", Lv, dB((66 66 66 66 66 66 66 66 66	3. ID: "!0 V / A) 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.7 12.2 10.9 12.2 11.2 10.9 12.2 11.2 11.2 11.2 11.2 11.2 11.2	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 L dB t t t t t t t t t t t t t t t t t t
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593 10603 10613 10625 10636 10647	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355368.38 355368.38 355378.32 355388.27 355388.27 355398.05 355407.68 355422.12 355398.05 355407.68 355422.12 355323.57 355343.49 355317.44	me: "BMV_PRC Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860670.90 4860670.90 4860670.90 4860676.64 4860678.65 4860681.66 4860681.66 4860681.66	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.36 106.36 106.36 109.10 109.10 109.10 109.10		KS_L D 0		62.1 D_A", Lv, dB((66 66 66 66 66 66 66 66 66	3. ID: "!0 V / A) 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.9 12.2 10.9 12.2 11.2 10.9 12.2 11.2 11.2 13.7	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593 10603 10613 10625 10636	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355358.43 355368.38 355378.32 355388.27 355398.05 355407.68 355422.12 355398.05 355407.68 355422.12 355323.57 355343.49	me: "BMV_PRC Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860670.90 4860670.90 4860670.90 4860676.64 4860676.64 4860678.65 4860681.66 4860662.66 4860662.66	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.36 106.36 106.36 106.36 109.10 109.10 109.10 109.10 105.47		KS_L D 0		62.1 D_A", (Lv, (dB(66 66 66 66 66 66 66 66 66 6	3. ID: "!0 V / A) 7.3	6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.7 12.2 10.9 12.2 11.2 10.9 12.2 11.2 11.2 11.2 11.2 11.2 11.2	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Nr. 10409 10418 10428 10439 10451 10463 10472 10482 10539 10549 10560 10593 10603 10613 10625 10636 10647	r, FTA/FRA, Na X (m) 355358.43 355368.38 355378.32 355388.27 355368.38 355368.38 355378.32 355388.27 355388.27 355398.05 355407.68 355422.12 355398.05 355407.68 355422.12 355323.57 355343.49 355317.44	me: "BMV_PRC Y (m) 4860669.00 4860670.90 4860672.79 4860674.69 4860670.90 4860670.90 4860670.90 4860670.64 4860676.64 4860678.65 4860681.66 4860662.66 4860666.25 4860661.55	DPOSED Z (m) 106.03 106.12 106.21 106.30 108.77 108.86 108.95 109.05 106.35 106.36 106.36 106.36 109.10 109.10 109.10 109.10 105.47 105.81 105.37		KS_L D 0		62.1 D_A", Lvv dB(66 66 66 66 66 66 66 66 66 6	3. ID: "!0 V / A) 7.3	6 6 8 9 9 9 9 9 9 9 1 9 9 1 9 1 9 1 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1	V_PR Aan (dE	1.0 OPOS gle 3) 12.0 10.7 9.9 12.0 10.7 9.9 12.0 10.7 12.0 10.7 12.2 10.9 12.2 11.2 10.9 12.2 11.2	ED TI Agr (dB) 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.0 RACI Ash	0.0 (\$000 iield B) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	35. 01_LO RL (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	7 CO L dB(5 5

Railway	/. FTA/FRA. Na	me: "BMV PR	OPOSED -	TRACK	S LC		A".	ID: "!() 06!BM\	/ PR	OPO	SED TR	ACKS00	001 LC	DCO A"
Nr.	X	Y	Z	Refl.	DEI				Ageo	Aano			Ashield	RL	Lr
	(m)	(m)	(m)				dB((dB)	(dB		(dB)	(dB)	(dB)	dB(A)
10690	355318.75	4860661.79	108.13	1	D			7.3	9.1		9.7	2.5	0.0	· · ·	33.9
10876	355441.32	4860685.86	106.36	C	D		6	7.3	2.8	1	3.9	1.0	0.0	0.0	49.7
10888	355460.48	4860690.24	106.34	C	D		6	7.3	2.8	1	6.0	1.0	0.0	0.0	47.6
10898	355441.32	4860685.86	109.10	C	D		6	7.3	2.8	1	3.9	1.2	0.0	0.0	49.4
10908	355460.48	4860690.24	109.09	C	D		6	7.3	2.8	1	6.0	1.2	0.0	0.0	47.3
10920	355276.42	4860654.20	104.83	C	D		6	7.3	2.9	1	7.2	1.0	0.0	0.0	46.2
10929	355301.21	4860658.64	105.15	C	D		6	7.3	2.9	1	5.1	1.0	0.0	0.0	48.3
10941	355307.78	4860659.81	105.23	1	D		6	7.3	9.1	1	6.4	2.6	0.0	2.0	37.2
10953	355276.42	4860654.20	107.58	C	D		6	7.3	2.9	1	7.2	1.2	0.0	0.0	46.0
10963	355301.21	4860658.64	107.89	C	D		6	7.3	2.9	1	5.1	1.2	0.0	0.0	48.1
10975	355307.78	4860659.81	107.97	1	D		6	7.3	9.1	1	6.4	2.5	0.0	2.0	37.2
11031	355189.97	4860638.73	104.20	C	D		6	7.3	2.9	1	9.1	0.9	0.0	0.0	44.3
11042	355239.34	4860647.57	104.52	C	D		6	7.3	2.9	1	6.6	0.9	0.0	0.0	46.9
11054	355192.20	4860639.13	104.22	1	D		6	7.3	11.1	1	7.7	2.9	0.0	2.0	33.5
11066	355189.97	4860638.73	106.94	C	D		6	7.3	2.9	1	9.1	1.1	0.0	0.0	44.2
11077	355239.34	4860647.57	107.26	C	D		6	7.3	2.9	1	6.6	1.1	0.0	0.0	46.7
11145	355489.13	4860697.16	106.34	C	D		6	7.3	2.6	1	5.6	0.9	0.0	0.0	48.3
11156	355489.13	4860697.16	109.08	C	D		6	7.3	2.5	1	5.6	1.1	0.0	0.0	48.0
11178	355053.65	4860614.34	104.40	C	D		6	7.3	2.9	2	1.9	0.8	0.0	0.0	41.7
11189	355128.07	4860627.66	104.16	C	D		6	7.3	2.9	1	9.6	0.9	0.0	0.0	43.9
11222	355053.65	4860614.34	107.14	C	D		6	7.3	2.9	2	1.9	1.0	0.0	0.0	41.5
11234	355128.07	4860627.66	106.90	C	D		6	7.3	2.9	1	9.7	1.1	0.0	0.0	43.7
11329	355527.18	4860706.98	106.36	C	D		6	7.3	2.1	1	8.6	0.8	0.0	0.0	45.8
11341	355527.18	4860706.98	109.10	C	D		6	7.3	2.1	1	8.6	1.0	0.0	0.0	45.5
11646	355562.39	4860716.76	106.38	C	D		6	7.3	1.6	2	1.8	0.6	0.0	0.0	43.4
11657	355562.39	4860716.76	109.12	C	D		6	7.3	1.5	2	1.8	0.9	0.0	0.0	43.1
12453	355003.30	4860605.32	104.51	C	D		6	7.3	3.0	2	7.7	0.9	0.0	0.0	35.8
12463	355003.30	4860605.32	107.25	C	D		6	7.3	2.9	2	7.7	1.0	0.0	0.0	35.7
12520	354977.03	4860600.55	104.51	C	D		6	7.3	3.2	2	8.0	0.9	0.0	0.0	35.2
12543	354977.03	4860600.55	107.26	C	D		6	7.3	3.2	2	8.0	1.0	0.0	0.0	35.0
12604	354878.22	4860581.36	104.96	C	D		6	7.3	4.0	2	7.5	1.1	0.0	0.0	34.7
12615	354878.22	4860581.36	107.70	C	D		6	7.3	4.0	2	7.6	1.2	0.0	0.0	34.5
12626	354935.93	4860592.78	104.59	C	D		6	7.3	3.8	2	8.3	1.1	0.0	0.0	34.2
12636	354935.93	4860592.78	107.34	C	D		6	7.3	3.8	2	8.3	1.2	0.0	0.0	34.1
12694	354909.73	4860587.63	104.72	C	D		6	7.3	4.0	2	8.5	1.1	0.0	0.0	33.7
12706	354909.73	4860587.63	107.46	C	D		6	7.3	4.0	2	8.5	1.2	0.0	0.0	33.6
12997	354956.47	4860596.73	104.55	C	D		6	7.3	3.5	3	0.6	1.0	0.0	0.0	32.3
13017	354956.47	4860596.73	107.29	C	D		6	7.3	3.5	3	0.6	1.1	0.0	0.0	32.1
Railway	/, FTA/FRA, Na	ime: "BMV_Exis	sting_Main	_Line_	LOCO)", II	D: "!C)500!E	BMV_E	XISTI	NG 1	RACKS	500001_	LOCO"	
Nr.	Х	Y		lefl. D	EN			Ageo	-		٩gr	Ashield		Lr	
	(m)	(m)	(m)				(A)	(dB)	(dB		dB)	(dB)	(dB)	dB(A)	
10494	355336.86	4860676.36	105.08	0 D		-	67.0	4.3		1.8	1.4	0.		49.6	
10504	355318.36	4860673.06	105.02	0 D			67.0	4.3		3.7	1.4	0.	0.0	47.7	
10516	355290.62	4860668.11	104.94	0 D			67.0	4.3		3.1	1.3	0.		48.3	
10527	355315.63	4860672.57	105.02	1 D			67.0	8.7	-	4.1	2.5	0.		39.7	
10572	355375.63	4860683.36	105.82	0 D			67.0	4.3		8.3	1.4	0.	0.0	53.1	
10582	355355.95	4860679.79	105.35	0 D			67.0	4.3		9.5	1.4	0.	-	51.8	
10777	355395.29	4860687.01	106.10	0 D			67.0	4.3		8.6	1.4	0.	_	52.7	
10789	355336.86	4860676.36	107.82	0 D			62.8	4.3		1.8	1.5	0.	-	45.2	
10801	355318.36	4860673.06	107.77	0 D			62.8	4.3		3.7	1.5	0.		43.3	
10812	355290.62	4860668.11	107.68	0 D			52.8	4.3		3.1	1.5	0.		43.9	
10823	355315.63	4860672.57	107.76	1 D			52.8	8.7		4.1	2.5	0.	0 2.0	35.5	
10832	355375.63	4860683.36	108.57	0 D			62.8	4.3		8.3	1.5	0.	-	48.7	
10844	355355.95	4860679.79	108.09	0 D			52.8	4.3		9.5	1.5	0.	0.0	47.4	
10855	355414.92	4860690.89	106.15	0 D			67.0	4.3		0.4	1.4	0.	0.0	51.0	
10865	355438.78	4860696.05	106.12	0 D			67.0	4.2		1.4	1.3	0.		50.1	
10987	355238.07	4860658.73	104.38	0 D		6	67.0	4.3		3.8	1.3	0.	0.0	47.6	
10999	355205.82	4860652.98	103.91	1 D		6	67.0	10.9	24	4.2	2.9	0.	0 2.0	27.0	
11009	355395.29	4860687.01	108.85	0 D		6	62.8	4.3	-	8.6	1.5	0.	0.0	48.4	
11020	355466.84	4860702.67	106.09	0 D			67.0	4.0		4.3	1.3	0.		47.5	
11089	355170.95	4860646.72	103.96	0 D			67.0	4.3		7.2	1.3	0.		44.2	
11100	355104.79	4860634.83	104.13	0 D		6	67.0	4.3	3 19	9.5	1.2	0.	0.0	41.9	

(m) (m) <th>Railway</th> <th>, FTA/FRA, N</th> <th>ame: "BMV_E</th> <th>kisting_Ma</th> <th>ain_Lin</th> <th>e_LOC</th> <th></th> <th></th> <th></th> <th>TING</th> <th></th> <th>0001_</th> <th>LOCO"</th>	Railway	, FTA/FRA, N	ame: "BMV_E	kisting_Ma	ain_Lin	e_LOC				TING		0001_	LOCO"
1111 355197.59 4800651.50 103.90 1 D 67.0 10.9 18.8 2.9 0.0 2.0 32.2 1133 356418.76 4800709.83 106.06 0 D 62.8 4.2 11.4 1.5 0.0 0.0 46.1 1187 356446.77 4800702.87 107.12 0 D 62.8 4.2 11.4 1.5 0.0 0.0 43.1 1189 355046.84 480702.67 108.83 0 D 62.8 4.3 13.8 1.5 0.0 0.0 43.1 1283 355104.79 480034.83 106.87 0 D 62.8 4.3 19.6 1.4 0.0 0.0 42.1 1333 355010.01 480054.26 105.42 0 D 67.0 4.3 19.9 1.2 0.0 0.0 42.1 1413 35662.60 480073.93 108.81 0 D 67.0 3.1 21.0 0.0 0.0 4.1 1.6 1.0 0.0 4.4 1.6	Nr.	Х	Y	Z	Refl.	DEN	Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
1123 355414.92 4800090.89 10.8.99 0 0 62.8 4.2 11.4 1.5 0.0 0.0 46.1 1134 355434.75 4800709.93 106.06 0 D 67.0 3.7 16.7 1.2 0.0 0.0 45.3 1189 355236.07 4806058.73 107.12 0 D 62.8 4.3 13.8 1.5 0.0 0.0 43.3 1281 355104.07 4806054.72 106.64 1 D 62.8 4.3 19.6 1.4 0.0 0.0 43.3 1317 355163.6 480051.10 106.64 1 D 62.8 4.3 19.9 1.1 0.0 0.0 41.1 1533 355010.01 4800543.26 10.54.2 0 D 67.0 4.3 19.9 1.1 0.0 0.0 41.1 1533 355642.0 480079.99 10.8.0 0 D 67.0 3.1 2.0 1.0 0.0 0.4 41.1 1.5 0.0 0.0 41.1 </td <td></td> <td>(m)</td> <td></td> <td>(m)</td> <td></td> <td></td> <td>dB(A)</td> <td>(dB)</td> <td>(dB)</td> <td>(dB)</td> <td>(dB)</td> <td>(dB)</td> <td>dB(A)</td>		(m)		(m)			dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
1134 355438.78 48600696.05 108.86 0 D 62.8 4.2 11.4 1.5 0.0 45. 1199 355238.07 4860658.73 107.12 0 D 62.8 4.3 13.8 1.5 0.0 0.0 45.3 1289 355466.84 4860702.67 108.83 0 D 62.8 4.3 11.8 1.5 0.0 0.0 43.3 1283 355104.79 4860634.83 106.87 0 D 62.8 4.3 19.9 1.1 0.0 0.0 43.3 1383 355010.01 4860634.82 10.52 0 D 67.0 4.3 19.9 1.1 0.0 0.0 41.1 1553 355662.0 4860769.27 106.05 1 D 67.0 7.2 24.6 2.1 0.0 0.0 44.1 1563 355662.0 486079.59 10.6.07 0 D 67.0 3.1 21.6 1.1 0.0 0.0 44.2 1563 556631.04 486071.33	11111	355197.59	4860651.50	103.90	1	D	67.0	10.9	18.8	2.9	0.0	2.0	32.4
1167 355494.75 4660709.93 106.06 0 0 67.0 3.7 16.7 1.2 0.0 0.0 45.7 1199 355236.07 4860658.73 107.12 0 D 62.8 4.3 13.8 1.5 0.0 0.0 43.3 1281 355170.95 4860646.72 106.71 0 D 62.8 4.3 17.2 1.4 0.0 0.0 33.3 1317 355195.36 48600651.10 106.64 1 D 62.8 4.3 19.9 1.4 0.0 0.0 4.3 1365 354817.08 4860769.27 106.05 0 D 67.0 7.2 2.46 2.1 0.0 2.0 1.1 1.0 0.0 0.4 4.1 1.55 355651.04 486073.90 10.8 0.0 1.4 1.55 35563.00 486073.90 1.0 0.0 0.0 4.1 1.1 0.0 0.0 4.1 1.1 1.0 0.0 0.0 4.1 1.1 1.56 35563.00 486073.90 1.0 <t< td=""><td>11123</td><td>355414.92</td><td>4860690.89</td><td>108.89</td><td>0</td><td>D</td><td>62.8</td><td>4.3</td><td>10.4</td><td>1.5</td><td>0.0</td><td>0.0</td><td>46.6</td></t<>	11123	355414.92	4860690.89	108.89	0	D	62.8	4.3	10.4	1.5	0.0	0.0	46.6
1199 355238.07 4800058.73 107.12 0 0 62.8 4.3 13.8 15 0.0 0.43 1281 35517.0.95 4860646.72 106.87 0 D 62.8 4.3 17.2 1.4 0.0 0.0 39.3 1281 35517.0.95 486054.83 106.67 0 D 62.8 4.3 17.2 1.4 0.0 0.0 37.4 1333 355010.01 4860517.80 104.52 0 D 67.0 4.3 19.9 1.1 0.0 0.0 42.1 1353 355610.01 4860679.22 106.05 0 D 67.0 7.2 24.6 2.1 0.0 0.0 41.1 1553 355692.00 4860793.50 106.06 0 D 67.0 3.1 21.0 1.1 0.0 0.0 41.1 1563 355692.00 486079.85 106.06 0 D 67.0 3.1 21.6 1.1 0.0 0.0 41.1 1563 355594.00 486079.45	11134	355438.78	4860696.05	108.86	0	D	62.8	4.2	11.4	1.5	0.0	0.0	45.7
1289 355466.84 4800702.67 108.83 0 0 62.8 4.0 14.3 15 0.0 0.0 43.3 1281 355170.95 4860646.72 106.71 0 0 62.8 4.3 17.2 1.4 0.0 0.0 37.1 1317 355195.36 4860651.01 106.64 1 D 62.8 4.3 17.2 1.4 0.0 0.0 47.1 1317 355195.36 486053.26 105.42 0 D 67.0 4.3 19.9 1.1 0.0 0.0 41.1 1553 355682.00 486079.927 106.05 1 D 67.0 2.9 1.8 1.0 0.0 0.0 41.1 1563 355631.20 4860715.97 106.07 0 D 67.0 3.1 1.6 1.0 0.0 0.0 41.1 1613 355561.20 4860726.55 106.09 1 D 67.0 3.2 2.9 1.0 0.0 0.0 43.1 1623 355631.20 4	11167	355494.75	4860709.93	106.06	0	D	67.0	3.7	16.7	1.2	0.0	0.0	45.4
1281 355170.95 4660646.72 106,71 0 0 62.8 4.3 17.2 1.4 0.0 0.0 39.1 1293 355104.79 4860634.83 106.87 0 0 62.8 4.3 19.6 1.4 0.0 0.0 37.1 3133 355104.79 4860617.80 104.52 0 0 67.0 4.3 19.9 1.1 0.0 0.0 42.1 3553 355662.60 4860761.32 106.05 0 D 67.0 7.2 24.6 2.1 0.0 0.0 4.4 1553 355662.60 4860761.32 106.05 0 D 67.0 3.1 2.0 1.0 0.0 0.0 4.4 1653 355562.00 4860729.40 106.07 0 D 67.0 3.1 2.16 1.1 0.0 0.0 4.4 1.6 1.0 0.0 0.0 4.0 1.4 0.0 0.0 4.0 1.1 1.6 1.0 0.0 0.0 4.1 1.6 1.0 1.0 0.0<	11199	355238.07	4860658.73	107.12	0	D	62.8	4.3	13.8	1.5	0.0	0.0	43.2
1283 355104.79 4860634.83 106.67 0 0 0 37.7 1317 355195.36 4860651.70 106.64 1 D 62.8 10.9 20.7 2.8 0.0 2.0 26. 1365 355010.01 4860583.26 105.42 0 D 67.0 4.3 19.3 1.2 0.0 0.0 47.1 1365 355678.36 4860789.52 106.06 0 D 67.0 7.2 24.6 2.1 0.0 0.0 42.1 1553 355682.00 4860739.50 106.06 0 D 67.0 3.1 22.0 1.0 0.0 0.0 42.1 1613 355543.40 486075.93 108.07 0 D 67.0 3.1 21.6 1.0 0.0 0.41.1 1633 355512.0 4860770.25 106.05 0 D 67.0 3.1 21.8 1.1 0.0 0.0 40.2 1.7 1.7 35554.34 4860773.82 106.10 D 22.9 1.0 0.0	11269	355466.84	4860702.67	108.83	0	D	62.8	4.0	14.3	1.5	0.0	0.0	43.1
1283 355104.79 4860634.83 106.67 0 0 0 37.7 1317 355195.36 4860651.70 106.64 1 D 62.8 10.9 20.7 2.8 0.0 2.0 26. 1365 355010.01 4860583.26 105.42 0 D 67.0 4.3 19.3 1.2 0.0 0.0 47.1 1365 355678.36 4860789.52 106.06 0 D 67.0 7.2 24.6 2.1 0.0 0.0 42.1 1553 355682.00 4860739.50 106.06 0 D 67.0 3.1 22.0 1.0 0.0 0.0 42.1 1613 355543.40 486075.93 108.07 0 D 67.0 3.1 21.6 1.0 0.0 0.41.1 1633 355512.0 4860770.25 106.05 0 D 67.0 3.1 21.8 1.1 0.0 0.0 40.2 1.7 1.7 35554.34 4860773.82 106.10 D 22.9 1.0 0.0	11281	355170.95	4860646.72	106.71	0	D	62.8	4.3	17.2	1.4	0.0	0.0	39.9
1353 35501001 4860677.80 104.52 0 D 67.0 4.3 19.3 1.2 0.0 0.0 42.1 1365 354817.08 4860583.26 105.42 0 D 67.0 4.3 19.9 1.1 0.0 0.0 41.1 1553 355662.60 4860761.32 106.05 1 D 67.0 7.2 24.6 2.1 0.0 0.0 41.1 1553 355503.00 486079.93 108.81 0 D 67.0 3.4 21.0 1.1 0.0 0.0 44.1 1613 355541.20 4860726.55 106.07 0 D 67.0 3.1 21.6 1.0 0.0 0.0 44.1 1623 355551.20 4860720.22 106.13 0 D 67.0 3.2 23.1 1.1 0.0 0.0 37.7 1763 355541.94 4860723.86 106.12 0 D 67.0 3.1 23.8 1.0 0.0 3.4 31.0 0.0 0.3 37.7 18.7	11293	355104.79		106.87	0	D	62.8	4.3	19.6	1.4	0.0	0.0	37.6
1353 355010.01 4860617.80 104.52 0 D 67.0 4.3 19.3 1.2 0.0 0.0 42.1 1365 354817.08 4860583.26 105.42 0 D 67.0 4.3 19.9 1.1 0.0 0.0 41.1 1553 355662.60 4860761.32 106.05 1 D 67.0 7.2 24.6 2.1 0.0 0.0 41.1 1553 355503.00 4860709.33 108.81 0 D 67.0 3.4 21.0 1.1 0.0 0.0 44.1 1613 35551.20 4860726.55 106.09 1 67.0 3.4 21.0 1.1 0.0 0.0 44.1 175 35551.20 4860720.62 106.13 0 D 67.0 3.2 23.1 1.1 0.0 0.0 3.7 176 35554.34 486072.32.8 106.12 0 D 67.0 3.1 23.8 1.0 0.0 0.3 3.7 178 355551.20 4860723.26	11317	355195.36	4860651.10	106.64	1	D	62.8	10.9	20.7	2.8	0.0	2.0	26.4
1365 354617.08 4860763.22 106.42 0 0 7.0 2.9 21.3 1.0 0.0 0.0 41.1 1541 355687.65 4860769.27 106.06 0 0 7.2 24.6 2.1 1.0 0.0 0.0 41.1 1555 355687.60 486079.27 106.06 0 0 67.0 3.1 20.9 1.0 0.0 0.0 42.1 1565 355583.00 486079.93 108.61 0 0 67.0 3.4 21.0 1.1 0.0 0.0 41.1 1613 355510.34 486071.597 106.07 0 D 67.0 3.1 21.6 1.0 0.0 0.4 41.1 1623 355551.04 4860721.34 106.14 1 D 67.0 3.2 22.3 1.0 0.0 0.0 39.1 1789 35551.44 486072.32 106.13 1 D 67.0 3.1 2.7 0.0 2.0 2.7 1.1 0.0 0.0 39.1 1.3	11353		4860617.80	104.52	0	D	_		19.3	1.2	0.0	0.0	42.3
1541 355682.60 4860769.27 106.05 1 0 67.0 2.9 21.3 1.0 0.0 0.0 44.1 1553 355662.60 4860739.50 106.06 0 0 67.0 3.1 22.4 2.1 0.0 0.0 0.4 2.1 1601 355494.75 4860739.50 106.06 0 0 67.0 3.1 21.6 1.0 0.0 0.0 44.1 1613 355561.20 4860729.50 106.07 0 D 67.0 3.1 21.6 1.0 0.0 0.0 41.1 1623 355551.20 4860720.55 106.05 0 D 67.0 3.2 22.3 1.0 0.0 0.0 42.1 1779 355541.94 4860720.20 106.13 0 D 67.0 3.1 22.8 1.0 0.0 0.0 37.5 1789 35501.01 4860672.80 107.26 0 D 67.0 3.1 22.8 1.1 0.0 0.0 37.5 1799 3555	11365			105.42				4.3	19.9	1.1	0.0	0.0	41.7
1553 35662.60 4860761.32 106.06 1 0 67.0 7.2 24.6 2.1 0.0 0.0 42.7 1565 355593.00 4860709.93 108.81 0 D 67.0 3.1 20.9 1.0 0.0 0.0 42.7 1613 355516.34 4860729.93 106.07 0 D 67.0 3.4 21.0 1.1 0.0 0.0 44.1 1623 355551.20 4860726.55 106.09 1 D 67.0 1.5 2.2 2.8 0.0 0.0 44.1 1635 35554.33 4860721.34 106.14 1 D 67.0 10.4 24.8 2.7 0.0 2.0 2.7 1769 35554.33 4860721.34 106.12 0 D 67.0 1.0.4 24.8 2.7 0.0 2.0 2.7 1789 35554.43 486078.22 106.13 1 D 67.0 1.0.4 24.8 2.7 0.0 2.0 2.0 0.0 3.7 1.7 1.8 1.0 <td>11541</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>41.9</td>	11541						-						41.9
1565 355593.00 4860739.50 106.06 0 0 62.8 3.7 16.7 1.4 0.0 0.0 42.1 1601 355546.34 486079.93 106.07 0 D 67.0 3.1 21.6 1.1 0.0 0.0 41.1 1633 355561.34 4860721.50 106.07 0 D 67.0 3.1 21.6 1.0 0.0 0.0 44.1 1635 355551.20 4860721.38 106.05 0 D 67.0 3.2 22.3 1.0 0.0 0.0 44.0 1778 355634.34 4860721.34 106.14 1 D 67.0 3.2 23.1 1.1 0.0 0.0 37.5 1789 35501.01 486072.36 106.12 0 D 67.0 3.1 23.8 1.0 0.0 0.0 37.5 1789 35541.94 486072.32 106.16 0 D 67.0 3.1 23.8 1.0 0.0 0.0 37.4 1789 35561.94 48	11553												
1601 355494 75 4860709.93 108.81 0 D 62.8 3.7 16.7 1.4 0.0 0.0 41.1 1613 35556.0 4860715.97 106.07 0 D 67.0 3.4 21.0 1.1 0.0 0.0 41.1 1625 355551.20 4860720.52 106.09 1 D 67.0 3.2 2.8 0.0 2.0 22.4 1715 355561.04 4860720.02 106.13 0 D 67.0 3.2 2.3.1 1.1 0.0 0.0 40.2 1779 355541.94 4860720.82 106.13 1 D 67.0 1.0.4 2.4.8 1.3 1.3 0.0 0.0 39.3 1799 355541.94 4860723.88 106.12 0 D 62.8 3.2 1.2 0.0 0.0 39.3 1799 355541.94 4860723.82 108.16 0 D 62.8 3.2 2.1.1	11565						-						
1613 355516.34 4860729.40 106.07 0 0 67.0 3.4 21.0 1.1 0.0 0.0 41.4 1624 355504.04 4860729.40 106.07 0 D 67.0 3.1 21.6 1.0 0.0 0.0 41.4 1623 355551.20 4860720.25 106.05 0 D 67.0 3.2 22.1 1.0 0.0 0.0 44.2 1778 355534.33 4860721.34 106.14 1 D 67.0 3.2 23.1 1.1 0.0 0.0 0.0 37.1 1789 355514.34 4860723.26 106.14 1 D 67.0 3.1 23.8 1.0 0.0 0.0 37.1 1799 355541.94 4860723.20 106.13 D 67.0 3.1 23.8 1.0 0.0 0.0 37.4 1800 355539.47 486072.20 106.13 D 67.0 2.9 24.5 1.1 0.0 0.0 37.4 1810 355593.47 4860769.27 </td <td>11601</td> <td></td>	11601												
1624 355560.40 4860729.40 106.07 0 0 67.0 3.1 21.6 1.0 0.0 0.0 41. 1635 35551.20 4860726.55 106.09 1 0 67.0 10.5 22.2 2.8 0.0 2.0 24.0 175 355531.04 4860720.22 106.13 0 0 67.0 3.2 23.1 1.1 0.0 0.0 42.1 1768 355541.94 4860720.22 106.13 1 0 67.0 3.1 23.8 1.0 0.0 0.7 3.1 23.8 1.0 0.0 0.0 37.1 1799 355541.94 4860723.68 106.12 0 0 67.0 3.1 23.8 1.0 0.0 0.0 37.1 1808 355534.71 4860723.26 108.16 0 D 67.0 2.9 24.5 1.1 0.0 0.0 37.1 1804 355793.20 4860739.50 108.80 0 D 62.8 3.0 21.0 1.1 0.0 0.0 </td <td></td>													
1635 355551.20 4860726.55 106.09 1 D 67.0 10.5 22.2 2.8 0.0 2.0 29.1 1715 355531.04 4860721.38 106.05 0 D 67.0 2.9 22.9 1.0 0.0 0.0 40.0 1778 355534.33 4860721.34 106.14 1 D 67.0 1.2 21.0 1.1 1.0 0.0 0.0 37.3 1789 355541.94 4860723.68 106.12 0 D 67.0 1.0 4.21.6 2.7 0.0 2.0 37.3 1808 355539.47 4860723.68 106.12 0 D 67.0 1.0 4.21.6 2.7 0.0 0.0 37.4 1808 355573.20 4860802.45 105.06 0 D 67.0 2.9 24.5 1.1 0.0 0.0 37.4 1950 355613.34 486073.50 108.80 0 D 62.8 3.0 20.9 1.2 0.0 0.0 37.4 1950 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
1715 355631.04 4860751.38 106.05 0 0 67.0 2.9 22.9 1.0 0.0 0.0 40.7 1778 355529.99 4860720.02 106.14 1 D 67.0 0.2 2.1.1 1.1 0.0 0.0 32.7 1789 355541.94 486072.08 106.12 0 D 62.8 4.3 19.3 1.3 0.0 0.0 37.3 1799 355541.94 4860723.08 106.12 0 D 67.0 0.1 1.2 0.0 0.0 37.3 1800 355539.47 4860762.27 105.06 0 D 67.0 2.9 24.5 1.1 0.0 0.0 37.4 1840 355793.20 4860761.32 108.79 1 D 62.8 7.2 24.6 2.2 0.0 2.0 26.4 1950 355560.40 4860719.71 108.82 0 D 62.8 3.0 21.0 1.3 0.0 0.0 37.4 1970 355560.40 4860751.32	11635						-						
1766 355529.99 4860720.02 106.13 0 0 67.0 3.2 23.1 1.1 0.0 0.0 39.1 1779 355534.33 4860721.34 106.14 1 0 67.0 10.4 24.8 2.7 0.0 2.0 27.1 1789 355541.94 4860723.92 106.13 1 D 67.0 3.1 23.8 1.0 0.0 0.0 39.1 1800 355539.47 4860722.92 106.13 1 D 67.0 10.4 21.6 7.0 0.0 0.0 37.4 1800 355593.04 4860769.27 108.79 0 D 62.8 2.9 21.3 1.2 0.0 0.0 37.4 1950 355561.34 4860719.97 108.80 0 D 62.8 3.0 21.6 1.3 0.0 0.0 37.4 1950 355561.34 4860749.74 105.80 0 D 67.0 2.9 26.3 1.0 0.0 0.37.4 1960 355561.34 4860766.93<	11715												
1779 355534.33 4860721.34 106.14 1 D 67.0 10.4 24.8 2.7 0.0 2.0 27.4 1789 355510.41 4860723.68 106.12 D 67.0 1.0.4 24.8 2.7 0.0 2.0 27.4 1803 355539.47 4860723.68 106.12 D 67.0 1.0.4 21.6 2.7 0.0 2.0 30.3 1803 355539.47 4860723.29 106.13 1 D 67.0 10.4 21.6 2.7 0.0 2.0 30.3 1803 35541.34 4860769.27 108.79 D 62.8 2.9 21.3 1.2 0.0 0.0 37.4 1950 355560.40 4860719.50 108.80 O 62.8 3.0 21.6 1.3 0.0 0.0 37.4 1970 355560.40 4860751.38 108.80 O 67.0 2.9 26.3 1.0 0.0 0.37.4 2029 355674.39 4860729.40 108.81 O D 67.0													
1789 355010.01 4860617.80 107.26 0 D 62.8 4.3 19.3 1.3 0.0 0.0 37.3 1799 355541.94 4860723.92 100.13 1 D 67.0 3.1 23.8 1.0 0.0 0.0 39.3 1830 354817.08 4860723.92 108.16 0 D 62.8 4.3 20.0 1.2 0.0 0.0 37.4 1840 355793.20 4860802.45 105.06 0 D 62.8 4.3 20.0 1.2 0.0 0.0 37.4 1950 355662.60 4860761.32 108.79 1 D 62.8 7.2 24.6 2.2 0.0 0.0 37.4 1970 355563.00 486072.90 D 62.8 3.0 20.9 1.2 0.0 0.0 37.4 1989 355560.40 486072.91 108.81 O D 67.0 4.3 25.2 1.2 0.0 0.0 36.4 2010 355631.04 486072.08 106.50													
1799 355541.94 4860723.68 106.12 0 0 67.0 3.1 23.8 1.0 0.0 0.0 39. 1808 355539.47 4860722.92 106.13 1 0 67.0 10.4 21.6 2.7 0.0 0.0 37. 1840 35573.20 486082.45 105.06 0 0 67.0 2.9 24.5 1.1 0.0 0.0 37. 1840 355687.85 4860761.32 108.79 1 0 62.8 2.9 21.3 1.2 0.0 0.0 37. 1950 355680.00 486073.50 108.80 0 0 62.8 3.0 21.6 1.3 0.0 0.0 37. 1989 355560.40 486072.940 108.81 0 D 67.0 4.3 25.2 1.2 0.0 0.0 36. 2010 35643.24 486078.33 106.05 0 D 67.0 2.9 26.6 1.1 0.0 0.0 36. 2029 35543.24 486072.2							_						
1808 355539.47 486072.92 106.13 1 D 67.0 10.4 21.6 2.7 0.0 2.0 30.3 1830 355417.06 4860683.26 108.16 0 D 62.8 4.3 20.0 1.2 0.0 0.0 37.4 1941 355687.85 4860763.27 108.79 0 D 62.8 2.9 21.3 1.2 0.0 0.0 37.4 1950 355563.00 4860739.50 108.80 0 D 62.8 3.0 20.9 1.2 0.0 0.0 37.4 1970 355560.40 4860715.97 108.82 O D 62.8 3.0 21.6 1.3 0.0 0.0 37.4 2010 35462.92 4860749.43 106.05 O D 67.0 2.9 26.6 1.1 0.0 0.0 36.4 2023 355543.92 4860749.33 108.80 O D 67.0 2.9 26.6 1.1 0.0 0.0 35.4 2140 355529.99 <													
1830 354817.08 4860583.26 108.16 0 D 62.8 4.3 20.0 1.2 0.0 0.0 37.4 1840 355793.20 4860802.45 105.06 0 D 67.0 2.9 24.5 1.1 0.0 0.0 37.4 1950 355662.60 4860761.32 108.79 1 D 62.8 2.9 21.3 1.2 0.0 0.0 37.4 1950 355560.40 4860719.57 108.80 0 D 62.8 3.0 20.9 1.2 0.0 0.0 37.4 1970 355560.40 486071.97 108.81 0 D 62.8 3.0 21.6 1.3 0.0 0.0 37.4 1989 355560.40 4860751.38 106.05 0 D 67.0 2.9 26.6 1.1 0.0 0.0 36.4 2021 355541.94 4860721.02 108.87 0 D 62.8 3.2 23.1 1.3 0.0 0.0 35.4 2140 355541.94 <							-						
1840 355793.20 4860802.45 105.06 0 D 67.0 2.9 24.5 1.1 0.0 0.0 38.6 1941 355687.85 4860761.32 108.79 0 D 62.8 2.9 21.3 1.2 0.0 0.0 37.4 1950 355662.60 4860751.97 108.82 0 D 62.8 3.0 22.0 1.3 0.0 0.0 37.4 1959 355560.40 4860729.97 108.82 0 D 62.8 3.0 21.6 1.3 0.0 0.0 37.4 1989 355560.40 4860759.71 108.82 0 D 67.0 4.3 25.2 1.2 0.0 0.0 36.4 2029 35543.92 4860749.74 105.69 0 D 67.0 2.9 26.6 1.1 0.0 0.0 36.4 2029 35543.92 4860751.38 108.80 0 D 67.0 2.9 26.6 1.2 0.0 0.3 35.4 2153 354495.60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
1941 355687.85 4860769.27 108.79 0 D 62.8 2.9 21.3 1.2 0.0 0.0 37.4 1950 3555682.60 4860739.50 108.80 0 D 62.8 3.0 20.9 1.2 0.0 0.0 37.4 1959 355560.40 4860715.97 108.82 0 D 62.8 3.0 21.6 1.3 0.0 0.0 37.4 1989 355560.40 4860729.40 108.81 0 D 62.8 3.0 21.6 1.3 0.0 0.0 36.4 2029 355743.92 4860786.93 106.05 0 D 67.0 2.9 26.3 1.0 0.0 0.0 36.4 2051 35582.66 4860751.38 108.80 0 D 67.0 4.3 26.6 1.1 0.0 0.0 35.4 2140 355543.04 4860720.20 108.87 0 D 67.0 4.3 26.6 1.2 0.0 0.0 35.4 2153 354495.60													
1950 355662.60 4860761.32 108.79 1 D 62.8 7.2 24.6 2.2 0.0 2.0 26.4 1959 355593.00 4860715.97 108.80 0 D 62.8 3.0 20.9 1.2 0.0 0.0 37.4 1970 355516.34 4860715.97 108.82 0 D 62.8 3.4 21.0 1.3 0.0 0.0 37.4 1989 355560.40 4860729.40 108.81 0 D 62.8 3.0 21.6 1.3 0.0 0.0 36.2 2010 354629.52 4860786.93 106.05 0 D 67.0 2.9 26.3 1.0 0.0 0.0 36.4 2021 355832.66 4860721.81 103.75 0 D 67.0 4.3 26.6 1.2 0.0 0.0 35.4 2140 355529.99 4860720.02 108.87 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34.2 2240 355541.94													
1959 355593.00 4860739.50 108.80 0 D 62.8 3.0 20.9 1.2 0.0 0.0 37.4 1970 355516.34 4860719.97 108.82 0 D 62.8 3.4 21.0 1.3 0.0 0.0 37.4 1989 355560.40 4860729.40 108.81 0 D 62.8 3.0 21.6 1.3 0.0 0.0 37.4 2020 355743.92 4860549.74 105.69 D 67.0 2.9 26.6 1.1 0.0 0.0 36.2 2029 355631.04 4860720.21 108.87 O D 67.0 2.9 26.6 1.1 0.0 0.0 35.4 2143 35495.60 4860720.21 108.87 O D 67.0 4.3 26.6 1.2 0.0 0.0 34.2 2281 354328.62 4860525.80 105.25 D 67.0 4.3 26.6 1.2 0.0 0.0 34.2 2284 355541.94 4860723.68 108.8							-						
1970 355516.34 4860715.97 108.82 0 0 62.8 3.4 21.0 1.3 0.0 0.0 37. 1989 355560.40 4860729.40 108.81 0 D 62.8 3.0 21.6 1.3 0.0 0.0 37. 2010 355743.92 4860786.93 106.05 0 D 67.0 2.9 26.6 1.1 0.0 0.0 36. 2029 355743.92 4860720.02 108.87 0 D 67.0 2.9 26.6 1.1 0.0 0.0 35. 2140 355549.99 4860720.02 108.87 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34. 2228 354328.62 4860495.99 105.11 0 D 67.0 4.3 26.9 1.3 0.0 0.0 34. 2228 35541.94 4860492.45 107.81 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28. 2240 355594.36 4860													
1988 355560.40 4860729.40 108.81 0 D 62.8 3.0 21.6 1.3 0.0 0.0 37.0 2010 354629.52 4860786.93 106.05 0 D 67.0 4.3 25.2 1.2 0.0 0.0 36.2 2029 355743.92 4860786.93 106.05 0 D 67.0 2.9 26.6 1.1 0.0 0.0 36.2 2051 355631.04 4860751.38 108.80 0 D 62.8 2.9 23.0 1.2 0.0 0.0 35.2 2062 355631.04 4860751.38 108.80 0 D 62.8 3.2 23.1 1.3 0.0 0.0 35.2 2140 355541.94 4860723.68 105.25 0 D 67.0 4.3 26.6 1.2 0.0 0.3 4.2 2276 355941.94 4860495.99 105.11 0 D 67.0 2.9 24.6 1.1 0.0 0.3 4.2 2276 355944.36 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
2010 354629.52 4860549.74 105.69 0 D 67.0 4.3 25.2 1.2 0.0 0.0 36.4 2029 355743.92 4860786.93 106.05 0 D 67.0 2.9 26.3 1.0 0.0 0.0 36.4 2021 355631.04 4860751.38 108.80 0 D 67.0 2.9 26.6 1.1 0.0 0.0 35.4 2042 355631.04 4860720.02 108.87 0 D 62.8 3.2 23.1 1.3 0.0 0.0 35.4 2140 355541.94 4860723.68 105.25 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34.2 2228 354328.62 4860495.99 105.11 0 D 67.0 4.3 26.9 1.3 0.0 0.0 34.2 2276 35594.36 4860802.45 107.81 0 D 67.0 2.9 24.4 1.3 0.0 0.34.2 2276 35594.36 486086.05.1 <td></td>													
2029 355743.92 4860786.93 106.05 0 D 67.0 2.9 26.3 1.0 0.0 0.0 36.4 2051 355852.66 4860821.18 103.75 0 D 67.0 2.9 26.6 1.1 0.0 0.0 36.4 2062 355631.04 4860751.38 108.80 0 D 62.8 2.9 23.0 1.2 0.0 0.0 35.5 2140 355529.99 4860720.02 108.87 0 D 67.0 4.3 26.6 1.2 0.0 0.0 35.5 2228 354328.62 4860495.99 105.11 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34.3 22240 355541.94 486072.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.4 2264 355793.20 4860850.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.4 2264 35590.07 <													
2051 355852.66 4860821.18 103.75 0 D 67.0 2.9 26.6 1.1 0.0 0.0 36.4 2062 355631.04 4860751.38 108.80 0 D 62.8 2.9 23.0 1.2 0.0 0.0 35.4 2140 355529.99 4860720.02 108.87 0 D 62.8 3.2 23.1 1.3 0.0 0.0 35.4 2123 354495.60 4860525.80 105.25 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34.2 2224 355541.94 4860723.68 108.86 0 D 67.0 2.9 24.4 1.3 0.0 0.0 34.2 2264 35594.36 486082.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.0 2276 35594.36 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 22.5 2281 355043.07 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
2062 355631.04 4860751.38 108.80 0 D 62.8 2.9 23.0 1.2 0.0 0.0 35.1 2140 355529.99 4860720.02 108.87 0 D 62.8 3.2 23.1 1.3 0.0 0.0 35.5 2153 354495.60 4860525.80 105.25 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34.9 22240 355541.94 4860723.68 108.86 0 D 67.0 4.3 26.9 1.3 0.0 0.0 34.9 2264 355741.94 4860723.68 108.86 0 D 62.8 2.9 24.4 1.3 0.0 0.0 34.1 2276 35594.36 486082.45 107.81 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.0 2381 355900.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 22.6 2418 354142.78 <													
2140 355529.99 4860720.02 108.87 0 D 62.8 3.2 23.1 1.3 0.0 0.0 35.5 2153 354495.60 4860525.80 105.25 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34.3 2228 354328.62 4860495.99 105.11 0 D 67.0 4.3 26.9 1.3 0.0 0.0 34.3 2240 355541.94 486082.45 107.81 0 D 62.8 3.1 23.8 1.3 0.0 0.0 34.3 2264 355793.20 4860820.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.6 2276 355944.36 4860850.05 103.29 0 D 67.0 2.9 28.7 1.1 0.0 0.0 34.2 2264 356035.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 22.6 2509 35429.52 <t< td=""><td>12051</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	12051						-						
2153 354495.60 4860525.80 105.25 0 D 67.0 4.3 26.6 1.2 0.0 0.0 34.9 2228 354328.62 4860495.99 105.11 0 D 67.0 4.3 26.9 1.3 0.0 0.0 34.1 2240 355541.94 4860723.68 108.86 0 D 62.8 3.1 23.8 1.3 0.0 0.0 34.1 2264 355793.20 4860802.45 107.81 0 D 62.8 2.9 24.4 1.3 0.0 0.0 34.2 2264 355793.20 4860850.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.0 2276 355904.36 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.6 2418 354142.78 4860634.31 106.05 0 D 62.8 4.3 25.2 1.3 0.0 0.0 32.2 2567 355852.66													
2228 354328.62 4860495.99 105.11 0 D 67.0 4.3 26.9 1.3 0.0 0.0 34.1 2240 355541.94 4860723.68 108.86 0 D 62.8 3.1 23.8 1.3 0.0 0.0 34.1 2240 3555914.36 486082.45 107.81 0 D 62.8 2.9 24.4 1.3 0.0 0.0 34.1 2276 355944.36 4860850.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.0 2381 355900.07 4860878.68 104.18 0 D 67.0 2.9 28.7 1.1 0.0 0.0 34.2 2405 356035.07 4860463.43 106.05 0 D 67.0 3.4 28.4 1.0 0.0 0.0 34.2 2509 354629.52 4860546.93 108.80 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.2 2531 355743.92	12140						-						
2240 355541.94 4860723.68 108.86 0 D 62.8 3.1 23.8 1.3 0.0 0.0 34.0 2264 355793.20 4860802.45 107.81 0 D 62.8 2.9 24.4 1.3 0.0 0.0 34.0 2276 355944.36 4860850.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.0 2381 355900.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.6 2405 356035.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.6 2418 354142.78 4860463.43 106.05 0 D 67.0 3.4 28.4 1.0 0.0 0.0 34.2 2509 354629.52 4860786.93 108.80 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.6 2573 35552.66 <	12153												
2264 355793.20 4860802.45 107.81 0 D 62.8 2.9 24.4 1.3 0.0 0.0 34.3 2276 355944.36 4860850.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.0 2381 355900.07 4860836.11 103.41 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.0 2405 356035.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.0 2418 354142.78 4860463.43 106.05 0 D 67.0 3.4 28.4 1.0 0.0 0.0 34.2 2509 354629.52 4860549.74 108.43 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.2 2531 355743.92 4860786.93 108.80 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.2 2718 354495.60	12228	354328.62	4860495.99	105.11	0	D	67.0	4.3	26.9	1.3	0.0	0.0	34.7
2276 355944.36 4860850.05 103.29 0 D 67.0 2.9 28.6 1.1 6.4 0.0 28.0 2381 355900.07 4860836.11 103.41 0 D 67.0 2.9 28.7 1.1 0.0 0.0 34.2 2405 356035.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.6 2418 354142.78 4860463.43 106.05 0 D 67.0 3.4 28.4 1.0 0.0 0.0 34.2 2509 354629.52 4860549.74 108.43 0 D 62.8 4.3 25.2 1.3 0.0 0.0 32.2 2531 355743.92 4860786.93 108.80 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.4 2567 355852.66 4860821.18 106.50 0 D 62.8 2.9 26.5 1.4 0.0 0.0 30.6 2787 354328.62	12240										0.0	0.0	34.6
2381 355900.07 4860836.11 103.41 0 D 67.0 2.9 28.7 1.1 0.0 0.0 34.3 2405 356035.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.6 2418 354142.78 4860463.43 106.05 0 D 67.0 3.4 28.4 1.0 0.0 0.0 34.2 2509 354629.52 4860549.74 108.43 0 D 62.8 4.3 25.2 1.3 0.0 0.0 32.4 2509 354629.52 4860786.93 108.80 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.4 2567 355852.66 4860821.18 106.50 0 D 62.8 4.3 26.6 1.4 0.0 0.0 32.4 2718 354495.60 4860525.80 108.00 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2833 355944.36	12264						_						34.3
2405 356035.07 4860878.68 104.18 0 D 67.0 2.9 28.5 0.9 9.2 0.0 25.6 2418 354142.78 4860463.43 106.05 0 D 67.0 3.4 28.4 1.0 0.0 0.0 34.2 2509 354629.52 4860549.74 108.43 0 D 62.8 4.3 25.2 1.3 0.0 0.0 32.4 2531 355743.92 4860786.93 108.80 0 D 62.8 2.9 26.3 1.2 0.0 0.0 32.4 2567 355852.66 4860821.18 106.50 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.4 2718 354328.62 4860495.99 107.86 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.6 2787 354328.62 4860850.05 106.03 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2833 355944.36	12276						-						28.0
2418 354142.78 4860463.43 106.05 0 D 67.0 3.4 28.4 1.0 0.0 0.0 34.2 2509 354629.52 4860549.74 108.43 0 D 62.8 4.3 25.2 1.3 0.0 0.0 32.4 2531 355743.92 4860786.93 108.80 0 D 62.8 2.9 26.3 1.2 0.0 0.0 32.4 2567 355852.66 4860821.18 106.50 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.4 2718 354495.60 4860525.80 108.00 0 D 62.8 4.3 26.6 1.4 0.0 0.0 30.6 2787 354328.62 4860495.99 107.86 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.6 2883 355944.36 4860850.05 106.03 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2918 355900.07	12381						_					0.0	34.3
2509 354629.52 4860549.74 108.43 0 D 62.8 4.3 25.2 1.3 0.0 0.0 32.2 2531 355743.92 4860786.93 108.80 0 D 62.8 2.9 26.3 1.2 0.0 0.0 32.2 2567 355852.66 4860821.18 106.50 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.2 2718 354328.62 4860495.99 107.86 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.6 2787 354328.62 4860850.05 106.03 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.6 2883 355944.36 4860850.05 106.03 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2918 355904.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.5 2955 354942.99	12405										9.2	0.0	25.6
2531 355743.92 4860786.93 108.80 0 D 62.8 2.9 26.3 1.2 0.0 0.0 32.4 2567 355852.66 4860821.18 106.50 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.4 2718 354328.62 4860495.99 107.86 0 D 62.8 4.3 26.6 1.4 0.0 0.0 30.4 2787 354328.62 4860495.99 107.86 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.4 2883 355944.36 4860850.05 106.03 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2918 355900.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 29.6 2918 356035.07 4860878.68 106.92 0 D 67.0 4.4 31.5 1.2 0.0 0.0 30.4 2955 354942.99	12418						_				0.0	0.0	34.2
22667 355852.66 4860821.18 106.50 0 D 62.8 2.9 26.5 1.4 0.0 0.0 32.0 2718 354495.60 4860525.80 108.00 0 D 62.8 4.3 26.6 1.4 0.0 0.0 32.0 2787 354328.62 4860495.99 107.86 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.0 2883 355944.36 4860850.05 106.03 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2883 355900.07 4860836.11 106.15 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2918 355900.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.6 2955 354942.99 4860605.76 104.82 0 D 67.0 4.4 31.5 1.2 0.0 0.0 30.7 2966 354142.78	12509		4860549.74	108.43	0	D	62.8		25.2		0.0	0.0	32.1
2718 354495.60 4860525.80 108.00 0 D 62.8 4.3 26.6 1.4 0.0 0.0 30.6 2787 354328.62 4860495.99 107.86 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.6 2883 355944.36 4860850.05 106.03 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.6 2918 355900.07 4860836.11 106.15 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2944 356035.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.6 2955 354942.99 4860605.76 104.82 0 D 67.0 4.4 31.5 1.2 0.0 0.0 29.7 3203 354042.99 4860463.43 108.79 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3203 354009.67	12531				0	D	62.8	2.9	26.3	1.2	0.0	0.0	32.4
2787 354328.62 4860495.99 107.86 0 D 62.8 4.2 26.9 1.4 0.0 0.0 30.3 2883 355944.36 4860850.05 106.03 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2918 355900.07 4860836.11 106.15 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2944 356035.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.7 2955 354942.99 4860605.76 104.82 0 D 62.8 3.4 28.5 1.2 0.0 0.0 29.7 3203 354142.78 4860463.43 108.79 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3203 354009.67 4860463.44 108.79 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3203 355986.80	12567	355852.66	4860821.18	106.50	0	D	62.8	2.9	26.5	1.4	0.0	0.0	32.0
2883 355944.36 4860850.05 106.03 0 D 62.8 2.9 28.6 1.3 0.6 0.0 29.4 2918 355900.07 4860836.11 106.15 0 D 62.8 2.9 28.8 1.4 0.0 0.0 29.4 2944 356035.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.7 2955 354942.99 4860605.76 104.82 0 D 67.0 4.4 31.5 1.2 0.0 0.0 29.7 2966 354142.78 4860463.43 108.79 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.7 3203 354009.67 4860437.29 104.71 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.7 3203 355986.80 4860863.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3898 354942.99	12718	354495.60	4860525.80	108.00			62.8	4.3	26.6	1.4	0.0	0.0	30.6
2918 355900.07 4860836.11 106.15 0 D 62.8 2.9 28.8 1.4 0.0 0.0 29.8 2944 356035.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.7 2955 354942.99 4860605.76 104.82 0 D 67.0 4.4 31.5 1.2 0.0 0.0 29.6 2966 354142.78 4860463.43 108.79 0 D 67.0 4.4 31.5 1.2 0.0 0.0 29.6 3203 354009.67 4860437.29 104.71 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3203 354009.67 4860463.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3298 355986.80 4860863.44 106.16 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7 3898 354942.99	12787	354328.62	4860495.99	107.86	0	D	62.8	4.2	26.9	1.4	0.0	0.0	30.3
2918 355900.07 4860836.11 106.15 0 D 62.8 2.9 28.8 1.4 0.0 0.0 29.8 2944 356035.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.7 2955 354942.99 4860605.76 104.82 0 D 67.0 4.4 31.5 1.2 0.0 0.0 29.6 2966 354142.78 4860463.43 108.79 0 D 67.0 4.4 31.5 1.2 0.0 0.0 29.6 3203 354009.67 4860437.29 104.71 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3203 354009.67 4860463.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3298 355986.80 4860863.44 106.16 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7 3898 354942.99	12883						62.8	2.9	28.6	1.3	0.6	0.0	29.4
2944 356035.07 4860878.68 106.92 0 D 62.8 2.9 28.6 1.2 4.0 0.0 26.7 2955 354942.99 4860605.76 104.82 0 D 67.0 4.4 31.5 1.2 0.0 0.0 30.7 2966 354142.78 4860463.43 108.79 0 D 62.8 3.4 28.5 1.2 0.0 0.0 29.7 3203 354009.67 4860437.29 104.71 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.7 3203 355986.80 4860863.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3298 355986.80 4860865.76 107.56 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7 3898 354942.99 4860605.76 107.56 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7	12918	355900.07	4860836.11	106.15			62.8		28.8	1.4	0.0	0.0	29.8
2955 354942.99 4860605.76 104.82 0 D 67.0 4.4 31.5 1.2 0.0 0.0 30.1 2966 354142.78 4860463.43 108.79 0 D 62.8 3.4 28.5 1.2 0.0 0.0 29.1 3203 354009.67 4860437.29 104.71 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3298 355986.80 4860863.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3898 354942.99 4860605.76 107.56 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7	12944						-						26.1
22966 354142.78 4860463.43 108.79 0 D 62.8 3.4 28.5 1.2 0.0 0.0 29.7 3203 354009.67 4860437.29 104.71 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3298 355986.80 4860863.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3898 354942.99 4860605.76 107.56 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7	12955						-						30.1
3203 354009.67 4860437.29 104.71 0 D 67.0 9.8 26.8 2.7 1.4 0.0 26.3 3298 355986.80 4860863.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3898 354942.99 4860605.76 107.56 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7	12966												29.7
3298 355986.80 4860863.44 106.16 0 D 62.8 2.8 30.4 1.3 3.3 0.0 25.7 3898 354942.99 4860605.76 107.56 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7	13203												26.3
3898 354942.99 4860605.76 107.56 0 D 62.8 4.3 31.5 1.2 0.0 0.0 25.7	13298												25.1
	13898												
ailway, FTA/FRA, Name: "BMV PROPOSED TRACKS LOCO A", ID: "!06!BMV PROPOSED TRACKS00001 L		221012.00			5		52.0		01.0		0.0	0.0	20.1
	Railwav	, FTA/FRA. N	ame: "BMV PI	ROPOSE	D TRA	CKS L	CO A".	ID: "!0	6!BMV P	ROPO	SED TRA	CKS00	0001 L

13898	354942.99	4860605.76	107.56	0 D		6	62.8	4.3 3	1.5 1.2	2 (0.0 0.0	25.7	
Dellerer			000000									004 14	200 4"
	, FTA/FRA, Na	me: "BMV_PR	OPOSED	TRACK	S_LO	50	_A , ID:		V_PROPC	JSED I	RACKSUU	001_LC	
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
11577	355748.52	4860775.08	105.53	3 0	D		67.3	0.1	22.7	0.2	11.2	0.0	33.1
11589	355748.52	4860775.08	108.28	3 0	D		67.3	0.0	22.6	0.6	0.5	0.0	43.5

Railway	FTA/FRA Na	me: "BMV_PRO	POSED -	TRACK	5 100		A" ID·'	'1061BM			RACKSOO	0110	0CO A"
Nr.	X	Y	Z	Refl.	DEN	ŤΤ	_ <u>/(,10.</u> 	Ageo	Aangle	Agr	Ashield	RL	Lr
141.	(m)	(m)	(m)	T ton.	DEN		dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
12040	355865.26	4860812.27	106.13	0	D		67.3	0.3	26.3	(uD) 0.7	13.7	0.0	26.4
13443	356092.08	4860885.21	107.42		D		67.3	-10.6	37.6	-1.4	14.0	0.0	20.4
13443	330092.00	4000003.21	107.42	0	D		07.5	-10.0	57.0	-1.4	14.0	0.0	27.0
Railway	, FTA/FRA, Na	me: "BMV_PRO	POSED -	TRACK	S_LOC	0_	A", ID: '	'!06!BM	V_PROPC	SED TI	RACKS00	001_LC	DCO_A"
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
11727	355603.28	4860728.92	106.39	0	D		67.3	0.8	23.5	0.4	0.0	0.0	42.6
11737	355603.28	4860728.92	109.13	0	D		67.3	0.7	23.5	0.7	0.0	0.0	42.3
11747	355649.26	4860743.37	106.39	0	D		67.3	0.1	24.5	0.2	0.0	0.0	42.6
11757	355649.26	4860743.37	109.13	0	D		67.3	0.0	24.5	0.6	0.0	0.0	42.2
12647	355581.27	4860722.20	106.39	0	D		67.3	1.6	30.5	0.6	0.0	0.0	34.6
12658	355581.27	4860722.20	109.13		D		67.3	1.5	30.5	0.9	0.0	0.0	34.3
	J.					1 1							
-		me: "BMV_PRO				0	-		_				
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
11851	354516.54	4860514.54	106.01		D		67.3	2.7	24.1	0.8	0.0	0.0	39.7
11903	354516.54	4860514.54	108.76	0	D		67.3	2.7	24.1	1.0	0.0	0.0	39.5
13094	354760.23	4860558.45	104.98	0	D		67.3	2.7	31.8	0.8	0.0	0.0	32.0
13124	354760.23	4860558.45	107.72	0	D		67.3	2.7	31.9	1.0	0.0	0.0	31.7
13236	354733.95	4860553.73	105.55	0	D		67.3	2.3	32.0	0.7	0.0	0.0	32.3
13255	354733.95	4860553.73	108.29	0	D		67.3	2.3	32.2	0.9	0.0	0.0	31.9
13330	354783.87	4860562.81	104.58	0	D		67.3	3.3	32.0	1.0	0.0	0.0	31.1
13339	354783.87	4860562.81	107.33	0	D		67.3	3.2	32.1	1.2	0.0	0.0	30.8
13909	354713.37	4860550.07	106.09	0	D		67.3	2.2	34.8	0.7	0.0	0.0	29.7
13918	354713.37	4860550.07	108.83	0	D		67.3	2.2	35.0	0.9	0.0	0.0	29.2
13952	354698.40	4860547.42	106.31	0	D		67.3	2.2	35.9	0.7	0.0	0.0	28.5
13973	354698.40	4860547.42	109.05	0	D		67.3	2.2	36.0	0.9	0.0	0.0	28.3
14157	354683.96	4860544.86	106.28	0	D		67.3	2.3	36.4	0.7	0.0	0.0	27.9
14191	354683.96	4860544.86	109.02	0	D		67.3	2.3	36.3	0.9	0.0	0.0	27.8
15741	354797.14	4860565.33	104.36		D		67.3	3.7	37.1	1.1	0.0	0.0	25.4
15764	354797.14	4860565.33	107.10		D		67.3	3.7	37.2	1.3	0.0	0.0	25.1
					1								
Railway	, FTA/FRA, Na	me: "BMV_PRO	POSED ⁻	TRACK	S_LOC	0_	_A", ID: '	'!06!BM'	V_PROPC	DSED TI	RACKS00	001_LC)CO_A"
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
13214	354810.25	4860567.88	104.64		D		67.3	3.7	31.2	1.1	0.0	0.0	31.3
13225	354810.25	4860567.88	107.38	0	D		67.3	3.7	31.1	1.2	0.0	0.0	31.3
13495	354827.65	4860571.29	105.13	0	D		67.3	4.0	32.5	1.1	0.0	0.0	29.8
13505	354827.65	4860571.29	107.87		D		67.3	4.0	32.4	1.2	0.0	0.0	29.7
	1				1								
		me: "BMV_PRO				0_	-		_	DSED TI)CO_A"
Nr.	X	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
13453	354853.29	4860576.39	105.15		D		67.3	4.0	32.5	1.1	0.0	0.0	29.7
13474	354853.29	4860576.39	107.90		D		67.3	4.0	32.5	1.2	0.0	0.0	29.6
13581	354840.74	4860573.89	105.25		D		67.3	4.0	33.1	1.1	0.0	0.0	29.2
13603	354840.74	4860573.89	107.99	0	D		67.3	4.0	33.1	1.2	0.0	0.0	29.0

Receiver Name: OLA013 ID: !0100!OLA013 X: 355388.79 m Y: 4860647.14 m

Z: 105.11 m

Railway	, FTA/FRA, Na	ame: "CN_EXIS	STING_TE	RACKS	LOCC	", ID: "!0	500!BM	V_PROP	OSED	TRACKS	00002_	LOCO"
Nr.	Х	Y	Z	Refl.	DEN	Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)			dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
80097	355334.34	4860672.15	105.38	0	D	62.1	3.5	10.4	1.3	0.0	0.0	46.8
80108	355306.06	4860667.02	105.35	0	D	62.1	3.5	13.5	1.3	0.0	0.0	43.7
80119	355263.66	4860659.33	105.32	0	D	62.1	3.5	13.8	1.3	0.0	0.0	43.5
80131	355207.11	4860649.08	105.28	0	D	62.1	3.5	17.1	1.2	0.0	0.0	40.2
80141	355150.57	4860638.83	105.23	0	D	62.1	3.5	19.5	1.2	0.0	0.0	37.9
80153	355065.76	4860623.45	105.16	0	D	62.1	3.5	19.1	1.2	0.0	0.0	38.3
80163	354952.67	4860602.95	105.08	0	D	62.1	3.5	21.8	1.1	0.0	0.0	35.6
80175	355313.05	4860668.29	105.36	1	D	62.1	8.7	14.1	2.9	0.0	2.0	34.4
80187	355340.11	4860673.19	105.38	1	D	62.1	4.2	12.1	1.6	0.0	2.0	42.2
80198	355323.38	4860670.16	105.37	1	D	62.1	4.2	13.8	1.6	0.0	2.0	40.4
80210	355298.29	4860665.61	105.35	1	D	62.1	4.2	13.1	1.5	0.0	2.0	41.2
80221	355314.53	4860668.56	105.36	2	D	62.1	9.0	14.3	3.0	0.0	4.0	31.9
80233	355197.73	4860647.38	105.27	2	D	62.1	11.0	17.8	3.3	0.0	4.0	26.0
80256	355195.04	4860646.89	105.27	1	D	62.1	10.9	17.8	3.2	0.0	2.0	28.2
80802	355429.34	4860690.44	106.09	0	D	62.1	3.6	11.2	1.4	0.0	0.0	45.9
80813	355412.01	4860687.07	105.94	0	D	62.1	3.6	12.1	1.4	0.0	0.0	45.0
80823	355400.46	4860684.82	105.84	0	D	62.1	3.6	10.8	1.4	0.0	0.0	46.3
80833	355388.91	4860682.58	105.74	0	D	62.1	3.6	9.9	1.4	0.0	0.0	47.3
80843	355377.35	4860680.33	105.64	0	D	62.1	3.6	9.8	1.4	0.0	0.0	47.3
80852	355365.80	4860678.08	105.54	0	D	62.1	3.6	10.6	1.4	0.0	0.0	46.6
80864	355354.25	4860675.83	105.44	0	D	62.1	3.6	11.9	1.4	0.0	0.0	45.3
80873	355426.39	4860689.87	106.07	1	D	62.1	4.3	10.9	1.6	0.0	2.0	43.3
80885	355409.69	4860686.62	105.92		D	62.1	4.3	12.1	1.6	0.0	2.0	42.0
80895	355398.56	4860684.45	105.82	1	D	62.1	4.3	11.2	1.6	0.0	2.0	43.0
80906	355387.43	4860682.29	105.73	1	D	62.1	4.3	10.6	1.6	0.0	2.0	43.6
80918	355376.30	4860680.12	105.63	1	D	62.1	4.3	10.7	1.6	0.0	2.0	43.6
80929	355365.17	4860677.96	105.53	1	D	62.1	4.3	11.3	1.6	0.0	2.0	42.9
80940	355354.04	4860675.79	105.44	1	D	62.1	4.3	12.3	1.6	0.0	2.0	41.9
81649	355476.18	4860701.43	106.17	0	D	62.1	3.2	16.3	1.3	0.0	0.0	41.3
81661	355452.66	4860695.60	106.18	0	D	62.1	3.2	14.1	1.3	0.0	0.0	43.5
81852	355943.14	4860849.28	106.17	0	D	62.1	2.2	24.0	0.9	1.8	0.0	33.2
81864	355781.76	4860798.17	106.10	0	D	62.1	2.2	21.0	0.9	0.0	0.0	38.0
82199	355578.66	4860730.92	106.19	0	D	62.1	2.2	17.2	0.9	0.0	0.0	41.8
82233	355543.85	4860720.40	106.20	1	D	62.1	10.4	19.8	3.2	0.0	2.0	26.6
82245	355555.41	4860723.89	106.20	1	D	62.1	10.5	19.9	3.2	0.0	2.0	26.5
82256	355510.01	4860710.59	106.18		D	62.1	2.6	16.5	1.1	0.0	0.0	41.9
82691	355663.16	4860758.81	106.11	0	D	62.1	-1.4	24.8	-0.2	0.0	0.0	38.9
82991	354498.93	4860522.16	105.65	0	D	62.1	3.4	22.5	1.2	0.0	0.0	35.0
83041	354796.92	4860575.19	105.58	0	D	62.1	3.2	22.2	1.1	0.0	0.0	35.6

Railway	Railway, FTA/FRA, Name: "BMV_PROPOSED TRACKS_LOCO_A", ID: "!06!BMV_PROPOSED TRACKS00001_LOCO_A"													
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr	
	(m)	(m)	(m)			c	lB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)	
80266	355358.43	4860669.00	106.03	0	D		67.3	2.5	12.0	1.0	0.0	0.0	51.8	
80277	355368.38	4860670.90	106.12	0	D		67.3	2.5	10.5	1.0	0.0	0.0	53.3	
80287	355378.32	4860672.79	106.21	0	D		67.3	2.5	9.5	1.0	0.0	0.0	54.4	
80299	355388.27	4860674.69	106.30	0	D		67.3	2.5	9.4	1.0	0.0	0.0	54.4	
80310	355358.43	4860669.00	106.03	1	D		67.3	3.4	12.2	1.3	0.0	2.0	48.5	
80320	355368.38	4860670.90	106.12	1	D		67.3	3.4	11.1	1.3	0.0	2.0	49.6	
80330	355378.32	4860672.79	106.21	1	D		67.3	3.4	10.3	1.3	0.0	2.0	50.4	
80341	355388.27	4860674.69	106.30	1	D		67.3	3.4	10.2	1.3	0.0	2.0	50.5	
80353	355358.43	4860669.00	108.77	0	D		67.3	2.5	12.0	1.3	0.0	0.0	51.4	

Railway	, FTA/FRA, Na	me: "BMV_PRO	POSED 1	FRACK	S_LOC	0	_A", ID: "	'!06!BM'	V_PROPC	SED T	RACKS00	001_LC	CO_A"
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
80364	355368.38	4860670.90	108.86	0	D		67.3	2.6	10.5	1.3	0.0	0.0	52.9
80374	355378.32	4860672.79	108.95	0	D		67.3	2.6	9.5	1.3	0.0	0.0	53.9
80382	355388.27	4860674.69	109.05	0	D		67.3	2.6	9.5	1.3	0.0	0.0	54.0
80394	355358.43	4860669.00	108.77	1	D		67.3	3.4	12.2	1.5	0.0	2.0	48.1
80405	355368.38	4860670.90	108.86	1	D		67.3	3.4	11.1	1.5	0.0	2.0	49.3
80417	355378.32	4860672.79	108.95	1	D		67.3	3.4	10.3	1.5	0.0	2.0	50.0
80427	355388.27	4860674.69	109.05	1	D		67.3	3.4	10.2	1.6	0.0	2.0	50.1
80437	355398.05	4860676.64	106.35	0	D		67.3	2.5	10.5	1.0	0.0	0.0	53.3
80448	355407.68	4860678.65	106.36	0	D		67.3	2.5	12.0	1.0	0.0	0.0	51.8
80458	355422.12	4860681.66	106.36		D		67.3	2.5	11.2	1.0	0.0	0.0	52.6
80469	355397.75	4860676.58	106.35	1	D		67.3	3.4	11.3	1.3	0.0	2.0	49.4
80478	355406.76	4860678.46	106.35	1	D		67.3	3.4	12.3	1.3	0.0	2.0	48.4
80489	355420.27	4860681.28	106.36	1	D		67.3	3.4	11.0	1.3	0.0	2.0	49.7
80500	355398.05	4860676.64	109.10		D		67.3	2.5	10.6	1.3	0.0	0.0	52.9
80508	355407.68	4860678.65	109.10		D		67.3	2.5	12.0	1.3	0.0	0.0	51.4
80518	355422.12	4860681.66	109.10		D		67.3	2.5	11.2	1.3	0.0	0.0	52.2
80527	355397.75	4860676.58	109.10		D		67.3	3.4	11.3	1.6	0.0	2.0	49.1
80537	355406.76	4860678.46	109.10		D	t	67.3	3.4	12.3	1.6	0.0	2.0	48.0
80548	355420.27	4860681.28	109.10		D	t	67.3	3.4	11.0	1.6	0.0	2.0	49.3
80692	355323.57	4860662.66	105.47		D	t	67.3	2.5	14.1	1.0	0.0	0.0	49.8
80700	355343.49	4860666.25	105.81		D		67.3	2.5	11.3	1.0	0.0	0.0	52.5
80709	355316.77	4860661.43	105.36		D	t	67.3	9.0	18.8	3.0	0.0	2.0	34.6
80719	355323.57	4860662.66	105.47		D		67.3	3.3	13.6	1.3	0.0	2.0	47.1
80730	355343.49	4860666.25	105.81		D		67.3	3.3	11.2	1.3	0.0	2.0	49.5
80738	355317.53	4860661.56	105.37		D		67.3	9.2	18.0	3.1	0.0	4.0	33.1
80747	355323.57	4860662.66	108.21		D		67.3	2.5	14.0	1.3	0.0	0.0	49.5
80757	355343.49	4860666.25	108.55		D		67.3	2.5	11.3	1.3	0.0	0.0	52.2
80766	355316.77	4860661.43	108.10		D		67.3	9.0	18.8	3.0	0.0	2.0	34.5
80774	355323.57	4860662.66	108.21		D		67.3	3.4	13.6	1.6	0.0	2.0	46.8
80783	355343.49	4860666.25	108.55		D		67.3	3.4	11.2	1.5	0.0	2.0	49.2
80793	355317.53	4860661.56	108.11		D		67.3	9.2	18.0	3.1	0.0	4.0	33.0
81163	355441.32	4860685.86	106.36		D		67.3	2.3	14.1	1.0	0.0	0.0	49.9
81171	355460.48	4860690.24	106.34		D		67.3	2.3	16.3	1.0	0.0	0.0	47.7
81181	355441.32	4860685.86	109.10		D		67.3	2.4	14.1	1.3	0.0	0.0	49.6
81192	355460.48	4860690.24	109.09		D		67.3	2.4	16.2	1.3	0.0	0.0	47.4
81202	355276.42	4860654.20	104.83		D		67.3	2.4	17.7	1.0	0.0	0.0	46.2
81213	355301.21	4860658.64	105.15		D		67.3	2.4	15.5	1.0	0.0	0.0	48.4
81223	355306.98	4860659.67	105.10		D		67.3	9.0	15.9	3.0	0.0	2.0	37.4
81235	355307.56	4860659.77	105.22		D		67.3	3.3		1.3	0.0	2.0	43.2
81247	355307.99	4860659.85	105.23		D		67.3	9.2	16.7	3.1	0.0		34.4
81258	355276.42	4860654.20	103.23		D		67.3	2.5		1.3	0.0	0.0	45.9
81267	355301.21	4860658.64	107.38		D	+	67.3	2.5	17.0	1.3	0.0	0.0	45.9
81278	355306.98	4860659.67	107.89		D	\vdash	67.3	2.5 9.0		3.0	0.0	2.0	40.0 37.4
81290	355300.98	4860659.77	107.90		D	+	67.3	3.3		1.5	0.0	2.0	42.9
81302	355307.99	4860659.85	107.97		D	\vdash	67.3	9.2		3.1	0.0	4.0	34.3
81393	355189.97	4860638.73	107.97		D	+	67.3	2.4	10.7	0.9	0.0	0.0	44.3
81404	355239.34	4860647.57	104.20		D	\vdash	67.3	2.4	19.0	1.0	0.0	0.0	44.3
81414	355193.27	4860639.32	104.32		D	+	67.3	11.2	17.1	3.5	0.0	4.0	30.9
81425	355193.27	4860638.78	104.22		D	\vdash	67.3	11.2	17.8	3.5	0.0		33.0
81436	355190.20	4860638.73	104.20		D	+	67.3	2.5		1.2	0.0	0.0	44.1
81436	355239.34	4860638.73	106.94		D	╞	67.3	2.5		1.2	0.0	0.0	44.1
81448	355239.34	4860647.57	107.26		D	\vdash	67.3	2.5	17.0	3.4	0.0	4.0	46.6 30.9
81459	355193.27	4860639.32	106.97		D	╞	67.3	11.2	17.8	3.4	0.0		30.9
						╞						2.0	
81569	355489.13	4860697.16	106.34		D D	\vdash	67.3	2.0		0.9	0.0	0.0	48.4
81579	355489.13	4860697.16	109.08			\vdash	67.3	2.1	16.0	1.2	0.0	0.0	48.0
81672	355053.65	4860614.34	104.40		D	\vdash	67.3	2.4	22.4	0.9	0.0	0.0	41.6
81682	355128.07	4860627.66	104.16		D	-	67.3	2.4		0.9	0.0	0.0	43.8
81693	355053.65	4860614.34	107.14		D	-	67.3	2.5	22.4	1.1	0.0	0.0	41.3
81704	355128.07	4860627.66	106.90		D	\vdash	67.3	2.5		1.2	0.0	0.0	43.5
81772	355527.18	4860706.98	106.36		D	-	67.3	1.6	19.1	0.7	0.0	0.0	45.9
81794	355527.18	4860706.98	109.10		D	-	67.3	1.7	19.0	1.1	0.0	0.0	45.5
82177 82188	355562.39 355562.39	4860716.76	106.38		D	-	67.3	0.9		0.5	0.0	0.0	43.6
- x 7 1 X X	355562.39	4860716.76	109.12	0	D	1	67.3	1.0	22.3	0.9	0.0	0.0	43.1

Rainway, FTA/FRA, Name: BMV PROPOSED TRACKS0001 LCCC Age Age Age Age	Railway	. FTA/FRA Na	me: "BMV PF	OPOSED	TRAC	KS	LOCO) A"	. ID [.] "	'!06!BM	V PR	OPO	SED TI	RACKSO	000110	CO A"
(m) (m) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>							_						1			
81100 355003.30 4800065.32 107.451 0 0 67.31 2.55 2.82 1 1 0 0 35.8 83112 355003.30 480000.55 107.451 0 0 67.31 2.7 2.85 1.2 0.0 0.0 35.2 83181 354077.03 480000.55 107.46 0 0 67.31 3.7 2.85 1.2 0.0 0.0 34.3 83265 354495.93 4800087.78 107.45 0 0 67.31 3.4 2.87 1.3 0.0 0.0 33.6 2.8.0 1.4 0.0 0.0 3.6 2.8.0 1.4 0.0 0.0 3.6 2.8.0 1.4 0.0 0.0 3.6 2.8.0 1.4 0.0 0.0 3.6 2.8.0 1.4 0.0 0.0 3.6 2.8.0 1.4 0.0 0.0 3.6 2.8.0 1.4 0.0 0.0 3.6 2.8.0 1.4					1.01	•		_		<u> </u>	· · · ·	Ŭ +	-		-	
81112 355003.30 4860005.32 107.25 0 0 67.3 2.5 2.81 1 1 0 0 35.5 81210 534477.03 4860000.55 10.726 0 0 67.3 2.7 2.85 1.0 0.0 34.9 82235 534478.22 4860843.36 10.770 0 0 67.3 3.4 2.87 1.4 0.0 0.0 34.3 82365 554490.73 4860052.76 10.74 0 0 67.3 3.4 2.87 1.1 0.0 0.0 33.9 83365 554490.73 4860057.8 10.74 0 0 67.3 3.1 3.1 1.1 0.0 0.0 33.9 83866 334966.47 4860057.7 10.7.2 0 0 7.3 3.1 3.1 1.1 0.0 0.0 33.9 83866 334966.47 4860057.6 10.7 0 0 0 0 0 <td>83100</td> <td></td> <td></td> <td>· · ·</td> <td></td> <td>ЛГ</td> <td>)</td> <td></td> <td>· /</td> <td>· · ·</td> <td>· ·</td> <td>/</td> <td>\ /</td> <td>· /</td> <td>· · ·</td> <td></td>	83100			· · ·		ЛГ)		· /	· · ·	· ·	/	\ /	· /	· · ·	
81481 344977.03 4860000.55 107.45 0 0 67.3 2.7 2.85 1.0 0.0 0.0 34.2 8205 354478.22 4860361.36 104.46 0 0 67.3 3.7 2.7 2.85 1.2 0.0 0.0 34.5 82265 354478.22 4860592.78 104.59 0 0 67.3 3.4 2.87 1.3 0.0 0.0 34.3 83307 534935.93 4860592.78 107.44 0 0 67.3 3.4 2.87 1.3 0.0 0.0 33.6 8336 534906.73 4860596.78 107.44 0 0 0 67.3 3.1 31.1 1.1 0.0 0.0 33.9 83896 354966.47 4860596.73 107.57 0 0 0 67.3 3.1 31.1 1.1 0 0.0 0.0 34.9 34.9 84.9 0.0 0 67.3 3.1 31.1 1.1 0 0 0.0 0.1 0.1 0.1 0.0<																
8205 344977.03 480000.55 107.26 0 67.3 2.7 28.5 1.2 0.0 0.4.9 82273 34478.22 480081.36 107.70 0 0 67.3 3.7 28.0 1.4 0.0 0.43.3 82825 534495.593 4800827.76 107.34 0 0 67.3 3.4 28.7 1.1 0.0 0.0 33.9 83345 354490.73 4800587.65 107.46 0 0 67.3 3.4 28.7 1.1 0.0 0.0 33.6 83455 354496.47 4800587.73 107.29 0 0 67.3 3.1 31.1 1.0 0.0 0.2 28.3 83600 34966.47 4800586.73 10.7 0 0 0 67.3 3.1 31.1 1.3 0.0 0.0 31.9 83600 34968.77 10.7 0 67.0 4.0 11.8 0.0 0.0 50.3					-	_		_							-	
82273 354878.22 480081.36 10.4.96 0 67.3 3.6 27.9 1.2 0.0 0.4.5 82285 554432.82 4800592.78 10.7.4 0 0 67.3 3.7 28.7 1.1 0.0 0.0 3.3 83307 534335.93 4860597.75 10.7.4 0 0 67.3 3.4 28.7 1.3 0.0 0.0 3.3 83366 554466.77 4860587.63 10.7.45 0 0 67.3 3.4 2.8.9 1.4 0.0 0.0 3.3 8366 54466.47 4800587.63 10.7.28 0 0 67.3 3.1 3.1 1.1 0.0 0.0 3.1 8486 54456.47 4800587.63 10.7.728 0 0 67.0 4.0 (1.8.1 1.0 0.0 50.1 0.0 0.0 50.4 80567 56330.55 4800679.79 10.5.3 1 0 0 67.0						_		_								
B3285 354877.22 4860581.36 107.70 0 0 67.3 3.7 28.0 1.4 0.0 0.0 34.1 83307 3549339.3 4800582.78 107.34 0 0 67.3 3.4 28.7 1.1 0.0 0.0 33.8 83365 354090.73 4800587.63 107.46 0 0 67.3 3.6 28.9 1.4 0.0 0.0 33.3 83660 354456.47 4800567.63 107.45 0 0 67.3 3.1 31.1 1.3 0.0 0.0 33.3 83660 344656.47 4800567.3 107.29 0 0 67.3 3.1 31.1 1.3 0.0 0.0 33.3 83660 344656.47 480057.47 10.5 0 0 0 0.1 67.3 3.4 480.7 0.0 0.50.8 0.0 0.50.8 0.0 0.50.8 0.0 0.50.8 0.0 0.0 0.0						_		_			-					
82283 344935.93 4860582.76 104.59 0 67.3 3.4 28.7 1.1 0.0 0.0 33.9 83307 354393 4860587.63 107.46 0 0 67.3 3.6 28.9 1.2 0.0 0.0 33.3 8366 3549637.63 107.46 0 0 67.3 3.1 31.1 1.0 0.0 0.0 33.2 8366 354956.47 4860586.73 107.25 0 0 67.3 3.1 31.1 1.1 0 0.0 0.31.9 Railway, FTA/FRA, Name: "BMV Existing Man Line LOC 1.00 0.0 1.00 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.1 1.1 0.0 0.0 0.1 0.0 0.0 0.0					_	_		_								
83367 344085.93 4860582.76 107.34 0 67.3 3.4 28.7 1.8 0.0 0.0 33.3 83365 3540907.3 4860587.63 107.46 0 0 67.3 3.6 28.9 1.4 0.0 0.0 33.3 8366 354096.47 48605967.3 107.42 0 0 67.3 3.1 31.1 1.0 0.0 0.0 33.3 8366 354096.47 48605967.3 107.42 0 0 67.3 3.1 31.1 1.0 0.0 0.0 33.4 8366 3540964.47 480057.3 107.42 0 0 67.3 3.1 31.1 1.0 0.0 0.0 0.0 35.4 8057 35330.55 4800674.27 105.71 0 0 67.0 4.0 1.5 0.0 0.0 67.0 4.0 1.5 0.0 0.0 47.7 80561 35530.55 4800673.66 105.0						_		_								
83363 33409073 486058763 10472 0 67.3 3.6 28.9 1.2 0.0 0.0 33.3 8366 3540967.3 480586.73 107.29 0 D 67.3 3.1 31.1 1.1 0.0 0.0 33.3 83680 354956.47 4805586.73 107.29 0 D 67.3 3.1 31.1 1.1 0.0 0.0 33.3 Railway, FTA/FRA, Name: "BMV Existing Main Line LOCC", ID: 705001BMV EXISTING TRACKS00001 LOCC" N N N N Y Z Refi. D 67.0 4.0 11.2 1.0 0.0 0.0 85.0 80565 355390.55 4800694.25 10.5 94 1 D 67.0 4.0 11.4 1.7 0.0 2.0 47.0 80565 355380.55 480067.36 10.5.8 1 D 67.0 4.6 11.4 1.7 0.0 2.0 47.0 80565 355380.55 <					_	_		_							-	
83376 346009.73 4860587.63 107.46 0 67.3 3.6 28.9 1.4 0.0 0.0 33.2 8866 3549564.7 4860596.73 107.29 0 0 67.3 3.1 31.1 1.0 0.0 0.0 32.2 Railway, FTA/FRA, Name: "BMV_Existing Main_Line_LOCC". ID: "IOS001BMV_EXISTING TRACKS00001_LOCC" Nr. X Y Z Refl. DEN L/w Ageo Aanle Railway, FTA/FRA, Name: "BMV_Existing Main_Line_LOCC". ID: "IOS001BMV_EXISTING TRACKS00001_LOCC" Nr. X Y Z Refl. DEN L/w Ageo Aanle Railway, FTA/FRA, Name: "BMV_Existing Main_Line_LOCC". ID: "IOS001BMV_EXISTING TRACKS00001_LOCC" 05057 353350.55 4800697.27 105.35 0 D 67.0 4.6 11.4 1.7 0.0 2.0 47.0 80567 35353.56 4800697.36 105.02 D 67.0 4.6 1.1.7 1.0 0.0 47.3 80563 353534.68 4800673.66 105.02					_	_										
83666 354956.47 4680596.73 104.55 0 0 67.3 3.1 31.1 1.0 0.0 0.0 31.9 Railway, FTA/FRA, Name: "BMV_Existing_Main_Line_LOCO", ID: "105001BMV_EXISTING TRACK50001_LOCO" No. No. 0.0 0.0 31.9 Nr. X Y Z Refl. DEN Lw Ageo Aargie Agr Ashield RL Lr (m) (m) (m) Refl. DEN Lw Ageo Aargie Agr Ashield RL Lr 0557 35530.55 48606642.51 105.94 0 C 67.0 4.0 11.7 1.7 0.0 2.0 47.0 05567 355380.55 4860673.68 105.68 0 C 67.0 4.0 11.9 1.5 0.0 0.0 48.7 05614 35538.68 4860673.68 105.08 0 C 67.0 4.0 13.9 1.5 0.0 0.0 48.7						_									-	
836800 354956.47 4660596.73 107.29 0 D 6.7.3 3.1 3.1.1 1.3 0.0 0.0 3.1.9 Railway, FTA/FRA, Name: "BMV_Existing_Main_Line_LOCO", ID: "1050016MV/EXISTING TRACK500001 LOCC" Nr. X Y Z Reft. DEN Lw Ageo Aargle Agr Ashield RL Lr (m) (m) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>67.3</td> <td></td> <td>2</td> <td>28.9</td> <td>1.4</td> <td></td> <td></td> <td>33.3</td>									67.3		2	28.9	1.4			33.3
Railway, FTA/FRA, Name: "BMV_Existing_Main_Line_LOCO", ID: "I0500/BMV_EXISTING TRACKS00001_LOCO" N: X Y Z Refl. DEN Lw Age Aange Agr Ashield RL Lr (m) (m) (db)	83666					_			67.3		3	31.1	1.0	0.0	0.0	
Nr. X Y Z Refl. DEN Lw Agec Asingle Agr Asingle Rt L Lr 00557 355380.55 4860684.25 105.94 0 D 67.0 4.0 10.8 1.5 0.0 0.0 50.8 00565 355380.55 4860684.25 105.94 1 D 67.0 4.0 11.2 1.5 0.0 0.0 52.1 00566 355380.55 4860679.79 105.35 1 D 67.0 4.6 11.7 1.7 0.0 2.0 47.7 08064 355380.65 4860673.66 105.02 0 D 67.0 4.0 13.9 1.5 0.0 0.0 48.3 080643 355341.53 4860673.66 105.02 1 D 67.0 4.6 11.9 1.7 0.0 2.0 45.8 08062 35534.86 4860673.66 105.02 1 D 67.0 4.6	83690	354956.47	4860596.73	3 107.29)	0)		67.3	3.1	3	31.1	1.3	0.0	0.0	31.9
(m) (m) (m) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) 80567 355305.05 4800684.25 105.31 0 0 67.0 4.0 11.2 1.5 0.0 0.0 50.8 80567 355355.05 4800684.25 10.5 1.0 0.0 67.0 4.0 11.2 1.5 0.0 0.0 52.1 80568 355305.05 4800677.91 10.53 1 0 67.0 4.6 11.4 1.7 0.0 2.0 47.0 80661 35530.68 4800673.06 105.02 0 0 67.0 4.0 11.9 1.5 0.0 0.0 47.7 80633 355210.62 480068.11 10.49 0 0 67.0 4.6 11.9 1.7 0.0 2.0 46.1 80643 355314.53 480673.06 105.02 1 0 67.0 4.6 13.3 1.7 <	-				_	_			1							
80557 355380.55 4860684.25 105.94 0 0 67.0 4.0 11.2 1.5 0.0 0.0 50.8 80565 355370.71 4860682.47 105.71 0 0 67.0 4.0 11.2 1.5 0.0 0.0 50.4 80566 355380.55 4860677.97 105.35 1 0 67.0 4.6 11.4 1.7 0.0 2.0 47.3 80566 355380.55 4860673.66 105.02 0 0 67.0 4.6 1.8 1.7 0.0 2.0 49.7 80624 355318.36 4860673.06 105.02 0 0 67.0 4.0 13.9 1.5 0.0 0.0 48.3 80643 355318.36 4860673.06 105.02 1 D 67.0 4.6 11.9 1.7 0.0 2.0 46.8 80661 355318.86 4860673.06 105.02 2 D 67.0 8.8	Nr.				Refl.	DE					-	<u> </u>				
80565 355370.71 4660682.47 105.71 0 0 0 0 0 0 50.4 80575 355355.95 4860679.79 105.35 0 D 67.0 4.0 9.5 1.5 0.0 0.0 52.1 80586 35530.55 4860679.79 105.35 1 D 67.0 4.6 11.4 1.7 0.0 2.0 47.3 80606 355328.66 4860677.36 105.02 0 D 67.0 4.0 13.3 1.5 0.0 0.0 49.7 80643 355314.53 4860677.36 105.01 1 D 67.0 4.0 13.3 1.5 0.0 0.0 45.8 80663 355318.36 4860672.36 105.02 1 D 67.0 4.6 11.9 1.7 0.0 2.0 45.8 80661 355318.36 4860672.46 105.02 2 D 67.0 4.6 1.9 1.7 <t< td=""><td></td><td></td><td>· · /</td><td>. ,</td><td></td><td></td><td> dl</td><td></td><td>· ·</td><td>/</td><td>/ /</td><td><u> </u></td><td>· · · /</td><td></td><td>. ,</td><td></td></t<>			· · /	. ,			dl		· ·	/	/ /	<u> </u>	· · · /		. ,	
80575 35535 95 48606479.79 105.35 0 0 67.0 4.0 9.5 1.5 0.0 0.0 52.1 80566 355380.55 4860684.25 105.71 1 D 67.0 4.6 11.4 1.7 0.0 2.0 47.3 80606 355355.55 4860677.36 105.35 1 D 67.0 4.6 11.7 1.0 0.0 2.0 47.3 80641 355336.86 4860673.36 105.02 0 D 67.0 4.0 11.8 1.5 0.0 0.0 47.7 80643 355345.36 4860673.36 105.00 1 D 67.0 4.6 11.9 1.7 0.0 2.0 48.8 80661 355345.86 4860673.66 105.02 1 D 67.0 4.6 13.0 1.7 0.0 2.0 45.8 80661 355355.94 4860687.01 10.6 1 D 67.0 4.6 13.0 1.7 0.0 0.0 45.8 80661 355355.95									-							
80566 35530.55 4860684.25 105.74 1 D 67.0 4.6 11.4 1.7 0.0 2.0 47.3 80597 355370.71 4860682.47 105.35 1 D 67.0 4.6 11.7 1.7 0.0 2.0 47.0 80661 35535.55 4860673.06 105.08 0 D 67.0 4.0 11.9 1.5 0.0 0.0 47.7 80633 355318.36 4860673.06 105.02 0 D 67.0 4.0 11.3 1.5 0.0 0.0 48.3 80643 355314.53 4860673.61 105.02 1 D 67.0 4.6 11.9 1.7 0.0 2.0 48.1 80661 355318.36 4860687.01 106.10 D 67.0 4.6 11.3 1.7 0.0 2.0 48.1 8061 355318.36 4860687.01 106.10 D 67.0 4.6 13.0 1.7 0.0 0.0 45.8 80681 355318.56 4860687.01 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
89697 355370.71 4460682.47 105.71 1 D 67.0 4.6 1.17 1.7 0.0 2.0 47.0 80606 355356.95 4860673.96 105.08 0 D 67.0 4.6 9.8 1.77 0.0 2.0 49.0 80624 355318.36 4860673.06 105.02 0 D 67.0 4.0 11.9 1.5 0.0 0.0 48.3 80643 355318.36 4860672.38 105.01 1 D 67.0 4.6 11.9 1.7 0.0 2.0 48.5 80661 355318.36 4860672.36 105.02 1 D 67.0 4.6 13.0 1.7 0.0 2.0 48.5 80613 355318.36 4860673.06 105.02 2 D 67.0 4.6 13.3 1.0 0.0 2.0 48.6 80613 3553535.5 4860687.01 106.10 1 D 67.0 4.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									-							
80606 355335.95 4860673.06 105.35 1 D 67.0 4.6 9.8 1.7 0.0 2.0 49.0 80614 355336.86 4860673.06 105.02 0 D 67.0 4.0 11.9 1.5 0.0 0.0 49.7 80633 355346.82 4860673.06 105.02 0 D 67.0 4.6 11.9 1.7 0.0 2.0 39.5 80663 355334.83 4860673.06 105.02 1 D 67.0 4.6 13.7 1.7 0.0 2.0 45.8 80661 355316.36 486067.21 105.02 2 D 67.0 8.8 1.43 3.0 0.0 4.0 37.0 80961 355395.29 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 0.0 45.9 80961 355395.29 4860687.07 106.0 D 62.8 4.0 11.2	80586	355380.55		105.94	1	D		67.0	4	.6 1	1.4	1.7	0	0.0 2.0	47.3	
80614 355336.86 4860676.36 10.00 0 67.0 4.0 11.9 1.5 0.0 0.0 49.7 80624 355318.36 4860673.06 105.02 0 D 67.0 4.0 13.9 1.5 0.0 0.0 44.3 80643 355314.53 4860673.36 105.02 1 D 67.0 4.6 11.9 1.7 0.0 2.0 48.3 80663 355336.86 4860673.36 105.02 1 D 67.0 4.6 13.7 1.7 0.0 2.0 45.1 80661 355318.52 4860687.01 106.10 D 67.0 8.8 14.3 3.0 0.0 4.53 80961 355336.52 4860687.01 106.10 D 67.0 4.6 8.8 1.7 0.0 0.0 45.3 80961 355336.52 4860687.01 106.10 D 67.2 4.0 11.2 1.7 0.0 0.0	80597	355370.71	4860682.47	105.71				67.0	4	.6 1	1.7	1.7	C	0.0 2.0	47.0	
80624 355318.36 4860673.06 105.02 0 0 67.0 4.0 13.9 1.5 0.0 0.0 47.7 80633 355290.62 4860673.06 105.01 1 D 67.0 4.0 13.3 1.5 0.0 0.0 48.3 80663 355336.86 4860673.06 105.02 1 D 67.0 4.6 11.9 1.7 0.0 2.0 45.8 80661 355318.86 4860673.06 105.02 1 D 67.0 4.6 13.0 1.7 0.0 2.0 45.8 80681 355315.86 486067.261 105.02 2 D 67.0 4.8 14.1 3.0 0.0 4.0 3.5 80961 355395.29 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 0.0 45.9 80961 355370.71 4860684.25 108.69 0 D 62.8 4.0 1.1.7 0.0 0.0 47.6 81095 355380.55 4860687.	80606	355355.95	4860679.79	105.35	1 [2		67.0	4	.6	9.8	1.7	C	0.0 2.0	49.0	
80633 355290.62 4806687.13 104.94 0 0 67.0 4.0 13.3 1.5 0.0 0.0 48.3 80643 355314.53 4806072.38 105.08 1 0 67.0 4.6 1.19 1.7 0.0 2.0 39.5 80663 355338.66 4806072.06 105.02 1 0 67.0 4.6 13.7 1.7 0.0 2.0 45.8 80661 355315.86 4806072.61 105.02 2 0 67.0 4.6 13.3 1.5 0.0 0.0 43.7 80961 3553515.86 480687.01 106.10 1 D 67.0 4.0 8.3 1.5 0.0 0.0 45.3 80964 355350.55 4806879.79 108.69 0 D 62.8 4.0 10.8 1.7 0.0 0.0 45.2 80953 355350.55 4806679.79 108.09 0 D 62.8 4.0 11.2 1.7 0.0 0.0 45.2 81005 355380.55	80614	355336.86	4860676.36	105.08	0	D		67.0	4	.0 1	1.9	1.5	C	0.0 0.0	49.7	
80643 355314.53 4860672.38 105.01 1 D 67.0 8.6 14.1 2.9 0.0 2.0 39.5 80653 355338.68 4860673.06 105.02 1 D 67.0 4.6 13.7 1.7 0.0 2.0 45.1 80661 355318.36 4860673.06 105.02 1 D 67.0 4.6 13.0 1.7 0.0 2.0 45.8 80661 355395.29 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 2.0 45.3 80951 355395.29 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 0.0 45.9 80953 355355.55 4860687.97 108.09 D 62.8 4.0 11.2 1.7 0.0 0.0 42.5 81063 355355.55 4860673.68 107.82 0 D 62.8 4.0 11.9 <td>80624</td> <td>355318.36</td> <td>4860673.06</td> <td>105.02</td> <td>0</td> <td>D</td> <td></td> <td>67.0</td> <td>4</td> <td>.0 1</td> <td>3.9</td> <td>1.5</td> <td>C</td> <td>0.0 0.0</td> <td>47.7</td> <td></td>	80624	355318.36	4860673.06	105.02	0	D		67.0	4	.0 1	3.9	1.5	C	0.0 0.0	47.7	
80643 355314.53 4860672.38 105.01 1 D 67.0 8.6 14.1 2.9 0.0 2.0 39.5 80653 355338.86 4860672.06 105.02 1 D 67.0 4.6 13.7 1.7 0.0 2.0 46.8 80661 355318.36 4860673.06 105.02 1 D 67.0 4.6 13.0 1.7 0.0 2.0 45.8 80661 355352.9 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 2.0 46.3 80951 355355.95 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 0.0 46.3 80951 355357.07 4860682.47 108.49 D 62.8 4.0 11.2 1.7 0.0 0.0 47.6 81005 355357.57 4860679.79 108.09 D 62.8 4.0 11.9 1.7 0.0 0.0 42.5 81016 355354.55 4860673.06 <td< td=""><td>80633</td><td>355290.62</td><td>4860668.11</td><td>104.94</td><td>0</td><td>D</td><td></td><td>67.0</td><td>4</td><td>.0 1</td><td>3.3</td><td>1.5</td><td>C</td><td>0.0 0.0</td><td>48.3</td><td></td></td<>	80633	355290.62	4860668.11	104.94	0	D		67.0	4	.0 1	3.3	1.5	C	0.0 0.0	48.3	
80663 355336.86 4860676.36 105.08 1 D 67.0 4.6 11.9 1.7 0.0 2.0 46.8 80662 355318.36 4860673.06 105.02 2 D 67.0 4.6 13.7 1.7 0.0 2.0 45.8 80681 355395.29 4860687.01 106.10 D 67.0 4.6 8.8 14.3 3.0 0.0 4.0 3.3 80961 355395.29 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 0.0 46.3 80984 355355.95 4860687.07 108.69 0 D 62.8 4.0 11.2 1.7 0.0 0.0 45.9 80995 355350.55 4860679.79 108.09 1 D 62.8 4.6 11.4 1.9 0.0 2.0 42.9 81005 35530.56 4860673.06 107.77 0 D 62.8 4.0 11.9 1.7 0.0 0.0 45.2 81038 355348.66	80643	355314.53	4860672.38	105.01	1 [)		67.0	8	.6 1	4.1		C	0.0 2.0	39.5	
80662 355318.36 4860673.06 105.02 1 D 67.0 4.6 13.7 1.7 0.0 2.0 45.1 80671 355290.62 4860687.01 105.02 2 D 67.0 8.8 14.3 3.0 0.0 4.0 37.0 80951 355395.29 4860687.01 106.10 0 D 67.0 4.6 8.3 1.5 0.0 0.0 53.3 80961 355395.29 4860687.01 106.10 0 D 62.8 4.0 11.2 1.7 0.0 0.0 46.3 80984 355370.71 4860682.47 108.45 1 D 62.8 4.0 1.7 0.0 0.0 42.9 81056 355375.95 4860673.66 107.82 0 D 62.8 4.6 11.9 1.7 0.0 0.0 43.2 81063 355376.86 4860673.06 107.72 D 62.8 4.0 13.3 1.7 <td></td> <td></td> <td></td> <td>105.08</td> <td>1 [</td> <td>2</td> <td></td> <td>67.0</td> <td>4</td> <td>.6 1</td> <td>1.9</td> <td>1.7</td> <td>C</td> <td>0.0 2.0</td> <td>46.8</td> <td></td>				105.08	1 [2		67.0	4	.6 1	1.9	1.7	C	0.0 2.0	46.8	
80671 355290.62 486068.11 104.94 1 D 67.0 4.6 13.0 1.7 0.0 2.0 45.8 80681 355395.29 4860687.01 106.10 0 D 67.0 8.8 14.3 3.0 0.0 4.0 37.0 80951 355395.29 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 2.0 49.9 80972 355355.55 4860682.47 108.45 0 D 62.8 4.0 11.2 1.7 0.0 0.0 45.8 80984 355370.71 4860682.47 108.45 0 D 62.8 4.0 11.2 1.7 0.0 0.0 47.6 81005 35535.95 4860679.79 108.09 1 D 62.8 4.6 11.4 1.9 0.0 2.0 42.5 81016 355316.36 4860673.6 107.82 0 D 62.8 4.0 11.9 1.7 0.0 0.0 43.2 81060 355318.36									-							
80681 355315.86 4860672.61 105.02 2 D 67.0 8.8 14.3 3.0 0.0 4.0 37.0 80961 355395.29 4860687.01 106.10 1 D 67.0 4.0 8.3 1.7 0.0 0.0 53.3 80961 355395.29 4860687.01 108.69 0 D 62.8 4.0 10.8 1.7 0.0 0.0 45.9 80984 35530.55 4860682.47 108.69 1 D 62.8 4.0 9.5 1.7 0.0 0.0 42.9 81016 35530.55 4860673.66 107.82 0 D 62.8 4.6 11.9 1.7 0.0 0.0 43.5 81038 355318.36 4860673.06 107.77 0 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81049 355318.36 4860673.06 107.77 1 D 62.8 4.0																
80951 355395.29 4860687.01 106.10 0 D 67.0 4.0 8.3 1.5 0.0 0.0 53.3 80961 355390.52 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 0.0 46.3 80944 355370.71 4860682.27 108.45 0 D 62.8 4.0 11.2 1.7 0.0 0.0 45.9 80995 35535.55 4860679.79 108.09 0 D 62.8 4.6 11.1 1.9 0.0 2.0 42.9 81016 355370.71 4860624.25 108.69 1 D 62.8 4.6 11.7 1.9 0.0 2.0 42.5 81027 35536.56 4860673.05 107.77 0 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81043 355318.36 4860673.05 107.77 1 D 62.8 4.6 11.3 1.7 0.0 0.0 43.8 81070 355318.36																
80961 355395.29 4860687.01 106.10 1 D 67.0 4.6 8.8 1.7 0.0 2.0 49.9 80972 355380.55 4860684.25 108.69 0 D 62.8 4.0 10.8 1.7 0.0 0.0 46.3 80995 35535.55 4860682.47 108.69 0 D 62.8 4.0 11.2 1.7 0.0 0.0 47.6 81005 355380.55 4860682.47 108.69 1 D 62.8 4.6 11.4 1.9 0.0 2.0 42.5 81016 355380.55 4860679.79 108.09 1 D 62.8 4.6 11.4 1.9 0.0 2.0 44.5 81027 355380.56 4860673.66 107.72 0 D 62.8 4.0 13.9 1.7 0.0 0.0 43.2 81049 35534.53 4860673.66 107.77 1 D 62.8 4.6 13.7 1.9 0.0 2.0 44.6 81013 35534.53																
80972 355380.55 4860684.25 108.69 0 D 62.8 4.0 11.2 1.7 0.0 0.0 46.3 80984 355370.71 4860682.47 108.45 0 D 62.8 4.0 11.2 1.7 0.0 0.0 47.6 81005 355380.55 4860679.79 108.09 1 D 62.8 4.6 11.4 1.9 0.0 2.0 42.9 81016 355370.71 4860682.47 108.45 1 D 62.8 4.6 11.7 1.9 0.0 2.0 42.9 81016 355370.71 4860673.66 107.82 0 D 62.8 4.6 11.9 1.7 0.0 0.0 43.2 81038 355318.36 4860673.06 107.77 0 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81049 355318.36 4860673.06 107.77 1 D 62.8 4.6 11.9 1.9 0.0 2.0 44.4 81081 355318.36 <td></td>																
80984 355370.71 4860682.47 108.45 0 D 62.8 4.0 11.2 1.7 0.0 0.0 45.9 80995 355350.55 4860679.79 108.09 0 D 62.8 4.0 1.4 1.9 0.0 2.0 42.9 81016 355370.71 4860624.27 108.69 1 D 62.8 4.6 11.7 1.9 0.0 2.0 42.5 81027 355355.95 4860679.79 108.09 1 D 62.8 4.6 11.7 1.9 0.0 2.0 44.5 81038 35530.62 4860673.06 107.77 0 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81060 355318.36 4860673.06 107.77 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81011 355318.36 4860672.61 107.77 1 D 62.8 4.6 13.0 1.9 0.0 2.0 44.4 81102 355418.29																
80995 355356.95 4860679.79 108.09 0 D 62.8 4.0 9.5 1.7 0.0 0.0 47.6 81005 355380.55 4860684.25 108.69 1 D 62.8 4.6 11.4 1.9 0.0 2.0 42.9 81016 355350.55 4860679.79 108.09 1 D 62.8 4.6 9.8 1.9 0.0 2.0 42.5 81027 355336.86 486067.36 107.82 0 D 62.8 4.0 11.9 1.7 0.0 0.0 43.2 81049 355318.36 4860673.06 107.77 0 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81061 355348.63 4860673.36 107.76 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81081 355318.36 4860673.06 107.77 1 D 62.8 4.6 13.0 1.9 0.0 2.0 42.4 81081 355318.86																
81005 355380.55 4860684.25 108.69 1 D 62.8 4.6 11.4 1.9 0.0 2.0 42.9 81016 355370.71 4860673.79 108.09 1 D 62.8 4.6 11.7 1.9 0.0 2.0 42.5 81027 355335.85 4860673.06 107.82 0 D 62.8 4.0 11.9 1.7 0.0 0.0 43.2 81049 355318.36 4860673.06 107.77 0 D 62.8 4.0 13.9 1.7 0.0 0.0 43.2 81060 355318.36 4860673.36 107.76 1 D 62.8 4.0 13.3 1.7 0.0 0.0 43.8 81071 355318.36 4860673.36 107.77 1 D 62.8 4.6 13.7 1.9 0.0 2.0 42.4 81091 355318.36 4860673.36 107.76 2 D 62.8 4.6 13.0 1.9 0.0 2.0 41.3 81112 355414.92 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									-							
81016 355370.71 4860682.47 108.45 1 D 62.8 4.6 11.7 1.9 0.0 2.0 42.5 81027 355355.95 4860677.97 108.09 1 D 62.8 4.6 9.8 1.9 0.0 2.0 44.5 81038 355336.86 4860673.06 107.77 0 D 62.8 4.0 13.9 1.7 0.0 0.0 43.2 81060 355290.62 48606673.06 107.77 1 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81070 355318.53 4860673.06 107.77 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81081 355318.36 4860672.61 107.76 1 D 62.8 4.6 13.0 1.9 0.0 2.0 42.4 81091 355318.36 4860672.61 107.76 2 D 62.8 8.8 14.3 3.0 0.0 40.32 3.7 81112 355414.92 <td></td>																
81027 355355.95 4860679.79 108.09 1 D 62.8 4.6 9.8 1.9 0.0 2.0 44.5 81038 355336.86 4860673.36 107.77 0 D 62.8 4.0 11.9 1.7 0.0 0.0 43.2 81060 355346.36 4860673.36 107.77 0 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81060 355345.35 4860673.36 107.76 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81081 355348.36 4860673.06 107.77 1 D 62.8 4.6 13.0 1.9 0.0 2.0 42.4 81091 355318.36 4860672.61 107.76 2 D 62.8 4.6 13.0 1.9 0.0 2.0 41.3 81112 355318.36 486069.89 106.15 0 D 67.0 3.8 11.5 1.5 0.0 0.0 50.3 81132 355438.78																
81038 355336.86 4860676.36 107.82 0 0 62.8 4.0 11.9 1.7 0.0 0.0 45.2 81049 355318.36 4860673.06 107.77 0 D 62.8 4.0 13.9 1.7 0.0 0.0 43.2 81060 355290.62 4860673.38 107.76 1 D 62.8 4.0 13.3 1.7 0.0 0.0 43.2 81070 355314.53 4860673.06 107.77 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81091 355318.36 4860673.06 107.77 1 D 62.8 4.6 13.0 1.9 0.0 2.0 41.3 81102 355318.36 4860672.61 107.76 2 D 62.8 8.8 14.3 3.0 0.0 4.0 32.7 81112 355414.92 486090.89 106.15 0 D 67.0 3.8 11.5 1.5 0.0 0.0 50.3 81143 355438.78																
81049 355318.36 4860673.06 107.77 0 D 62.8 4.0 13.9 1.7 0.0 0.0 43.2 81060 355290.62 4860668.11 107.68 0 C 62.8 4.0 13.3 1.7 0.0 0.0 43.8 81070 355318.36 4860673.36 107.76 1 D 62.8 4.6 11.9 1.9 0.0 2.0 35.2 81081 3553368.36 4860673.36 107.76 1 D 62.8 4.6 13.7 1.9 0.0 2.0 42.4 81091 355318.36 4860673.61 107.76 2 D 62.8 4.6 13.0 1.9 0.0 2.0 41.3 81102 355318.36 4860692.61 107.76 2 D 67.0 3.9 10.3 1.5 0.0 4.0 32.7 81112 355414.92 4860690.89 106.15 1 D 67.0 3.8 11.5 1.5 0.0 50.3 81143 355395.29 486068										-			-			
81060 355290.62 4860668.11 107.68 0 D 62.8 4.0 13.3 1.7 0.0 0.0 43.8 81070 355314.53 4860672.38 107.76 1 D 62.8 8.6 14.1 3.0 0.0 2.0 35.2 81081 355318.36 4860673.06 107.77 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81091 355318.36 4860673.06 107.77 1 D 62.8 4.6 13.0 1.9 0.0 2.0 41.3 81102 355315.86 4860672.61 107.76 2 D 62.8 8.8 14.3 3.0 0.0 4.0 32.7 81123 355414.92 4860690.89 106.15 0 D 67.0 3.8 11.5 1.0 0.0 50.3 81133 355438.78 4860697.01 108.85 0 D 67.0 4.5 12.9 1.7 0.0 2.0 46.0 81345 355395.29 4860687																
81070 355314.53 4860672.38 107.76 1 D 62.8 8.6 14.1 3.0 0.0 2.0 35.2 81081 355336.86 4860676.36 107.82 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81091 355318.36 4860673.06 107.77 1 D 62.8 4.6 13.7 1.9 0.0 2.0 440.6 81102 355318.36 4860672.61 107.76 2 D 62.8 4.6 13.0 1.9 0.0 2.0 441.3 81112 355318.36 4860672.61 107.76 2 D 62.8 8.8 14.3 3.0 0.0 4.0 32.7 81123 355414.92 4860690.89 106.15 0 D 67.0 3.8 11.5 1.5 0.0 0.0 50.3 81143 35543.30 4860690.51 106.12 0 D 67.0 3.8 1.15 1.5 0.0 0.0 48.4 81325 355395.29 <td></td>																
81081 355336.86 4860676.36 107.82 1 D 62.8 4.6 11.9 1.9 0.0 2.0 42.4 81091 355318.36 4860673.06 107.77 1 D 62.8 4.6 13.7 1.9 0.0 2.0 40.6 81102 355290.62 4860688.11 107.68 1 D 62.8 4.6 13.0 1.9 0.0 2.0 41.3 81112 355315.86 4860697.261 107.76 2 D 62.8 8.8 14.3 3.0 0.0 4.0 32.7 81123 355414.92 4860690.89 106.15 0 D 67.0 3.9 10.3 1.5 0.0 0.0 51.3 81132 355438.78 4860690.482 106.13 1 D 67.0 3.8 11.5 1.5 0.0 0.0 50.3 81143 355433.30 4860687.01 108.85 0 D 62.8 4.6 8.8 1.9 0.0 2.0 48.5 81347 355395.29 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									_							
81091 355318.36 4860673.06 107.77 1 D 62.8 4.6 13.7 1.9 0.0 2.0 40.6 81102 355290.62 4860668.11 107.68 1 D 62.8 4.6 13.0 1.9 0.0 2.0 41.3 81112 355315.86 4860672.61 107.76 2 D 62.8 8.8 14.3 3.0 0.0 4.0 32.7 81123 355414.92 4860690.89 106.15 1 D 67.0 3.9 10.3 1.5 0.0 0.0 51.3 81132 355438.78 4860690.55 106.12 0 D 67.0 3.8 11.5 1.5 0.0 0.0 50.3 81143 355433.30 4860697.01 108.85 0 D 67.0 4.5 12.9 1.7 0.0 2.0 46.0 81314 355395.29 486067.01 108.85 1 D 67.0 4.0 14.2 1.5 0.0 0.0 47.5 81336 35528.07										.6 1	4.1	3.0	C			
81102355290.624860668.11107.681D62.84.613.01.90.02.041.381112355315.864860672.61107.762D62.88.814.33.00.04.032.781123355414.924860690.89106.150D67.03.910.31.50.00.051.381132355414.924860690.65106.151D67.04.610.41.70.02.048.481143355438.784860690.55106.120D67.03.811.51.50.00.050.381153355433.304860694.82106.131D67.04.512.91.70.02.046.081314355395.294860687.01108.850D62.84.68.81.90.02.045.581336355238.074860687.2104.871D67.04.014.21.50.00.047.581347355271.59486064.72104.871D67.03.614.51.40.00.047.681481355170.95486064.72104.871D67.03.614.51.40.00.044.181492355104.79486064.72103.960D67.03.614.51.40.00.044.181481355170.954												1.9	0			
81112355315.864860672.61107.762D62.88.814.33.00.04.032.781123355414.924860690.89106.150D67.03.910.31.50.00.051.381132355414.924860690.89106.151D67.04.610.41.70.02.048.481143355438.784860690.65106.120D67.03.811.51.50.00.050.381153355433.304860694.82106.131D67.04.512.91.70.02.046.081314355395.294860687.01108.850D62.84.08.41.70.00.048.781325355395.294860687.31104.380D67.04.014.21.50.00.047.581336355238.07486064.72104.871D67.04.629.91.70.02.028.981347355271.59486064.72104.871D67.04.629.91.70.02.028.981382355466.844860702.67106.090D67.03.614.51.40.00.044.181492355104.794860634.83104.130D67.04.019.91.40.00.044.181504355198.06 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.9</td><td>C</td><td></td><td></td><td></td></td<>												1.9	C			
81123355414.924860690.89106.150D67.03.910.31.50.00.051.381132355414.924860690.89106.151D67.04.610.41.70.02.048.481143355438.784860690.65106.120D67.03.811.51.50.00.050.381153355433.304860694.82106.131D67.04.512.91.70.02.046.081314355395.294860687.01108.850D62.84.08.41.70.02.045.581336355238.074860687.73104.380D67.04.629.91.70.02.045.581347355206.254860653.06103.912D67.04.629.91.70.02.028.981359355206.254860653.06103.912D67.03.614.51.40.00.047.681341355170.95486064.72103.960D67.03.614.51.40.00.044.181492355104.794860634.83104.130D67.04.017.51.40.00.044.181492355196.774860651.59103.892D67.011.019.23.50.04.029.481515355196.77<	81102	355290.62	4860668.11	107.68				62.8	4	.6 1	3.0	1.9	C	0.0 2.0	41.3	
81132355414.924860690.89106.151D67.04.610.41.70.02.048.481143355438.784860690.05106.120D67.03.811.51.50.00.050.381153355433.304860694.82106.131D67.04.512.91.70.02.046.081314355395.294860687.01108.850D62.84.08.41.70.00.048.781325355395.294860687.01108.851D62.84.68.81.90.02.045.581336355238.074860658.73104.380D67.04.014.21.50.00.047.581347355271.59486064.72104.871D67.04.629.91.70.02.028.981359355206.25486063.06103.912D67.011.023.33.50.04.025.381382355466.844860702.67106.090D67.04.017.51.40.00.044.181492355104.794860634.83104.130D67.04.019.91.40.00.044.181492355196.674860651.59103.892D67.011.019.23.50.04.029.481504355198.06 <t< td=""><td>81112</td><td>355315.86</td><td>4860672.61</td><td>107.76</td><td>2 [</td><td>C</td><td></td><td>62.8</td><td>8</td><td>.8 1</td><td>4.3</td><td>3.0</td><td>C</td><td>0.0 4.0</td><td>32.7</td><td></td></t<>	81112	355315.86	4860672.61	107.76	2 [C		62.8	8	.8 1	4.3	3.0	C	0.0 4.0	32.7	
81143355438.784860696.05106.120D67.03.811.51.50.00.050.381153355433.304860694.82106.131D67.04.512.91.70.02.046.081314355395.294860687.01108.850D62.84.08.41.70.00.048.781325355395.294860687.01108.851D62.84.68.81.90.02.045.581336355238.074860658.73104.380D67.04.014.21.50.00.047.581347355271.594860664.72104.871D67.04.629.91.70.02.028.981359355206.254860653.06103.912D67.011.023.33.50.04.025.381382355466.844860702.67106.090D67.03.614.51.40.00.044.181492355104.794860634.83104.130D67.04.019.91.40.00.044.181492355196.774860651.59103.892D67.011.019.23.50.04.029.481504355196.774860651.36103.901D67.010.818.43.40.02.032.481525355414.92 <td>81123</td> <td>355414.92</td> <td>4860690.89</td> <td>106.15</td> <td>0</td> <td>5</td> <td></td> <td>67.0</td> <td>3</td> <td>.9 1</td> <td>0.3</td> <td>1.5</td> <td>C</td> <td>0.0 0.0</td> <td>51.3</td> <td></td>	81123	355414.92	4860690.89	106.15	0	5		67.0	3	.9 1	0.3	1.5	C	0.0 0.0	51.3	
81143355438.784860696.05106.120D67.03.811.51.50.00.050.381153355433.304860694.82106.131D67.04.512.91.70.02.046.081314355395.294860687.01108.850D62.84.08.41.70.00.048.781325355395.294860687.01108.851D62.84.68.81.90.02.045.581336355238.074860658.73104.380D67.04.014.21.50.00.047.581347355271.59486064.72104.871D67.04.629.91.70.02.028.981359355206.25486063.06103.912D67.011.023.33.50.04.025.381382355466.844860702.67106.090D67.04.017.51.40.00.044.181492355104.794860634.83104.130D67.04.019.91.40.00.044.181492355196.774860651.59103.892D67.011.019.23.50.04.029.481504355196.774860651.36103.901D67.010.818.43.40.02.032.481505355414.92<	81132	355414.92	4860690.89	106.15	1 [D		67.0	4	.6 1	0.4	1.7	C	0.0 2.0	48.4	
81153355433.304860694.82106.131D67.04.512.91.70.02.046.081314355395.294860687.01108.850D62.84.08.41.70.00.048.781325355395.294860687.01108.851D62.84.68.81.90.02.045.581336355238.074860658.73104.380D67.04.014.21.50.00.047.581347355271.594860664.72104.871D67.04.629.91.70.02.028.981359355206.254860663.06103.912D67.011.023.33.50.04.025.381382355466.844860702.67106.090D67.03.614.51.40.00.044.181492355104.794860634.83104.130D67.04.019.91.40.00.041.881504355198.064860651.59103.892D67.011.019.23.50.04.029.481515355196.774860651.36103.901D67.010.818.43.40.02.032.481525355414.924860690.89108.890D62.83.910.31.70.00.046.881536355414.92 <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50.3</td> <td></td>					0)									50.3	
81314355395.294860687.01108.850D62.84.08.41.70.00.048.781325355395.294860687.01108.851D62.84.68.81.90.02.045.581336355238.074860658.73104.380D67.04.014.21.50.00.047.581347355271.594860664.72104.871D67.04.629.91.70.02.028.981359355206.254860653.06103.912D67.011.023.33.50.04.025.381382355466.844860702.67106.090D67.03.614.51.40.00.044.181481355170.954860634.83104.130D67.04.017.51.40.00.041.881504355196.774860651.59103.892D67.011.019.23.50.04.029.481515355196.774860651.36103.901D67.010.818.43.40.02.032.481525355414.924860690.89108.890D62.83.910.31.70.00.046.881536355414.924860690.89108.891D62.84.610.41.90.02.043.9									-							
81325355395.294860687.01108.851D62.84.68.81.90.02.045.581336355238.074860658.73104.380D67.04.014.21.50.00.047.581347355271.594860664.72104.871D67.04.629.91.70.02.028.981359355206.254860653.06103.912D67.011.023.33.50.04.025.381382355466.844860702.67106.090D67.03.614.51.40.00.047.681481355170.95486064.72103.960D67.04.017.51.40.00.044.181492355104.794860634.83104.130D67.04.019.91.40.00.041.881504355198.064860651.59103.892D67.011.019.23.50.04.029.481515355196.774860651.36103.901D67.010.818.43.40.02.032.481525355414.924860690.89108.890D62.83.910.31.70.00.046.881536355414.924860690.89108.891D62.84.610.41.90.02.043.9																
81336355238.074860658.73104.380D67.04.014.21.50.00.047.581347355271.594860664.72104.871D67.04.629.91.70.02.028.981359355206.254860653.06103.912D67.011.023.33.50.04.025.381382355466.844860702.67106.090D67.03.614.51.40.00.047.681481355170.954860634.83104.130D67.04.017.51.40.00.044.181492355104.794860631.59103.892D67.011.019.91.40.00.041.881504355198.064860651.59103.892D67.011.019.23.50.04.029.481515355196.774860651.36103.901D67.010.818.43.40.02.032.481525355414.924860690.89108.890D62.83.910.31.70.00.046.881536355414.924860690.89108.891D62.84.610.41.90.02.043.9																
81347 355271.59 4860664.72 104.87 1 D 67.0 4.6 29.9 1.7 0.0 2.0 28.9 81359 355206.25 4860653.06 103.91 2 D 67.0 11.0 23.3 3.5 0.0 4.0 25.3 81382 355466.84 4860702.67 106.09 0 D 67.0 3.6 14.5 1.4 0.0 0.0 47.6 81481 355170.95 486064.72 103.96 0 D 67.0 4.0 17.5 1.4 0.0 0.0 44.1 81492 355104.79 4860634.83 104.13 0 D 67.0 4.0 19.9 1.4 0.0 0.0 41.8 81504 355198.06 4860651.59 103.89 2 D 67.0 11.0 19.2 3.5 0.0 4.0 29.4 81515 355196.77 4860651.36 103.90 1 D 67.0 10.8 18.4 3.4 0.0 2.0 32.4 81525 355414.92 </td <td></td>																
81359 355206.25 4860653.06 103.91 2 D 67.0 11.0 23.3 3.5 0.0 4.0 25.3 81382 355466.84 4860702.67 106.09 0 D 67.0 3.6 14.5 1.4 0.0 0.0 47.6 81481 355170.95 4860646.72 103.96 0 D 67.0 4.0 17.5 1.4 0.0 0.0 44.1 81492 355104.79 4860634.83 104.13 0 D 67.0 4.0 19.9 1.4 0.0 0.0 44.1 81504 355198.06 4860651.59 103.89 2 D 67.0 11.0 19.2 3.5 0.0 4.0 29.4 81515 355196.77 4860651.36 103.90 1 D 67.0 10.8 18.4 3.4 0.0 2.0 32.4 81525 355414.92 4860690.89 108.89 0 D 62.8 3.9 10.3 1.7 0.0 0.0 46.8 81536 355414.92<																
81382 355466.84 4860702.67 106.09 0 D 67.0 3.6 14.5 1.4 0.0 0.0 47.6 81481 355170.95 4860646.72 103.96 0 D 67.0 4.0 17.5 1.4 0.0 0.0 44.1 81492 355104.79 4860634.83 104.13 0 D 67.0 4.0 19.9 1.4 0.0 0.0 41.8 81504 355198.06 4860651.59 103.89 2 D 67.0 11.0 19.2 3.5 0.0 4.0 29.4 81515 355196.77 4860651.36 103.90 1 D 67.0 10.8 18.4 3.4 0.0 2.0 32.4 81525 355414.92 4860690.89 108.89 0 D 62.8 3.9 10.3 1.7 0.0 0.0 46.8 81536 355414.92 4860690.89 108.89 1 D 62.8 4.6 10.4 1.9 0.0 2.0 43.9																
81481 355170.95 4860646.72 103.96 0 D 67.0 4.0 17.5 1.4 0.0 0.0 44.1 81492 355104.79 4860634.83 104.13 0 D 67.0 4.0 19.9 1.4 0.0 0.0 44.1 81504 355198.06 4860651.59 103.89 2 D 67.0 11.0 19.2 3.5 0.0 4.0 29.4 81515 355196.77 4860651.36 103.90 1 D 67.0 10.8 18.4 3.4 0.0 2.0 32.4 81525 355414.92 4860690.89 108.89 0 D 62.8 3.9 10.3 1.7 0.0 0.0 46.8 81536 355414.92 4860690.89 108.89 1 D 62.8 4.6 10.4 1.9 0.0 2.0 43.9							++-		-							
81492 355104.79 4860634.83 104.13 0 D 67.0 4.0 19.9 1.4 0.0 0.0 41.8 81504 355198.06 4860651.59 103.89 2 D 67.0 11.0 19.2 3.5 0.0 4.0 29.4 81515 355196.77 4860651.36 103.90 1 D 67.0 10.8 18.4 3.4 0.0 2.0 32.4 81525 355414.92 4860690.89 108.89 0 D 62.8 3.9 10.3 1.7 0.0 0.0 46.8 81536 355414.92 4860690.89 108.89 1 D 62.8 4.6 10.4 1.9 0.0 2.0 43.9																
81504 355198.06 4860651.59 103.89 2 D 67.0 11.0 19.2 3.5 0.0 4.0 29.4 81515 355196.77 4860651.36 103.90 1 D 67.0 10.8 18.4 3.4 0.0 2.0 32.4 81525 355414.92 4860690.89 108.89 0 D 62.8 3.9 10.3 1.7 0.0 0.0 46.8 81536 355414.92 4860690.89 108.89 1 D 62.8 4.6 10.4 1.9 0.0 2.0 43.9							-++									
81515 355196.77 4860651.36 103.90 1 D 67.0 10.8 18.4 3.4 0.0 2.0 32.4 81525 355414.92 4860690.89 108.89 0 D 62.8 3.9 10.3 1.7 0.0 0.0 46.8 81536 355414.92 4860690.89 108.89 1 D 62.8 4.6 10.4 1.9 0.0 2.0 43.9																
81525 355414.92 4860690.89 108.89 0 D 62.8 3.9 10.3 1.7 0.0 0.0 46.8 81536 355414.92 4860690.89 108.89 1 D 62.8 4.6 10.4 1.9 0.0 2.0 43.9									-							
81536 355414.92 4860690.89 108.89 1 D 62.8 4.6 10.4 1.9 0.0 2.0 43.9																
81546 355438.78 4860696.05 108.86 0 D 62.8 3.9 11.5 1.7 0.0 0.0 45.8																
	81546	355438.78	4860696.05	108.86	0 0	ر		62.8	3	.9 1	1.5	1.7		0.0 0.0	45.8	

Railway	y, FTA/FRA, N	ame: "BMV_E	kisting_Ma	ain_Lin	e_LOC	0", ID: "!	0500!B	MV_EXIS	TING 1		0001_	LOCO"		
Nr.	Х	Y	Z	Refl.	DEN	Lw	Ageo	Aangle	Agr	Ashield	RL	Lr		
	(m)	(m)	(m)			dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)		
81558	355433.30	4860694.82	108.88	1	D	62.8	4.5	12.9	1.9	0.0	2.0	41.5		
81590	355494.75	4860709.93	106.06	0	D	67.0	3.3	17.0	1.3	0.0	0.0	45.4		
81602	355238.07	4860658.73	107.12	0	D	62.8	4.0	14.1	1.7	0.0	0.0	43.0		
81716	355466.84	4860702.67	108.83	0	D	62.8	3.6	14.4	1.7	0.0	0.0	43.0		
81728	355170.95	4860646.72	106.71	0	D	62.8	4.0	17.5	1.6	0.0	0.0	39.6		
81738	355104.79	4860634.83	106.87		D	62.8	4.0	19.9	1.6	0.0	0.0	37.3		
81749	355198.06	4860651.59	106.64	2	D	62.8	11.0	19.2	3.4	0.0	4.0	25.2		
81760	355196.77	4860651.36	106.64	1	D	62.8	10.8	18.4	3.4	0.0	2.0	28.2		
81816	355010.01	4860617.80	104.52	0	D	67.0	4.0	19.6	1.3	0.0	0.0	42.1		
81828	354817.08	4860583.26	105.42	0	D	67.0	3.9	20.3	1.3	0.0	0.0	41.6		
82064	355687.85	4860769.27	106.05	0	D	67.0	2.4	21.7	1.0	0.0	0.0	41.9		
82076	355667.99	4860763.02	106.05	1	D	67.0	7.0	24.8	2.4	0.0	2.0	30.8		
82088	355593.00	4860739.50	106.06	0	D	67.0	2.6	21.3	1.1	0.0	0.0	42.1		
82121	355494.75	4860709.93	108.81	0	D	62.8	3.3	17.0	1.6	0.0	0.0	40.9		
82132	355516.34	4860715.97	106.07	0	D	67.0	3.0	21.3	1.2	0.0	0.0	41.5		
82143	355560.40	4860729.40	106.07	0	D	67.0	2.6	21.9	1.1	0.0	0.0	41.4		
82166	355551.94	4860726.78	106.08	1	D	67.0	10.4	21.3	3.2	0.0	2.0	30.1		
82268	355631.04	4860751.38	106.05	0	D	67.0	2.4	23.4	1.0	0.0	0.0	40.2		
82322 355529.99 4860720.02 106.13 0 D 67.0 2.8 23.4 1.1 0.0 0.0														
82334 355533.09 4860720.96 106.14 2 D 67.0 10.4 22.3 3.3 0.0 4.0 2														
82359	355010.01	4860617.80	107.26	0	D	62.8	4.0	19.7	1.5	0.0	0.0	37.6		
82371	355541.94	4860723.68	106.12	0	D	67.0	2.6	24.2	1.1	0.0	0.0	39.1		
82382	355538.17	4860722.52	106.13	2	D	67.0	10.5	23.5	3.3	0.0	4.0	25.8		
82394	355544.45	4860724.46	106.11	2	D	67.0	10.6	21.7	3.3	0.0	4.0	27.4		
82405	355540.16	4860723.13	106.13	1	D	67.0	10.3	20.8	3.2	0.0	2.0	30.7		
82426	354817.08	4860583.26	108.16	0	D	62.8	3.9	20.3	1.4	0.0	0.0	37.1		
82438	355793.20	4860802.45	105.06	0	D	67.0	2.4	24.7	1.1	0.0	0.0	38.9		
82524	355687.85	4860769.27	108.79	0	D	62.8	2.5	21.7	1.3	0.0	0.0	37.3		
82535	355667.99	4860763.02	108.79	1	D	62.8	7.0	24.8	2.6	0.0	2.0	26.4		
82546	355593.00	4860739.50	108.80	0	D	62.8	2.6	21.2	1.4	0.0	0.0	37.6		
82557	355516.34	4860715.97	108.82	0	D	62.8	3.0	21.3	1.5	0.0	0.0	37.0		
82566	355560.40	4860729.40	108.81	0	D	62.8	2.6	21.9	1.4	0.0	0.0	36.9		
82590	355551.94	4860726.78	108.83	1	D	62.8	10.4	21.3	3.2	0.0	2.0	25.9		
82626	354629.52	4860549.74	105.69	0	D	67.0	3.9	25.5	1.3	0.0	0.0	36.3		
82638	355743.92	4860786.93	106.05	0	D	67.0	2.4	26.8	1.0	0.0	0.0	36.8		
82669	355852.66	4860821.18	103.75	0	D	67.0	2.4	27.0	1.1	3.0	0.0	33.6		
82680	355631.04	4860751.38	108.80	0	D	62.8	2.5	23.3	1.3	0.0	0.0	35.7		
82755	355529.99	4860720.02	108.87	0	D	62.8	2.8	23.4	1.4	0.0	0.0	35.2		
82784	354495.60	4860525.80	105.25	0	D	67.0	3.9	26.9	1.4	0.0	0.0	34.8		
82859	354328.62	4860495.99	105.11	0	D	67.0	3.9	27.2	1.4	0.0	0.0	34.5		
82870	355541.94	4860723.68	108.86	0	D	62.8	2.7	24.2	1.4	0.0	0.0	34.6		
82901	355540.16	4860723.13	108.87	1	D	62.8	10.3	20.8	3.2	0.0	2.0	26.5		
82924	355793.20	4860802.45	107.81	0	D	62.8	2.4	24.5	1.4	0.0	0.0	34.5		
82934	355944.36	4860850.05	103.29	0	D	67.0	2.4	29.1	1.0	8.7	0.0	25.8		
82967	355900.07	4860836.11	103.41		D	67.0	2.4	29.2	1.1	6.6	0.0	27.8		
83065	354142.78	4860463.43	106.05		D	67.0	3.0	28.9	1.1	0.0	0.0	34.1		
83158	354629.52	4860549.74	108.43		D	62.8	4.0	25.4	1.5	0.0	0.0	31.9		
83170	355743.92	4860786.93	108.80		D	62.8	2.5	26.7	1.3	0.0	0.0	32.3		
83240	355852.66	4860821.18	106.50		D	62.8	2.4	26.9	1.5	0.0	0.0	32.0		
83386	354495.60	4860525.80	108.00		D	62.8	3.9	26.9	1.6	0.0	0.0	30.4		
83453	354328.62	4860495.99	107.86		D	62.8	3.9	27.2	1.6	0.0	0.0	30.1		
83546	355944.36	4860850.05	106.03		D	62.8	2.4	29.1	1.4	1.9	0.0	28.0		
83570	355900.07	4860836.11	106.15		D	62.8	2.4	29.2	1.4	0.1	0.0	29.6		
83619	354942.99	4860605.76	104.82		D	67.0	4.0	31.8	1.3	0.0	0.0	29.9		
83631	354142.78	4860463.43	104.02		D	62.8	3.0	29.0	1.3	0.0	0.0	29.4		
83877	354009.67	4860437.29	100.70		D	67.0	9.8	26.8	3.1	1.8	0.0	25.5		
84623	354942.99	4860605.76	107.56		D	62.8	4.0	31.8	1.5	0.0	0.0	25.5		
	22.0.2.00				-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		55		0.0	5.5			
Railway	y, FTA/FRA, N	ame: "BMV_PI	ROPOSE	D TRA	CKS L	CO A",	ID: "!0	6!BMV P	ROPO	SED TRA	CKS00	001 LC		
						´								

84623	354942.99	4860605.76	107.56	0 D		6	62.8 4	.0 3	1.8 1.5	5 C	0.0 0.0	25.5	
Railway	/, FTA/FRA, Na	me: "BMV_PR	OPOSED	TRACK	S_LOC	0	_A", ID: '	'!06!BM	V_PROPC	SED TI	RACKS00	001_LC)CO_A"
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
82098	355748.52	4860775.08	105.53	0	D		67.3	-0.9	23.4	-0.0	12.8	0.0	32.1
82109	355748.52	4860775.08	108.28	0	D		67.3	-0.8	23.0	0.5	1.3	0.0	43.3

Railwav	, FTA/FRA. Na	me: "BMV PRO	POSED	TRACK	SL	oco	O A	.", ID: '	"!06!BN	IV PRO	OPC	SED TI	RACKS00	001 LC	DCO A"	
Nr.	X	Y	Z	Refl.	DE		Ť	Lw	Ageo			Agr	Ashield	RL	Lr	
	(m)	(m)	(m)				6	dB(A)	(dB)	(dB	· •	(dB)	(dB)	(dB)	dB(A)	
82650	355865.26	4860812.27	103.39	0	П		+	67.3	+ `		, 6.7	0.1	15.0		26.1	
82658	355865.26	4860812.27	106.13		D		+	67.3			6.3	0.5	15.0	0.0	26.1	
84090	356066.34	4860876.45	100.13	0				67.3		-	5.8	-2.2	15.0	0.0	28.8	
							_									
84103	356066.34	4860876.45	106.95	0				67.3		_	6.6	-1.3	14.4	0.0	25.9	
84351	356227.65	4860932.21	106.86	0	D			67.3	-7.1	34	4.6	-1.4	15.0	0.0	26.3	
Poilwov		me: "BMV PRO		TDACK	2 1	000	<u> </u>	י חו יי						001 1 0		
					_		J_A									
Nr.	X	Y	Z	Refl.	DE	:N		Lw	Ageo			Agr	Ashield	RL	Lr	
	(m)	(m)	(m)				(dB(A)	(dB)	(dB)	/	(dB)	(dB)	(dB)	dB(A)	
82278	355603.28	4860728.92	106.39	0				67.3	-0.0	-	4.3	0.2	0.0	0.0	42.8	
82289	355603.28	4860728.92	109.13	0				67.3	0.1	l 24	4.1	0.7	0.0	0.0	42.4	
82300	355649.26	4860743.37	106.39	0	D			67.3	-0.9	2	5.4	-0.0	0.0	0.0	42.9	
82311	355649.26	4860743.37	109.13	0	D			67.3	-0.7	2	5.2	0.5	0.0	0.0	42.3	
83318	355581.27	4860722.20	106.39	0	D			67.3	0.9) 3'	1.1	0.5	0.0	0.0	34.8	
83330	355581.27	4860722.20	109.13	0				67.3		-	1.0	0.9	0.0	0.0	34.3	
				•	-			0.10				0.0	0.0	0.0	0.110	
Railway	, FTA/FRA, Na	me: "BMV PRO	POSED '	TRACK	SL	000	O A	.", ID: '	"!06!BN	IV PRO	OPC	SED TI	RACKS00	001 LC	DCO A"	
Nr.	X	Y	Z	Refl.	DE		T	Ĺw	Ageo			Agr	Ashield	RL	Lr	
	(m)	(m)	(m)				1	dB(A)	(dB)	(dB)	·	(dB)	(dB)	(dB)	dB(A)	
82448	354516.54	4860514.54	106.01	0	П		+	67.3		· · ·	, 4.6	0.8	0.0	0.0	39.7	
82487	354516.54	4860514.54	108.76	0			+	67.3			4.5	1.1	0.0	0.0	39.4	
83776			106.76		D		+	67.3		-	4.5 2.4		0.0		39.4	
	354760.23	4860558.45					\vdash		2.2			0.8		0.0		
83821	354760.23	4860558.45	107.72	0			\vdash	67.3	2.2	_	2.5	1.1	0.0	0.0	31.4	
83937	354733.95	4860553.73	105.55	0				67.3	1.7		2.6	0.7	0.0	0.0	32.3	
83969	354733.95	4860553.73	108.29	0				67.3	1.8	_	2.9	1.0	0.0	0.0	31.7	
84029	354783.87	4860562.81	104.58		D			67.3	2.8	3 32	2.5	1.0	0.0	0.0	31.0	
84040	354783.87	4860562.81	107.33	0	D			67.3	2.8	3 32	2.6	1.3	0.0	0.0	30.6	
84635	354713.37	4860550.07	106.09	0	D			67.3	1.6	3 3	5.4	0.7	0.0	0.0	29.6	
84646	354713.37	4860550.07	108.83	0	D			67.3	1.7	7 3	5.7	1.0	0.0	0.0	29.0	
84691	354698.40	4860547.42	106.31	0			+	67.3	1.6	-	6.5	0.7	0.0	0.0	28.5	
84702	354698.40	4860547.42	109.05		D			67.3	1.7		6.5	0.9	0.0	0.0	28.1	
84931	354683.96	4860544.86	105.05	0			+	67.3		-	6.8	0.3	0.0	0.0	28.1	
84967	354683.96	4860544.86	109.02	0			_	67.3			6.6	1.0	0.0		27.9	
86463	354797.14	4860565.33	104.36	0	D			67.3	3.3	3 3	7.6	1.2	0.0	0.0	25.3	
Doilwov		me: "BMV_PRO		TDACK	2 1	000	<u> </u>	801			DM			DACKS	200001 1	000
-			1		_	_		TT	1		1					-
Nr.	X	Y (1)	Z	Re	tl.	DE	ΞN		Lw	Ageo	-	angle		Ashield		Lr
	(m)	(m)	(m)					d	B(A)	(dB)		(dB)	(dB)	(dB)	(dB)	dB(/
82602	354250.49		-		0				72.3	19.1		12.1	5.2	0.		-
82614				65	0	D			72.3	19.1		12.1	4.8	0.	0.0	3
83798	354442.07	4859803.11	112.	90	0	D			72.3	18.9		20.9	4.8	0.	0.0	2
83832				65	0	D			72.3	18.9		20.9	4.3	0.	0.0	2
83865					0				72.3	19.1		20.8	5.5	0.	0.0	2
83889						D			72.3	19.1		20.8	5.1	0.		
84268					0				72.3	19.1		22.7	5.2	0.		-
84280	354466.85					D			72.3	18.9		23.1	4.7	0.		
								+ $+$ $-$								
84304					0			+	72.3	18.9		23.1	4.3	0.		
84364					0				72.3	19.1		23.2	5.0	0.		
84397	354206.41					D			72.3	19.1		23.2	4.5	0.		
84420						D			72.3	18.9		23.6	4.8	0.		
84452	354417.96	6 4859814.90	115.	65	0	D			72.3	18.9		23.6	4.4	0.	0 0.0	2
						<u> </u>				.		0== -				
<u> </u>		me: "BMV_PRO			_		<u>A_C</u>		1							
Nr.	Х	Y	Z	Refl.	DE	-N		Lw	Ageo			Agr	Ashield	RL	Lr	
	(m)	(m)	(m)				(dB(A)	(dB)	(dB))	(dB)	(dB)	(dB)	dB(A)	
83251	354250.69	4860117.34	112.81	0	D			67.3	19.1	12	2.1	4.7	0.0	0.0	31.5	
83261	354250.69	4860117.34	115.55	0	D			67.3	19.1	12	2.1	4.2	0.0	0.0	31.9	
	4										'			· · · · · ·		
Railway	, FTA/FRA, Na	me: "BMV_PRO	POSED	TRACK	s_L	000	0_A	\", ID: '	'!06!BN	IV_PRC	DPC	SED TI	RACKS00	001_LC	DCO_A"	
	Х	Y	Z	Refl.	DE	ΞN		Lw	Ageo	Aang	le	Agr	Ashield	RL	Lr	
Nr.	~ 1										、	-		(
Nr.	(m)	(m)	(m)				0	dB(A)	(dB)	(dB))	(dB)	(dB)	(dB)	dB(A)	
Nr. 83901		(m) 4860567.88	(m) 104.64	0	D		(dB(A) 67.3	+ ` ') 1.4	(dB) 1.2	(dB) 0.0		dB(A) 31.5	

83925

354810.25

4860567.88

107.38

0 D

67.3

3.3

31.2

1.4

0.0

0.0

31.4

Railway	/, FTA/FRA, Na	me: "BMV_PR	OPOSED -	TRACK	S_LOC	D_A", ID:	"!06!BM	V_PROPC	SED TI	RACKS00	001_LC	DCO_A"
Nr.	Х	Y	Z	Refl.	DEN	Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)			dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
84199	354827.65	4860571.29	105.13	0	D	67.3	3.6	32.7	1.2	0.0	0.0	29.8
84211	354827.65	4860571.29	107.87	0	D	67.3	3.6	32.6	1.4	0.0	0.0	29.7

Railway	, FTA/FRA, Na	me: "BMV_PRO	OPOSED 1	TRACK	S_LOC	0_	_A", ID: "	'!06!BM	V_PROPC	SED T	RACKS00	001_LC	DCO_A"
Nr.	Х	Y	Z	Refl.	DEN		Lw	Ageo	Aangle	Agr	Ashield	RL	Lr
	(m)	(m)	(m)				dB(A)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
84165	354853.29	4860576.39	105.15	0	D		67.3	3.6	32.9	1.2	0.0	0.0	29.6
84188	354853.29	4860576.39	107.90	0	D		67.3	3.7	32.9	1.4	0.0	0.0	29.3
84292	354840.74	4860573.89	105.25	0	D		67.3	3.6	33.5	1.2	0.0	0.0	29.1
84316	354840.74	4860573.89	107.99	0	D		67.3	3.6	33.5	1.4	0.0	0.0	28.8

Appendix B.3 - Stationary Noise Cadna Sample Calculations

Receiver

E: Two Storey Residence on Mitchell Ave 100!POR28B Name:

ID:

X: 356786.69 m

Y: 4861227.81 m

Z: 104.50 m

				line	Sour	ce IS(0 9613	Nam	e: "Bus	route	יחו "	"10311	S02"							
Nr.	Х	Y	Z			Freq.	Lw	l/a	Optime	· · · · ·	, iD. Di		Aatm	Agr	Δfol	Ahous	∆har	Cmet	RL	Lr
111.	(m)	(m)	(m)	rten.		(Hz)	dB(A)	dB	dB		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)		
4901	356676.60	4861130.26	101.43	0	D	(11 <u>2</u>) A	72.3	17.7	0.0	0.0	· /	<u> </u>	0.7	-0.3	0.0	0.0	0.0	0.0	0.0	. ,
4912	356625.07	4861114.23	101.52	0		A	72.3	16.9	0.0	0.0	0.0	56.9	0.9	-0.3	0.0	0.0	0.0	0.0	0.0	31.7
4923	356629.27	4861115.54	101.51	-	D	A	72.3	17.6	0.0	0.0			1.2	-0.5	0.0	0.0	0.0		10.0	19.2
4934	356678.53	4861130.86	101.42	1		A	72.3	17.4	0.0	0.0	0.0		1.4	-0.6	0.0	0.0	0.0		10.3	17.1
4946	356630.95	4861088.42	102.23	0		A	72.3	17.6	0.0	0.0		57.4	0.9	-0.4	0.0	0.0	0.0	0.0	0.0	32.0
4957	356685.13	4861105.91	102.10		D	A	72.3	17.6	0.0	0.0	0.0	55.0	0.7	-0.3	0.0	0.0	0.0	0.0	0.0	34.5
4968	356619.02	4861084.57	102.26	1		A	72.3	15.0	0.0	0.0	0.0	59.8	1.2	-0.6	0.0	0.0	0.0	0.0	3.9	23.1
4979	356663.88	4861099.05	102.15		D	A	72.3	18.0	0.0	0.0			1.3	-0.6	0.0	0.0	0.0		10.2	18.3
5381	356715.87	4861127.17	101.69	0		A	72.3	10.9	0.0	0.0	0.0	52.8	0.6		0.0	0.0	0.0	0.0	0.0	30.3
5393	356579.11	4861138.53	101.79	0		A	72.3	16.0	0.0	0.0	0.0		1.0	-0.2	0.0	0.0	0.0	0.0	0.0	29.5
5405	356579.59	4861136.38	101.80		D	A	72.3	15.5	0.0	0.0	0.0	58.6	1.0	-0.3	0.0	0.0	0.0	0.0	2.5	26.0
5441	356581.54	4861141.65	101.64	0	D	A	72.3	15.5	0.0	0.0	0.0	57.9	1.0	-0.2	0.0	0.0	0.0	0.0	0.0	29.1
5453	356582.41	4861139.63	101.62	1	D	Α	72.3	14.9	0.0	0.0	0.0	58.7	1.0	-0.3	0.0	0.0	0.0	0.0	2.8	25.0
5465	356589.01	4861102.07	102.04	0	D	Α	72.3	15.6	0.0	0.0	0.0	58.4	1.0	-0.4	0.0	0.0	0.0	0.0	0.0	28.9
5477	356586.36	4861110.22	101.94	1	D	A	72.3	11.4	0.0	0.0	0.0	58.7	1.0	-0.4	0.0	0.0	0.0	0.0	2.5	21.9
5489	356590.73	4861096.80	102.10	1	D	A	72.3	11.6	0.0	0.0	0.0	58.8	1.1	-0.5	0.0	0.0	0.0	0.0	2.5	22.1
5500	356593.78	4861087.43	102.22	1	D	A	72.3	7.1	0.0	0.0	0.0	58.9	1.1	-0.5	0.0	0.0	0.0	0.0	2.5	17.5
6097	356714.81	4861117.90	101.91	0	D	A	72.3	9.2	0.0	0.0	0.0	53.4	0.6	-0.4	0.0	0.0	0.0	0.0	0.0	27.9
6394	356708.05	4861138.70	101.42	0	D	A	72.3	8.1	0.0	0.0	0.0	52.5	0.6	-0.4	0.0	0.0	0.0	0.0	0.0	27.8
6405	356712.82	4861135.79	101.53		D	A	72.3	7.8	0.0	0.0	0.0	52.4	0.6	-0.4	0.0	0.0	0.0	0.0	0.0	27.5
6512	356590.73	4861119.42	101.59	0	D	A	72.3	11.1	0.0	0.0	0.0	58.0	1.0	-0.3	0.0	0.0	0.0	0.0	0.0	24.8
6524	356592.22	4861115.39	101.65	1	D	A	72.3	6.4	0.0	0.0	0.0	58.9	1.1	-0.4	0.0	0.0	0.0	0.0	2.8	16.4
6536	356590.00	4861121.41	101.56	1	D	A	72.3	9.4	0.0	0.0	0.0	58.9	1.1	-0.4	0.0	0.0	0.0	0.0	2.8	19.4
6585	356597.36	4861110.15	101.62	0	D	A	72.3	10.3	0.0	0.0	0.0	58.0	1.0	-0.4	0.0	0.0	0.0	0.0	0.0	24.1
6597	356597.36	4861110.15	101.62	1		A	72.3	10.3	0.0	0.0	0.0	59.1	1.1	-0.4	0.0	0.0	0.0	0.0	2.8	20.1
6646	356596.39	4861083.94	102.26	0		A	72.3	6.2	0.0	0.0	0.0	58.6	1.0	-0.5	0.0	0.0	0.0	0.0	0.0	19.5
6658	356601.03	4861081.29	102.28	0		A	72.3	8.1	0.0	0.0	0.0	58.5	1.0	-0.5	0.0	0.0	0.0	0.0	0.0	21.5
6670	356599.21	4861082.33	102.27	1	D	A	72.3	10.3	0.0	0.0	0.0	59.1	1.1	-0.6	0.0	0.0	0.0	0.0	2.8	20.1
			Poi	nt Sou	irco I		13 No	mo: "L	IVAC Ro	ofton	L Init'	י יחו יי	10710	\$/1"						
Nr.	Х	Y	Z		DEN		Lw	l/a	Optime	K0	Di		Aatm	-	Δfol	Ahous	Abar	Cmet	RL	Lr
111.	(m)	(m)	(m)	rten.		(Hz)	dB(A)	dB	dB		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)		dB(A)
5334	356759.35	4861122.56	104.00	0	D	(11 <u>2</u>) A	90.0	0.0	0.0	0.0	()	· ,	0.5	· ,	0.0	0.0	0.0	0.0	0.0	38.9
0004	000700.00	4001122.00	104.00	U	U		00.0	0.0	0.0	0.0	0.0	01.7	0.0	1.2	0.0	0.0	0.0	0.0	0.0	00.0
			Poir	nt Sou	irce, l	SO 96	13, Nai	me: "H	IVAC Ro	oftop	Unit'	", ID: "	'!07!N	S40"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5346	356740.67	4861116.60	104.00	0	D	A	90.0	0.0	0.0	0.0	0.0	52.6	0.6	-1.2	0.0	0.0	0.0	0.0	0.0	38.0
	X	X	-						ne: "Bus					•	A.C. /	A I-	A I.	0	D '	$ \square$
Nr.	X (Y	Z	Refl.	DEN	Freq.			Optime		Di					Ahous				
5057	(m)	(m)	(m)		<u> </u>		dB(A)		dB				(dB)				(dB)			dB(A)
5357	356712.23	4861108.94	102.09	0	D	A	102.5	0.0	-13.0	0.0	0.0	53.9	1.0	-0.6	0.0	0.0	0.0	0.0	0.0	35.1
				Poir	nt Sou	rce IS	SO 961	3. Nan	ne: "Bus	Idle"	'. ID'	"!03IN	IS36"							
Nr.	Х	Y	Z			Freq.			Optime	_	Di			Aar	Afol	Ahous	Abar	Cmet	RL	Lr
++	(m)	(m)	(m)				dB(A)	dB	dB	(dB)				(dB)		(dB)	(dB)			dB(A)
5369	356693.89	4861102.56	· · /	0	D		102.5	0.0	-13.0			54.9		-0.6		0.0		· ,	0.0	<u> </u>
· · · · ·			-											1			1			
									ie: "Bus											
Nr.	Х	Y	Z	Refl.	DEN	Freq.			Optime							Ahous				Lr
	(m)	(m)	(m)		_		dB(A)		dB				(dB)							dB(A)
5417	356670.24	4861095.65	102.14	0	D	A	102.5	0.0	-13.0	0.0	0.0	55.9	1.2	-0.6	0.0	0.0	0.0	0.0	0.0	32.9

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	_Idle'	', ID:	"!03!N	IS04"							
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5429	356670.24	4861095.65	102.14	1	D	A	102.5	0.0	-13.0	0.0	0.0	61.3	1.8	-1.0	0.0	0.0	0.0	0.0	8.2	19.2

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	_Idle'	', ID: '	"!03!N	IS05"							
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5738	356656.88	4861091.24	101.65	0	D	Α	102.5	0.0	-13.0	0.0	0.0	56.5	1.3	-0.6	0.0	0.0	0.0	0.0	0.0	32.3
5750	356656.88	4861091.24	101.65	1	D	Α	102.5	0.0	-13.0	0.0	0.0	60.9	1.8	-1.0	0.0	0.0	0.0	0.0	8.1	19.7

			Line S	Source	e, ISO	9613,	Name	: "Bus	_Accele	ration	_Nois	se", ID): "!03!	LS06	"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5762	356637.29	4861089.31	101.83	0	D	Α	90.0	17.1	-25.1	0.0	0.0	57.2	1.3	-0.7	0.0	0.0	0.0	0.0	0.0	24.3
5774	356686.15	4861104.84	102.00	0	D	Α	90.0	17.1	-25.1	0.0	0.0	55.0	1.1	-0.6	0.0	0.0	0.0	0.0	0.0	26.5

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	ldle'	', ID:	"!03!N	IS06"							
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6076	356641.95	4861086.50	101.50	0	D	Α	102.5	0.0	-13.0	0.0	0.0	57.1	1.3	-0.7	0.0	0.0	0.0	0.0	0.0	31.7
6087	356641.95	4861086.50	101.50	1	D	Α	102.5	0.0	-13.0	0.0	0.0	60.5	1.7	-1.0	0.0	0.0	0.0	0.0	8.0	20.3

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	_Idle'	', ID:	"!03!N	IS07"							
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6108	356625.02	4861081.56	101.50	0	D	Α	102.5	0.0	-13.0	0.0	0.0	57.8	1.4	-0.8	0.0	0.0	0.0	0.0	0.0	31.1
6119	356625.02	4861081.56	101.50	1	D	Α	102.5	0.0	-13.0	0.0	0.0	60.0	1.7	-1.0	0.0	0.0	0.0	0.0	4.5	24.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	65"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6417	356800.44	4861136.38	103.00	0	D	A	90.7	0.0	-10.8	0.0	0.0	50.3	0.8	-1.5	0.0	0.0	0.0	0.0	0.0	30.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	64''					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6429	356785.93	4861131.65	103.00	0	D	A	90.7	0.0	-10.8	0.0	0.0	50.7	0.8	-1.5	0.0	0.0	0.0	0.0	0.0	29.9

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	63"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6441	356770.15	4861127.55	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	51.1	0.8	-1.5	0.0	0.0	0.0	0.0	0.0	29.4

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	62"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6452	356753.77	4861128.23	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	51.4	0.8	-1.5	0.0	0.0	0.0	0.0	0.0	29.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	31"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6464	356830.48	4861119.99	102.26	0	D	A	90.7	0.0	-10.8	0.0	0.0	52.3	0.9	-1.5	0.0	0.0	0.0	0.0	0.0	28.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	30''					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6476	356813.97	4861114.56	103.00	0	D	A	90.7	0.0	-10.8	0.0	0.0	52.3	0.9	-1.5	0.0	0.0	0.0	0.0	0.0	28.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	32"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6488	356847.00	4861125.42	101.59	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.5	0.9	-1.5	0.0	0.0	0.0	0.0	0.0	27.9

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	29"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6500	356797.45	4861109.13	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.5	0.9	-1.5	0.0	0.0	0.0	0.0	0.0	27.9

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	3"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6549	356863.51	4861130.85	101.98	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.8	1.0	-1.5	0.0	0.0	0.0	0.0	0.0	27.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	28''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6561	356780.94	4861103.70	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.9	1.0	-1.5	0.0	0.0	0.0	0.0	0.0	27.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	61"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6573	356729.77	4861113.98	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.1	1.0	-1.5	0.0	0.0	0.0	0.0	0.0	27.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK0	54''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6610	356688.13	4861142.69	102.62	0	D	A	90.7	0.0	-10.8	0.0	0.0	53.3	1.0	-1.4	0.0	0.0	0.0	0.0	0.0	27.0

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	34''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6622	356880.03	4861136.28	102.31	0	D	A	90.7	0.0	-10.8	0.0	0.0	53.3	1.0	-1.5	0.0	0.0	0.0	0.0	0.0	27.0

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	27"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6634	356764.43	4861098.28	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.4	1.0	-1.5	0.0	0.0	0.0	0.0	0.0	27.0

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	35''					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6682	356896.54	4861141.71	102.33	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.9	1.1	-1.5	0.0	0.0	0.0	0.0	0.0	26.4

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	26''					
Nr.																Lr				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															dB(A)				
6694	356747.91	4861092.85	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.9	1.1	-1.5	0.0	0.0	0.0	0.0	0.0	26.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	4"					
Nr.																				
	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (Hz) dB(A) dB dB (dB) (dB)																			
6705	356692.55	4861121.24	103.00	0	D	А	90.7	0.0	-10.8	0.0	0.0	54.1	1.1	-1.5	0.0	0.0	0.0	0.0	0.0	26.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	53"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6716	356670.78	4861137.01	102.53	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.4	1.1	-1.3	0.0	0.0	0.0	0.0	0.0	25.8

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	60"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6738	356707.38	4861103.57	103.79	0	D	A	90.7	0.0	-10.8	0.0	0.0	54.4	1.1	-1.5	0.0	0.0	0.0	0.0	0.0	25.9

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	36"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6749	356913.05	4861147.14	102.34	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.5	1.1	-1.5	0.0	0.0	0.0	0.0	0.0	25.7

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	25''					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6769	356731.40	4861087.42	103.04	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.6	1.2	-1.5	0.0	0.0	0.0	0.0	0.0	25.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	6"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6781	356676.78	4861116.51	102.94	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.9	1.2	-1.5	0.0	0.0	0.0	0.0	0.0	25.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	37"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6805	356929.57	4861152.57	102.37	0	D	Α	90.7	0.0	-10.8	0.0	0.0	55.2	1.2	-1.5	0.0	0.0	0.0	0.0	0.0	25.0

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	52"					
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6817	356652.17	4861131.96	102.57	0	D	Α	90.7	0.0	-10.8	0.0	0.0	55.4	1.2	-1.4	0.0	0.0	0.0	0.0	0.0	24.7

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	59"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6841	356683.72	4861095.69	103.90	0	D	A	90.7	0.0	-10.8	0.0	0.0	55.5	1.3	-1.5	0.0	0.0	0.0	0.0	0.0	24.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	18"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6865	356659.74	4861110.51	102.89	0	D	Α	90.7	0.0	-10.8	0.0	0.0	55.8	1.3	-1.4	0.0	0.0	0.0	0.0	0.0	24.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	38''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6888	356946.08	4861158.00	102.68	0	D	Α	90.7	0.0	-10.8	0.0	0.0	55.8	1.3	-1.5	0.0	0.0	0.0	0.0	0.0	24.2
6900	356946.08	4861158.00	102.68	1	D	Α	90.7	0.0	-10.8	0.0	0.0	58.1	1.6	-1.5	0.0	0.0	0.0	0.0	2.5	19.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	51"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6912	356635.77	4861126.60	102.65	0	D	Α	90.7	0.0	-10.8	0.0	0.0	56.2	1.3	-1.4	0.0	0.0	0.0	0.0	0.0	23.7

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	58"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6936	356662.90	4861088.43	103.78	0	D	A	90.7	0.0	-10.8	0.0	0.0	56.4	1.4	-1.5	0.0	0.0	0.0	0.0	0.0	23.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	39"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6960	356962.60	4861163.43	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	56.5	1.4	-1.5	0.0	0.0	0.0	0.0	0.0	23.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	17"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6977	356640.50	4861105.15	102.93	0	D	А	90.7	0.0	-10.8	0.0	0.0	56.6	1.4	-1.4	0.0	0.0	0.0	0.0	0.0	23.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	50''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7026	356617.16	4861120.29	102.83	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.1	1.5	-1.3	0.0	0.0	0.0	0.0	0.0	22.7
7038	356617.16	4861120.29	102.83	1	D	А	90.7	0.0	-10.8	0.0	0.0	59.8	1.9	-1.5	0.0	0.0	0.0	0.0	2.6	17.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	40''					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7050	356979.11	4861168.86	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.1	1.5	-1.5	0.0	0.0	0.0	0.0	0.0	22.8

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	57"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7062	356644.60	4861083.07	103.02	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.1	1.5	-1.5	0.0	0.0	0.0	0.0	0.0	22.7

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	15"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7085	356623.15	4861098.84	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.4	1.5	-1.4	0.0	0.0	0.0	0.0	0.0	22.4
7108	356623.15	4861098.84	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	59.9	1.9	-1.6	0.0	0.0	0.0	0.0	2.6	17.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	1"					
Nr.																				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
7152	356995.63	4861174.29	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.7	1.5	-1.5	0.0	0.0	0.0	0.0	0.0	22.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	19"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7163	356601.07	4861115.88	103.00	0	D	A	90.7	0.0	-10.8	0.0	0.0	57.7	1.6	-1.3	0.0	0.0	0.0	0.0	0.0	21.9
7174	356601.07	4861115.88	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	59.2	1.8	-1.5	0.0	0.0	0.0	0.0	2.5	17.8

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	56"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7185	356626.94	4861077.71	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.8	1.6	-1.4	0.0	0.0	0.0	0.0	0.0	22.0
7196	356626.94	4861077.71	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	60.0	1.9	-1.7	0.0	0.0	0.0	0.0	2.6	17.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	13"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7206	356605.49	4861093.16	103.31	0	D	Α	90.7	0.0	-10.8	0.0	0.0	58.1	1.6	-1.4	0.0	0.0	0.0	0.0	0.0	21.6
7236	356605.49	4861093.16	103.31	1	D	Α	90.7	0.0	-10.8	0.0	0.0	59.3	1.8	-1.6	0.0	0.0	0.0	0.0	2.1	18.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	2"					
Nr.	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr																			
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7256	357012.14	4861179.72	103.15	0	D	Α	90.7	0.0	-10.8	0.0	0.0	58.3	1.6	-1.5	0.0	0.0	0.0	0.0	0.0	21.5

			Point S	ource,	ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	55"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7264	356609.59	4861073.29	103.49	0	D	Α	90.7	0.0	-10.8	0.0	0.0	58.4	1.7	-1.5	0.0	0.0	0.0	0.0	0.0	21.3

Receiver

Name: OLA028B ID: !0100!OLA028B

X: 356789.77 m

Y: 4861225.69 m

Z: 101.50 m

				Line \$	Sourc	e, ISC	D 9613	, Nam	e: "Bus_	route	", ID:	"!03!L	S02"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5248	356678.10	4861130.72	101.42	0)	Α	72.3	17.5	0.0	0.0	0.0	54.3	0.7	-0.4	0.0	0.0	0.0	0.0	0.0	35.2
5260	356626.56	4861114.69	101.52	0)	Α	72.3	17.2	0.0	0.0	0.0	56.9	0.9	-0.5	0.0	0.0	0.0	0.0	0.0	32.2
5271	356632.10	4861116.42	101.51	1 [)	Α	72.3	18.0	0.0	0.0	0.0	60.3	1.2	-0.5	0.0	0.0	0.0	0.0	9.4	19.9
5284	356681.02	4861131.63	101.42	1 [)	Α	72.3	17.0	0.0	0.0	0.0	61.6	1.4	-0.4	0.0	0.0	0.0	0.0	9.7	17.0
5297	356630.95	4861088.42	102.23	0)	Α	72.3	17.6	0.0	0.0	0.0	57.4	0.9	-0.6	0.0	0.0	0.0	0.0	0.0	32.1
5309	356685.13	4861105.91	102.10	0)	Α	72.3	17.6	0.0	0.0	0.0	55.0	0.7	-0.5	0.0	0.0	0.0	0.0	0.0	34.6
5321	356621.24	4861085.29	102.25	1 [)	Α	72.3	15.6	0.0	0.0	0.0	59.9	1.2	-0.5	0.0	0.0	0.0	0.0	3.6	23.8
5333	356670.39	4861101.15	102.14	1 [)	Α	72.3	18.2	0.0	0.0	0.0	61.3	1.3	-0.5	0.0	0.0	0.0	0.0	9.7	18.8
5466	356715.87	4861127.17	101.69	0)	Α	72.3	10.9	0.0	0.0	0.0	52.8	0.6	-0.3	0.0	0.0	0.0	0.0	0.0	30.2
5478	356579.11	4861138.53	101.79	0)	Α	72.3	16.0	0.0	0.0	0.0	58.2	1.0	-0.3	0.0	0.0	0.0	0.0	0.0	29.5
5490	356579.58	4861136.43	101.80	1 [)	Α	72.3	15.5	0.0	0.0	0.0	58.6	1.0	-0.3	0.0	0.0	0.0	0.0	2.7	25.8
5526	356581.54	4861141.65	101.64	0)	Α	72.3	15.5	0.0	0.0	0.0	58.0	1.0	-0.3	0.0	0.0	0.0	0.0	0.0	29.1
5538	356582.39	4861139.68	101.62	1 [)	Α	72.3	14.9	0.0	0.0	0.0	58.8	1.0	-0.3	0.0	0.0	0.0	0.0	2.9	24.8
5550	356589.01	4861102.07	102.04	0)	Α	72.3	15.6	0.0	0.0	0.0	58.4	1.0	-0.5	0.0	0.0	0.0	0.0	0.0	28.9
5562	356586.26	4861110.52	101.93	1 [)	Α	72.3	11.2	0.0	0.0	0.0	58.8	1.0	-0.4	0.0	0.0	0.0	0.0	2.7	21.5
5574	356590.53	4861097.41	102.10	1 [)	Α	72.3	11.6	0.0	0.0	0.0	58.9	1.1	-0.5	0.0	0.0	0.0	0.0	2.7	21.8
5586	356593.66	4861087.78	102.22	1 [)	Α	72.3	7.7	0.0	0.0	0.0	59.0	1.1	-0.5	0.0	0.0	0.0	0.0	2.7	17.8
5815	356714.81	4861117.90	101.91	0)	Α	72.3	9.2	0.0	0.0	0.0	53.4	0.6	-0.4	0.0	0.0	0.0	0.0	0.0	27.9
5851	356708.05	4861138.70	101.42	0)	Α	72.3	8.1	0.0	0.0	0.0	52.5	0.6	-0.3	0.0	0.0	0.0	0.0	0.0	27.7
5887	356712.82	4861135.79	101.53	0)	Α	72.3	7.8	0.0	0.0	0.0	52.5	0.6	-0.3	0.0	0.0	0.0	0.0	0.0	27.4
6237	356590.73	4861119.42	101.59	0)	Α	72.3	11.1	0.0	0.0	0.0	58.1	1.0	-0.4	0.0	0.0	0.0	0.0	0.0	24.8
6248	356592.19	4861115.48	101.65	1 [)	Α	72.3	6.6	0.0	0.0	0.0	59.0	1.1	-0.4	0.0	0.0	0.0	0.0	2.9	16.4
6259	356589.97	4861121.49	101.56	1 [)	Α	72.3	9.3	0.0	0.0	0.0	58.9	1.1	-0.4	0.0	0.0	0.0	0.0	2.9	19.2
6387	356597.36	4861110.15	101.62	0)	Α	72.3	10.3	0.0	0.0	0.0	58.0	1.0	-0.5	0.0	0.0	0.0	0.0	0.0	24.1
6399	356597.36	4861110.15	101.62	1 [)	Α	72.3	10.3	0.0	0.0	0.0	59.1	1.1	-0.4	0.0	0.0	0.0	0.0	2.9	20.0
6447	356596.46	4861083.90	102.26	0)	А	72.3	6.4	0.0	0.0	0.0	58.6	1.0	-0.5	0.0	0.0	0.0	0.0	0.0	19.6
6459	356601.09	4861081.25	102.28	0)	А	72.3	8.0	0.0	0.0	0.0	58.5	1.0	-0.6	0.0	0.0	0.0	0.0	0.0	21.4
6471	356599.21	4861082.33	102.27	1 [)	Α	72.3	10.3	0.0	0.0	0.0	59.2	1.1	-0.5	0.0	0.0	0.0	0.0	2.9	20.0

			Poir	nt Sou	ırce, l	SO 96	13, Nai	ne: "⊦	IVAC Ro	oftop	Unit'	', ID: "	!07!NS	641"						
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5394	356759.35	4861122.56	104.00	0	D	Α	90.0	0.0	0.0	0.0	0.0	51.6	0.5	-0.5	0.0	0.0	0.0	0.0	0.0	38.3
5406	356759.35	4861122.56	104.00	1	D	А	90.0	0.0	0.0	0.0	0.0	52.0	0.6	-0.5	0.0	0.0	0.0	0.0	2.7	35.1

			Poi	nt Sou	irce, I	SO 96	13, Nar	ne: "H	IVAC Ro	oftop	Unit'	', ID: "	'!07!NS	540"						
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5418	356740.67	4861116.60	104.00	0	D	Α	90.0	0.0	0.0	0.0	0.0	52.6	0.6	-0.4	0.0	0.0	0.0	0.0	0.0	37.2
5430	356740.67	4861116.60	104.00	1	D	Α	90.0	0.0	0.0	0.0	0.0	52.9	0.6	-0.4	0.0	0.0	0.0	0.0	2.7	34.2

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	_Idle'	', ID: '	"!03!N	IS37"							
Nr.																				
	Nr. X Y Z Refi. DEN Freq. LW Va Optime K0 DI Adity Aatm Agr Afoi Anous Abar Cmet RL Lr (m) (m) (m) (Hz) dB(A) dB dB (dB) (dB)																			
5442	356712.23	4861108.94	102.09	0	D	A	102.5	0.0	-13.0	0.0	0.0	53.9	1.0	-0.9	0.0	0.0	0.0	0.0	0.0	35.4

				Poir	nt Sou	rce, IS	O 9613	3, Nar	ne: "Bus	_Idle'	', ID:	"!03!N	IS36"							
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5454	356693.89	4861102.56	102.10	0	D	A	102.5	0.0	-13.0	0.0	0.0	54.9	1.1	-1.0	0.0	0.0	0.0	0.0	0.0	34.5

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	_Idle'	', ID:	"!03!N	IS04"							
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5502	356670.24	4861095.65	102.14	0	D	Α	102.5	0.0	-13.0	0.0	0.0	55.9	1.2	-1.1	0.0	0.0	0.0	0.0	0.0	33.4
5514	356670.24	4861095.65	102.14	1	D	Α	102.5	0.0	-13.0	0.0	0.0	61.3	1.8	-1.2	0.0	0.0	0.0	0.0	7.9	19.6

				Poir	nt Sou	rce, IS	O 9613	3, Nar	ne: "Bus	_Idle'	', ID:	"!03!N	IS05"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5682	356656.88	4861091.24	101.65	0	D	Α	102.5	0.0	-13.0	0.0	0.0	56.5	1.3	-1.1	0.0	0.0	0.0	0.0	0.0	32.8
5694	356656.88	4861091.24	101.65	1	D	Α	102.5	0.0	-13.0	0.0	0.0	60.9	1.8	-1.2	0.0	0.0	0.0	0.0	7.8	20.1

			Line S	Source	e, ISO	9613,	Name	: "Bus	_Accele	ration	_Nois	se", ID	: "!03!	LS06	"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5706	356637.29	4861089.31	101.83	0	D	Α	90.0	17.1	-25.1	0.0	0.0	57.2	1.3	-1.1	0.0	0.0	0.0	0.0	0.0	24.6
5718	356686.15	4861104.84	102.00	0	D	Α	90.0	17.1	-25.1	0.0	0.0	55.0	1.1	-1.0	0.0	0.0	0.0	0.0	0.0	26.9

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	_Idle'	', ID:	"!03!N	IS06"							
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5791	356641.95	4861086.50	101.50	0	D	Α	102.5	0.0	-13.0	0.0	0.0	57.2	1.3	-1.1	0.0	0.0	0.0	0.0	0.0	32.1
5803	356641.95	4861086.50	101.50	1	D	Α	102.5	0.0	-13.0	0.0	0.0	60.5	1.7	-1.2	0.0	0.0	0.0	0.0	7.7	20.7

				Poir	nt Sou	rce, IS	O 9613	3, Nan	ne: "Bus	_Idle'	', ID:	"!03!N	IS07"							
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5827	356625.02	4861081.56	101.50	0	D	Α	102.5	0.0	-13.0	0.0	0.0	57.8	1.4	-1.2	0.0	0.0	0.0	0.0	0.0	31.4
5839	356625.02	4861081.56	101.50	1	D	Α	102.5	0.0	-13.0	0.0	0.0	60.0	1.7	-1.2	0.0	0.0	0.0	0.0	4.4	24.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	65''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5863	356800.44	4861136.38	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	50.1	0.7	-1.2	0.0	0.0	0.0	0.0	0.0	30.2
5875	356800.44	4861136.38	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	50.6	0.8	-1.1	0.0	0.0	0.0	0.0	2.1	27.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	64''					
Nr.																				
	(m) (m) (m) (Hz) dB(A) dB dB dB (dB) (dB) (dB) (dB) (dB) (dB)															dB(A)				
5899	356785.93	4861131.65	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	50.5	0.8	-1.1	0.0	0.0	0.0	0.0	0.0	29.8
5911	356785.93	4861131.65	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	51.0	0.8	-1.1	0.0	0.0	0.0	0.0	2.1	27.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	63"					
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5922	356770.15	4861127.55	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	51.0	0.8	-1.1	0.0	0.0	0.0	0.0	0.0	29.2
5934	356770.15	4861127.55	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	51.5	0.8	-1.1	0.0	0.0	0.0	0.0	2.1	26.7

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	62"					
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
5946	356753.77	4861128.23	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	51.3	0.8	-1.1	0.0	0.0	0.0	0.0	0.0	28.9
5958	356753.77	4861128.23	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	51.7	0.9	-1.1	0.0	0.0	0.0	0.0	2.1	26.4

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	31"					
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6154	356830.48	4861119.99	102.26	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.1	0.9	-1.1	0.0	0.0	0.0	0.0	0.0	28.0
6164	356830.48	4861119.99	102.26	1	D	A	90.7	0.0	-10.8	0.0	0.0	52.5	0.9	-1.1	0.0	0.0	0.0	0.0	2.1	25.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	30''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6174	356813.97	4861114.56	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.1	0.9	-1.1	0.0	0.0	0.0	0.0	0.0	28.0
6184	356813.97	4861114.56	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	52.6	0.9	-1.1	0.0	0.0	0.0	0.0	2.1	25.4

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	32"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6194	356847.00	4861125.42	101.59	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.2	0.9	-1.1	0.0	0.0	0.0	0.0	0.0	27.9
6204	356847.00	4861125.42	101.59	1	D	Α	90.7	0.0	-10.8	0.0	0.0	52.7	1.0	-1.1	0.0	0.0	0.0	0.0	2.1	25.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	29"					
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6215	356797.45	4861109.13	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.4	0.9	-1.1	0.0	0.0	0.0	0.0	0.0	27.7
6226	356797.45	4861109.13	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	52.8	1.0	-1.1	0.0	0.0	0.0	0.0	2.1	25.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	33"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6271	356863.51	4861130.85	101.98	0	D	A	90.7	0.0	-10.8	0.0	0.0	52.6	0.9	-1.1	0.0	0.0	0.0	0.0	0.0	27.5
6301	356863.51	4861130.85	101.98	1	D	A	90.7	0.0	-10.8	0.0	0.0	53.0	1.0	-1.1	0.0	0.0	0.0	0.0	2.1	25.0

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	28"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6311	356780.94	4861103.70	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	52.7	1.0	-1.1	0.0	0.0	0.0	0.0	0.0	27.3
6322	356780.94	4861103.70	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	53.1	1.0	-1.1	0.0	0.0	0.0	0.0	2.1	24.8

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	61"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6333	356729.77	4861113.98	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.1	1.0	-1.1	0.0	0.0	0.0	0.0	0.0	26.9

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	34''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6344	356880.03	4861136.28	102.31	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.1	1.0	-1.1	0.0	0.0	0.0	0.0	0.0	26.9
6355	356880.03	4861136.28	102.31	1	D	Α	90.7	0.0	-10.8	0.0	0.0	53.4	1.0	-1.1	0.0	0.0	0.0	0.0	2.1	24.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	27"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6365	356764.43	4861098.28	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.3	1.0	-1.1	0.0	0.0	0.0	0.0	0.0	26.7
6376	356764.43	4861098.28	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	53.6	1.0	-1.1	0.0	0.0	0.0	0.0	2.1	24.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	54''					
Nr.	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr															Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6413	356688.13	4861142.69	102.62	0	D	A	90.7	0.0	-10.8	0.0	0.0	53.4	1.0	-1.1	0.0	0.0	0.0	0.0	0.0	26.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	35''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6424	356896.54	4861141.71	102.33	0	D	A	90.7	0.0	-10.8	0.0	0.0	53.7	1.1	-1.1	0.0	0.0	0.0	0.0	0.0	26.3
6435	356896.54	4861141.71	102.33	1	D	A	90.7	0.0	-10.8	0.0	0.0	54.0	1.1	-1.2	0.0	0.0	0.0	0.0	2.1	23.9

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	26''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6483	356747.91	4861092.85	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	53.9	1.1	-1.1	0.0	0.0	0.0	0.0	0.0	26.1
6495	356747.91	4861092.85	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	54.2	1.1	-1.2	0.0	0.0	0.0	0.0	2.1	23.7

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	4"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6507	356692.55	4861121.24	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.1	1.1	-1.2	0.0	0.0	0.0	0.0	0.0	25.9

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	36''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6519	356913.05	4861147.14	102.34	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.3	1.1	-1.2	0.0	0.0	0.0	0.0	0.0	25.7

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	36"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6531	356913.05	4861147.14	102.34	1	D	Α	90.7	0.0	-10.8	0.0	0.0	54.6	1.2	-1.2	0.0	0.0	0.0	0.0	2.1	23.4

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK06	60''					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6543	356707.38	4861103.57	103.79	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.4	1.1	-1.2	0.0	0.0	0.0	0.0	0.0	25.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	53"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6555	356670.78	4861137.01	102.53	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.4	1.1	-1.2	0.0	0.0	0.0	0.0	0.0	25.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK02	25''					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6579	356731.40	4861087.42	103.04	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.5	1.1	-1.2	0.0	0.0	0.0	0.0	0.0	25.5
6591	356731.40	4861087.42	103.04	1	D	А	90.7	0.0	-10.8	0.0	0.0	54.8	1.2	-1.3	0.0	0.0	0.0	0.0	2.1	23.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	6"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6602	356676.78	4861116.51	102.94	0	D	Α	90.7	0.0	-10.8	0.0	0.0	54.9	1.2	-1.3	0.0	0.0	0.0	0.0	0.0	25.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	37''					
Nr.																Lr				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6626	356929.57	4861152.57	102.37	0	D	Α	90.7	0.0	-10.8	0.0	0.0	55.0	1.2	-1.3	0.0	0.0	0.0	0.0	0.0	25.0
6638	356929.57	4861152.57	102.37	1	D	Α	90.7	0.0	-10.8	0.0	0.0	55.2	1.2	-1.3	0.0	0.0	0.0	0.0	2.1	22.8

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	52"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6650	356652.17	4861131.96	102.57	0	D	A	90.7	0.0	-10.8	0.0	0.0	55.4	1.2	-1.3	0.0	0.0	0.0	0.0	0.0	24.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	59"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6674	356683.72	4861095.69	103.90	0	D	A	90.7	0.0	-10.8	0.0	0.0	55.5	1.3	-1.4	0.0	0.0	0.0	0.0	0.0	24.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	38"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6698	356946.08	4861158.00	102.68	0	D	Α	90.7	0.0	-10.8	0.0	0.0	55.6	1.3	-1.4	0.0	0.0	0.0	0.0	0.0	24.4
6709	356946.08	4861158.00	102.68	1	D	Α	90.7	0.0	-10.8	0.0	0.0	55.8	1.3	-1.4	0.0	0.0	0.0	0.0	2.1	22.1
6720	356946.08	4861158.00	102.68	2	D	Α	90.7	0.0	-10.8	0.0	0.0	58.2	1.6	-1.7	0.0	0.0	0.0	0.0	4.4	17.4
6731	356946.08	4861158.00	102.68	1	D	Α	90.7	0.0	-10.8	0.0	0.0	58.0	1.6	-1.6	0.0	0.0	0.0	0.0	2.3	19.6

			Point S	ource	, ISO	9613,	Name:	"Annc	unceme	nt Sp	eake	r", ID:	"!03!S	PK04	8"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6742	356659.74	4861110.51	102.89	0	D	Α	90.7	0.0	-10.8	0.0	0.0	55.8	1.3	-1.4	0.0	0.0	0.0	0.0	0.0	24.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	51"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6764	356635.77	4861126.60	102.65	0	D	Α	90.7	0.0	-10.8	0.0	0.0	56.3	1.4	-1.3	0.0	0.0	0.0	0.0	0.0	23.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK03	39"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m) (m) (Hz) dB(A) dB dB (dB) (dB)																			
6788	356962.60	4861163.43	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	56.3	1.4	-1.5	0.0	0.0	0.0	0.0	0.0	23.7
6800	356962.60	4861163.43	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	56.5	1.4	-1.5	0.0	0.0	0.0	0.0	2.1	21.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	58"					
Nr.																				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
6812	356662.90	4861088.43	103.78	0	D	Α	90.7	0.0	-10.8	0.0	0.0	56.4	1.4	-1.5	0.0	0.0	0.0	0.0	0.0	23.6

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	17"					
Nr.																				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
6836	356640.50	4861105.15	102.93	0	D	Α	90.7	0.0	-10.8	0.0	0.0	56.7	1.4	-1.5	0.0	0.0	0.0	0.0	0.0	23.3

r. X Y Z Refl. DEN Freg. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr														"!03!S	PK04	10"					
*	(Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
r	ı)		(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
2	79.11	4	4861168.86	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	56.9	1.4	-1.5	0.0	0.0	0.0	0.0	0.0	23.1
2	79.11	4	4861168.86	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	57.1	1.5	-1.6	0.0	0.0	0.0	0.0	2.1	20.9
	-				-	-	A								-						

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!5	PK0	50"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6907	356617.16	4861120.29	102.83	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.1	1.5	-1.4	0.0	0.0	0.0	0.0	0.0	22.7
6919	356617.16	4861120.29	102.83	1	D	Α	90.7	0.0	-10.8	0.0	0.0	59.8	1.9	-1.6	0.0	0.0	0.0	0.0	2.4	17.5
6931	356617.16	4861120.29	102.83	1	D	Α	90.7	0.0	-10.8	0.0	0.0	59.8	1.9	-1.6	0.0	0.0	0.0	0.0	2.4	17.5

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	57"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
6943	356644.60	4861083.07	103.02	0	D	A	90.7	0.0	-10.8	0.0	0.0	57.2	1.5	-1.6	0.0	0.0	0.0	0.0	0.0	22.8

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	15"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (m) (Hz) dB(A) dB dB (dB) (dB)<																			
6967	356623.15	4861098.84	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.4	1.5	-1.6	0.0	0.0	0.0	0.0	0.0	22.5
6991	356623.15	4861098.84	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	60.0	1.9	-1.7	0.0	0.0	0.0	0.0	2.4	17.4

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	41"					
Nr.																Lr				
	M. A T Z Ren. DEN Freq. Lw I/a Optime Ro Di Adiv Adiv																			
7040	356995.63	4861174.29	103.00	0	D	A	90.7	0.0	-10.8	0.0	0.0	57.5	1.5	-1.6	0.0	0.0	0.0	0.0	0.0	22.4
7052	356995.63	4861174.29	103.00	1	D	A	90.7	0.0	-10.8	0.0	0.0	57.7	1.5	-1.6	0.0	0.0	0.0	0.0	2.1	20.2

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	9"					
Nr.																Lr				
	(m) (m) (Hz) dB(A) dB dB (dB) (dB)															dB(A)				
7064	356601.07	4861115.88	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.8	1.6	-1.5	0.0	0.0	0.0	0.0	0.0	22.0
7076	356601.07	4861115.88	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	59.3	1.8	-1.6	0.0	0.0	0.0	0.0	2.4	18.1

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	56"					
Nr.	Х	Y	Z	Refl.	DEN	Freq.	Lw	l/a	Optime	K0	Di	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
	(m) (m) (m) (Hz) dB(A) dB dB (dB) (dB) (dB) (dB) (dB) (dB) (d															dB(A)				
7087	356626.94	4861077.71	103.00	0	D	Α	90.7	0.0	-10.8	0.0	0.0	57.8	1.6	-1.6	0.0	0.0	0.0	0.0	0.0	22.1
7098	356626.94	4861077.71	103.00	1	D	Α	90.7	0.0	-10.8	0.0	0.0	60.1	1.9	-1.8	0.0	0.0	0.0	0.0	2.4	17.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	13"					
Nr.																Lr				
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															dB(A)				
7110	356605.49	4861093.16	103.31	0	D	Α	90.7	0.0	-10.8	0.0	0.0	58.1	1.6	-1.6	0.0	0.0	0.0	0.0	0.0	21.8
7143	356605.49	4861093.16	103.31	1	D	Α	90.7	0.0	-10.8	0.0	0.0	59.4	1.8	-1.7	0.0	0.0	0.0	0.0	2.1	18.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK04	12"					
Nr.																				
	Nr. X Y Z Refi. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr (m) (m) (m) (Hz) dB(A) dB dB (dB) (dB)																			
7164	357012.14	4861179.72	103.15	0	D	Α	90.7	0.0	-10.8	0.0	0.0	58.1	1.6	-1.7	0.0	0.0	0.0	0.0	0.0	21.8
7175	357012.14	4861179.72	103.15	1	D	Α	90.7	0.0	-10.8	0.0	0.0	58.2	1.6	-1.7	0.0	0.0	0.0	0.0	2.3	19.3

			Point S	ource	, ISO	9613,	Name:	"Anno	ounceme	nt Sp	eake	r", ID:	"!03!S	PK05	55"					
Nr.																				
	(m)	(m)	(m)			(Hz)	dB(A)	dB	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
7186	356609.59	4861073.29	103.49	0	D	Α	90.7	0.0	-10.8	0.0	0.0	58.5	1.7	-1.7	0.0	0.0	0.0	0.0	0.0	21.5

Appendix B.4 - TNM Road Noise Sample Calculations

REF	PORT:	INPUT ROADWAYS		
TN	M VERSION:	3.1.7970.37608	REPORT DATE:	27 February 2023
CAI	LCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM
CAS	SE:	BMV	ORGANIZATION:	
AN	ALYSIS BY:	saarnold	PROJECT/CONTRACT:	

		Road S	egment							Road Segmen	t
Roadway	Roadway	Start	Point	Coord	inates (pave	ment)	Width	Point	Road	Pavement	On
Name	Notes	Name	Number	Х	Y	Z		Notes	Category	Туре	Structure
				[m]	[m]	[m]	[m]				
Stevenson Rd		Point-0	2	670000.80	4862177.00	0.00	11.25		Mainline	Average	No
		Point-1	3	670505.70	4860774.00	0.00	11.25		Mainline	Average	No
		Point-3	4	670626.00	4860389.00	0.00	11.25		Mainline	Average	No
Park Rd		Point-6	6	671171.20	4860788.00	0.00	15.00		Mainline	Average	No
		Point-7	7	671276.50	4860986.00	0.00	15.00		Mainline	Average	No
		Point-9	8	671273.40	4861103.00	0.00	15.00		Mainline	Average	No
		Point-11	9	670793.90	4862445.00	0.00	15.00		Mainline	Average	No
Simcoe Street		Point-12	10	671595.40	4862662.00	0.00	15.00		Mainline	Average	No
		Point-13	11	672199.50	4860981.00	0.00	15.00		Mainline	Average	No
Ritson Rd		Point-14	12	672342.40	4862984.00	0.00	15.00		Mainline	Average	No
		Point-15	13	672985.90	4861251.00	0.00	15.00		Mainline	Average	No
Wilson Rd		Point-16	14	673174.10	4863225.00	0.00	15.00		Mainline	Average	No
		Point-17	15	673770.60	4861519.00	0.00	15.00		Mainline	Average	No
Harmony Rd		Point-18	16	673939.90	4863486.00	0.00	15.00		Mainline	Average	No
		Point-19	17	674553.90	4861773.00	0.00	15.00		Mainline	Average	No
Bloor St		Point-20	18	674581.00	4861794.00	0.00	7.50		Mainline	Average	No
		Point-21	19	674806.60	4861873.00	0.00	7.50		Mainline	Average	No

		Road S	Segment							Road Segmer	ıt
Roadway	Roadway	Start	Point	Coord	inates (pave	ment)	Width	Point	Road	Pavement	On
Name	Notes	Name	Number	Х	Y	Z		Notes	Category	Туре	Structure
			Ì	[m]	[m]	[m]	[m]				
Bloor St		Point-23	20	674843.10	4861798.00	0.00	7.50		Mainline	Average	No
		Point-25	21	674889.10	4861754.00	0.00	7.50		Mainline	Average	No
		Point-27	22	674958.40	4861739.00	0.00	7.50		Mainline	Average	No
		Point-29	23	675638.40	4861984.00	0.00	7.50		Mainline	Average	No
		Point-31	24	675785.30	4862039.00	0.00	7.50		Mainline	Average	No
		Point-33	25	676165.90	4862128.00	0.00	7.50		Mainline	Average	No
		Point-35	26	676589.40	4862284.00	0.00	7.50		Mainline	Average	No
		Point-37	27	677075.00	4862187.00	0.00	7.50		Mainline	Average	No
Baseline Rd		Point-38	28	677606.80	4860489.00	0.00	7.50		Mainline	Average	No
	•	Point-39	29	683785.50	4862528.00	0.00	7.50		Mainline	Average	No
Courtice Rd		Point-40	30	678959.90	4862897.00	0.00	7.50		Mainline	Average	No
	•	Point-41	31	679564.50	4861142.00	0.00	7.50		Mainline	Average	No
Martin Rd		Point-42	32	684526.60	4864531.00	0.00	3.66		Mainline	Average	No
	•	Point-43	33	684756.10	4863844.00	0.00	3.66		Mainline	Average	No
		Point-45	34	684857.10	4863685.00	0.00	3.66		Mainline	Average	No
		Point-47	35	684987.60	4863582.00	0.00	3.66		Mainline	Average	No
		Point-49	36	685190.70	4863474.00	0.00	3.66		Mainline	Average	No
		Point-51	37	685300.10	4863385.00	0.00	3.66		Mainline	Average	No
		Point-53	38	685528.90	4862851.00	0.00	3.66		Mainline	Average	No
King St		Point-64	45	681732.70	4864678.00	0.00	15.00		Mainline	Average	No
	•	Point-65	46	683296.40	4864374.00	0.00	15.00		Mainline	Average	No
		Point-67	47	683514.30	4864349.00	0.00	15.00		Mainline	Average	No
		Point-69	48	683703.60	4864364.00	0.00	15.00		Mainline	Average	No
		Point-71	49	684067.80	4864412.00	0.00	15.00		Mainline	Average	No
		Point-73	50	684504.50	4864582.00	0.00	15.00		Mainline	Average	No

		Road S	egment							Road Segmer	ıt
Roadway	Roadway	Start	Point	Coord	linates (pave	ment)	Width	Point	Road	Pavement	On
Name	Notes	Name	Number	Х	Y	Z		Notes	Category	Туре	Structure
			Ī	[m]	[m]	[m]	[m]				
King St		Point-75	51	684882.70	4864748.00	0.00	15.00		Mainline	Average	No
		Point-77	52	685312.40	4864797.00	0.00	15.00		Mainline	Average	No
		Point-79	53	686240.50	4864535.00	0.00	15.00		Mainline	Average	No
Highway401E		Point-117	0	685555.60	4862761.00	0.00	11.25		Mainline	Average	No
		Point-115	1	684452.60	4861982.00	0.00	11.25		Mainline	Average	No
		Point-113	5	684228.80	4861844.00	0.00	11.25		Mainline	Average	No
		Point-111	39	683921.30	4861737.00	0.00	11.25		Mainline	Average	No
		Point-109	40	679667.20	4860854.00	0.00	11.25		Mainline	Average	No
		Point-107	41	677841.90	4860471.00	0.00	11.25		Mainline	Average	No
		Point-105	42	677532.80	4860418.00	0.00	11.25		Mainline	Average	No
		Point-103	43	677197.40	4860442.00	0.00	11.25		Mainline	Average	No
		Point-101	44	676930.20	4860502.00	0.00	11.25		Mainline	Average	No
		Point-99	54	676650.10	4860653.00	0.00	11.25		Mainline	Average	No
		Point-97	55	676433.30	4860829.00	0.00	11.25		Mainline	Average	No
		Point-95	56	676059.00	4861151.00	0.00	11.25		Mainline	Average	No
		Point-93	57	675772.70	4861345.00	0.00	11.25		Mainline	Average	No
		Point-91	58	675317.30	4861541.00	0.00	11.25		Mainline	Average	No
		Point-89	59	674959.80	4861624.00	0.00	11.25		Mainline	Average	No
		Point-87	60	674610.60	4861651.00	0.00	11.25		Mainline	Average	No
		Point-85	61	674268.10	4861626.00	0.00	11.25		Mainline	Average	No
		Point-83	62	673781.60	4861495.00	0.00	11.25		Mainline	Average	No
		Point-81	63	671169.20	4860599.00	0.00	11.25		Mainline	Average	No
		Point-80	64	669889.60	4860043.00	0.00	11.25		Mainline	Average	No
Highway401W		Point-35	65	669904.20	4860013.00	0.00	11.25		Mainline	Average	No
		Point-33	66	671180.10	4860578.00	0.00	11.25		Mainline	Average	No

		Road S	egment							Road Segmen	t
Roadway	Roadway	Start	Point	Coord	inates (pave	ment)	Width	Point	Road	Pavement	On
Name	Notes	Name	Number	Х	Y	Z		Notes	Category	Туре	Structure
			Ī	[m]	[m]	[m]	[m]				
Highway401W		Point-31	67	673785.70	4861471.00	0.00	11.25		Mainline	Average	No
		Point-29	68	674273.90	4861601.00	0.00	11.25		Mainline	Average	No
		Point-27	69	674616.40	4861627.00	0.00	11.25		Mainline	Average	No
		Point-25	70	674955.30	4861598.00	0.00	11.25		Mainline	Average	No
		Point-23	71	675311.10	4861515.00	0.00	11.25		Mainline	Average	No
		Point-21	72	675761.30	4861317.00	0.00	11.25		Mainline	Average	No
		Point-19	73	676047.40	4861130.00	0.00	11.25		Mainline	Average	No
		Point-17	74	676411.30	4860812.00	0.00	11.25		Mainline	Average	No
		Point-15	75	676642.00	4860634.00	0.00	11.25		Mainline	Average	No
		Point-13	76	676916.80	4860485.00	0.00	11.25		Mainline	Average	No
		Point-11	77	677196.40	4860418.00	0.00	11.25		Mainline	Average	No
		Point-9	78	677535.10	4860395.00	0.00	11.25		Mainline	Average	No
		Point-7	79	679672.90	4860832.00	0.00	11.25		Mainline	Average	No
		Point-5	80	683932.30	4861710.00	0.00	11.25		Mainline	Average	No
		Point-3	81	684237.90	4861825.00	0.00	11.25		Mainline	Average	No
		Point-1	82	684491.60	4861946.00	0.00	11.25		Mainline	Average	No
		Point-0	83	685559.60	4862740.00	0.00	11.25		Mainline	Average	No

REPORT:	Results: Sound Levels -	No Barrier Objects	
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM
CASE:	BMV	ORGANIZATION:	
UNITS:	Metric	ANALYSIS BY:	saarnold
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT	
ATMOSPHERICS:	20°C, 50%	Average pavement type sha	all be used unless a state
PAVEMENT TYPE(S) USED:	Average	highway agency substantia	tes the use of a different
		type with approval FHWA.	

F	Receiver			Modeled Traffic Noise Levels					
		Nb.			LAeq	Increase o	ver Existing		
Name	No.	R.R.	Existing		Absolute		Relative	Туре	
			LAeq	Calc.	Criterion	Calc.	Criterion	of	
			dBA	dBA	dBA	dBA	dBA	Impact	
POR001	0	0		54.4	0.0			Sound Level	
POR002	0	0		54.8	0.0			Sound Level	
POR003	0	0		55.3	0.0			Sound Level	
POR004	0	0		58.2	0.0			Sound Level	
POR005	0	0		59.9	0.0			Sound Level	
POR006	0	0		61.7	0.0			Sound Level	
POR007	0	0		63.3	0.0			Sound Level	
POR008	0	0		59.0	0.0			Sound Level	
POR009	0	0		58.4	0.0			Sound Level	
POR010	0	0		57.6	0.0			Sound Level	
POR011	0	0		58.2	0.0			Sound Level	
POR012	0	0		60.2	0.0			Sound Level	
POR013	0	0		59.0	0.0			Sound Level	
POR014	0	0		60.2	0.0			Sound Level	
POR015	0	0		62.0	0.0			Sound Level	

REPORT:	Results: Sound Levels -	No Barrier Objects	
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM
CASE:	BMV	ORGANIZATION:	
UNITS:	Metric	ANALYSIS BY:	saarnold
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT	
ATMOSPHERICS:	20°C, 50%	Average pavement type sha	all be used unless a state
PAVEMENT TYPE(S) USED:	Average	highway agency substantia	tes the use of a different
		type with approval FHWA.	

	Receiver			Modeled Traffic Noise Levels				
		Nb.			LAeq	Increase ov	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
POR016	0	0		58.4	0.0			Sound Level
POR017	0	0		58.1	0.0			Sound Level
POR018	0	0		62.2	0.0			Sound Level
POR019	0	0		60.1	0.0			Sound Level
POR020	0	0		59.6	0.0			Sound Level
POR021	0	0		59.3	0.0			Sound Level
POR022	0	0		60.8	0.0			Sound Level
POR023	0	0		63.4	0.0			Sound Level
POR024	0	0		58.4	0.0			Sound Level
POR025	0	0		59.1	0.0			Sound Level
POR027	0	0		60.0	0.0			Sound Level
POR028	0	0		58.6	0.0			Sound Level
POR028A	0	0		59.2	0.0			Sound Level
POR028C	0	0		57.0	0.0			Sound Level
POR028B	0	0		58.4	0.0			Sound Level

REPORT:	Results: Sound Levels -	No Barrier Objects	
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM
CASE:	BMV	ORGANIZATION:	
UNITS:	Metric	ANALYSIS BY:	saarnold
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT	
ATMOSPHERICS:	20°C, 50%	Average pavement type sha	all be used unless a state
PAVEMENT TYPE(S) USED:	Average	highway agency substantia	tes the use of a different
		type with approval FHWA.	

F	Receiver			Modeled Traffic Noise Levels					
		Nb.			LAeq	Increase ov	ver Existing		
Name	No.	R.R.	Existing		Absolute		Relative	Туре	
			LAeq	Calc.	Criterion	Calc.	Criterion	of	
			dBA	dBA	dBA	dBA	dBA	Impact	
POR029	0	0		59.4	0.0			Sound Level	
POR030	0	0		64.0	0.0			Sound Level	
POR031	0	0		59.5	0.0			Sound Level	
POR032	0	0		62.6	0.0			Sound Level	
POR033	0	0		59.9	0.0			Sound Level	
POR034	0	0		59.3	0.0			Sound Level	
POR035	0	0		59.0	0.0			Sound Level	
POR036	0	0		59.8	0.0			Sound Level	
POR037	0	0		60.1	0.0			Sound Level	
POR038	0	0		58.8	0.0			Sound Level	
POR039	0	0		63.2	0.0			Sound Level	
POR040	0	0		58.8	0.0			Sound Level	
POR041	0	0		58.4	0.0			Sound Level	
POR042	0	0		58.9	0.0			Sound Level	
POR043	0	0		58.3	0.0			Sound Level	

REPORT:	Results: Sound Levels -	No Barrier Objects	
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM
CASE:	BMV	ORGANIZATION:	
UNITS:	Metric	ANALYSIS BY:	saarnold
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT	
ATMOSPHERICS:	20°C, 50%	Average pavement type sha	all be used unless a state
PAVEMENT TYPE(S) USED:	Average	highway agency substantia	tes the use of a different
		type with approval FHWA.	

Receiver			Modeled Traffic Noise Levels					
		Nb.			LAeq	Increase ov	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
POR044	0	0		58.1	0.0			Sound Level
POR045	0	0		58.4	0.0			Sound Level
POR046	0	0		61.2	0.0			Sound Level
POR047	0	0		58.4	0.0			Sound Level
POR048	0	0		60.7	0.0			Sound Level
POR049	0	0		60.3	0.0			Sound Level
POR050	0	0		57.9	0.0			Sound Level
POR051	0	0		60.1	0.0			Sound Level
POR052	0	0		57.3	0.0			Sound Level
POR053	0	0		57.4	0.0			Sound Level
POR054	0	0		59.6	0.0			Sound Level
POR055	0	0		59.9	0.0			Sound Level
POR056	0	0		62.7	0.0			Sound Level
POR057	0	0		64.2	0.0			Sound Level
POR058	0	0		66.6	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects						
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023					
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM					
CASE:	BMV	ORGANIZATION:						
UNITS:	Metric	ANALYSIS BY:	saarnold					
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT						
ATMOSPHERICS:	20°C, 50%	Average pavement type sha	all be used unless a state					
PAVEMENT TYPE(S) USED:	Average	highway agency substantiates the use of a different						
		type with approval FHWA.						

Receiver			Modeled Traffic Noise Levels					
		Nb.			LAeq	Increase ov	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
POR059	0	0		69.1	0.0			Sound Level
POR060	0	0		69.7	0.0			Sound Level
POR061	0	0		70.7	0.0			Sound Level
POR062	0	0		71.4	0.0			Sound Level
POR063	0	0		56.6	0.0			Sound Level
POR063A	0	0		65.9	0.0			Sound Level
POR064	0	0		63.0	0.0			Sound Level
POR065	0	0		60.6	0.0			Sound Level
POR066	0	0		60.7	0.0			Sound Level
POR067	0	0		56.8	0.0			Sound Level
POR068	0	0		52.7	0.0			Sound Level
POR069	0	0		52.5	0.0			Sound Level
POR070	0	0		52.4	0.0			Sound Level
POR071	0	0		52.5	0.0			Sound Level
POR072	0	0		52.3	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects						
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023					
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM					
CASE:	BMV	ORGANIZATION:						
UNITS:	Metric	ANALYSIS BY:	saarnold					
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT						
ATMOSPHERICS:	20°C, 50%	Average pavement type sha	all be used unless a state					
PAVEMENT TYPE(S) USED:	Average	highway agency substantiates the use of a different						
		type with approval FHWA.						

Receiver			Modeled Traffic Noise Levels					
		Nb.			LAeq	Increase ov	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
POR073	0	0		52.2	0.0			Sound Level
POR074	0	0		52.3	0.0			Sound Level
POR075	0	0		52.3	0.0			Sound Level
POR076	0	0		52.3	0.0			Sound Level
POR077	0	0		53.0	0.0			Sound Level
POR078	0	0		53.4	0.0			Sound Level
POR079	0	0		54.2	0.0			Sound Level
POR080	0	0		54.8	0.0			Sound Level
POR080A	0	0		55.6	0.0			Sound Level
POR081	0	0		52.9	0.0			Sound Level
POR082	0	0		53.3	0.0			Sound Level
POR083	0	0		54.0	0.0			Sound Level
POR084	0	0		54.5	0.0			Sound Level
POR084A	0	0		66.5	0.0			Sound Level
POR084B	0	0		57.1	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects						
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023					
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM					
CASE:	BMV	ORGANIZATION:						
UNITS:	Metric	ANALYSIS BY:	saarnold					
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT						
ATMOSPHERICS:	20°C, 50%	Average pavement type sh	all be used unless a state					
PAVEMENT TYPE(S) USED:	Average	highway agency substantiates the use of a different						
		type with approval FHWA.						

Receiver			Modeled Traffic Noise Levels					
		Nb.			_Aeq	Increase o	/er Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
POR091	0	0		61.5	0.0			Sound Level
POR092	0	0		60.0	0.0			Sound Level
OLA01	0	0		55.2	0.0			Sound Level
OLA03	0	0		56.1	0.0			Sound Level
OLA04	0	0		58.9	0.0			Sound Level
OLA05	0	0		60.5	0.0			Sound Level
OLA06	0	0		62.3	0.0			Sound Level
OLA07	0	0		64.6	0.0			Sound Level
OLA08	0	0		59.7	0.0			Sound Level
OLA09	0	0		59.1	0.0			Sound Level
OLA10	0	0		58.5	0.0			Sound Level
OLA11	0	0		58.9	0.0			Sound Level
OLA12	0	0		60.7	0.0			Sound Level
OLA13	0	0		59.5	0.0			Sound Level
OLA14	0	0		60.7	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects						
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023					
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM					
CASE:	BMV	ORGANIZATION:						
UNITS:	Metric	ANALYSIS BY:	saarnold					
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT						
ATMOSPHERICS:	20°C, 50%	Average pavement type sh	all be used unless a state					
PAVEMENT TYPE(S) USED:	Average	highway agency substantiates the use of a different						
		type with approval FHWA.						

Receiver			Modeled Traffic Noise Levels					
		Nb.			_Aeq	Increase ov	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
OLA15	0	0		62.3	0.0			Sound Level
OLA16	0	0		59.2	0.0			Sound Level
OLA17	0	0		58.9	0.0			Sound Level
OLA18	0	0		61.1	0.0			Sound Level
OLA19	0	0		60.4	0.0			Sound Level
OLA20	0	0		59.8	0.0			Sound Level
OLA21	0	0		60.2	0.0			Sound Level
OLA22	0	0		61.0	0.0			Sound Level
OLA23	0	0		64.0	0.0			Sound Level
OLA24	0	0		59.3	0.0			Sound Level
OLA25	0	0		59.8	0.0			Sound Level
OLA26	0	0		61.6	0.0			Sound Level
OLA27	0	0		60.4	0.0			Sound Level
OLA28	0	0		59.2	0.0			Sound Level
OLA28A	0	0		59.1	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects						
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023					
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM					
CASE:	BMV	ORGANIZATION:						
UNITS:	Metric	ANALYSIS BY:	saarnold					
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT						
ATMOSPHERICS:	20°C, 50%	Average pavement type sh	all be used unless a state					
PAVEMENT TYPE(S) USED:	Average	highway agency substantiates the use of a different						
		type with approval FHWA.						

Receiver			Modeled Traffic Noise Levels					
		Nb.		l	_Aeq	Increase o	/er Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
OLA28B	0	0		58.5	0.0			Sound Level
OLA28C	0	0		57.8	0.0			Sound Level
OLA29	0	0		59.2	0.0			Sound Level
OLA30	0	0		63.9	0.0			Sound Level
OLA31	0	0		60.4	0.0			Sound Level
OLA32	0	0		63.3	0.0			Sound Level
OLA33	0	0		60.1	0.0			Sound Level
OLA34	0	0		59.3	0.0			Sound Level
OLA35	0	0		58.9	0.0			Sound Level
OLA36	0	0		59.6	0.0			Sound Level
OLA37	0	0		59.9	0.0			Sound Level
OLA38	0	0		58.9	0.0			Sound Level
OLA39	0	0		63.4	0.0			Sound Level
OLA40	0	0		58.9	0.0			Sound Level
OLA41	0	0		58.5	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects						
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023					
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM					
CASE:	BMV	ORGANIZATION:						
UNITS:	Metric	ANALYSIS BY:	saarnold					
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT						
ATMOSPHERICS:	20°C, 50%	Average pavement type sh	all be used unless a state					
PAVEMENT TYPE(S) USED:	Average	highway agency substantiates the use of a different						
		type with approval FHWA.						

Receiver			Modeled Traffic Noise Levels					
		Nb.			LAeq	Increase ov	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
OLA42	0	0		59.5	0.0			Sound Level
OLA43	0	0		59.0	0.0			Sound Level
OLA44	0	0		58.0	0.0			Sound Level
OLAY46	0	0		63.3	0.0			Sound Level
OLAY47	0	0		59.3	0.0			Sound Level
OLA48	0	0		61.2	0.0			Sound Level
OLA49	0	0		61.1	0.0			Sound Level
OLA50	0	0		58.6	0.0			Sound Level
OLA51	0	0		59.9	0.0			Sound Level
OLA52	0	0		58.2	0.0			Sound Level
OLA53	0	0		58.3	0.0			Sound Level
OLA54	0	0		60.3	0.0			Sound Level
OLA55	0	0		60.7	0.0			Sound Level
OLA56	0	0		63.5	0.0			Sound Level
OLA57	0	0		65.0	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects			
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023		
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM		
CASE:	BMV	ORGANIZATION:			
UNITS:	Metric	ANALYSIS BY:	saarnold		
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT			
ATMOSPHERICS:	20°C, 50%	Average pavement type sha	all be used unless a state		
PAVEMENT TYPE(S) USED:	Average	highway agency substantia	tes the use of a different		
		type with approval FHWA.			

Receiver			Modeled Traffic Noise Levels					
		Nb.			LAeq	Increase ov	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
OLA58	0	0		67.2	0.0			Sound Level
OLAY59	0	0		69.8	0.0			Sound Level
OLAY60	0	0		70.4	0.0			Sound Level
OLAY61	0	0		71.5	0.0			Sound Level
OLA62	0	0		71.9	0.0			Sound Level
OLA63	0	0		57.5	0.0			Sound Level
OLA63A	0	0		65.6	0.0			Sound Level
OLA64	0	0		61.2	0.0			Sound Level
OLA65	0	0		59.8	0.0			Sound Level
OLA66	0	0		61.6	0.0			Sound Level
OLA67	0	0		57.3	0.0			Sound Level
OLA68	0	0		53.3	0.0			Sound Level
OLA69	0	0		53.2	0.0			Sound Level
OLA70	0	0		53.1	0.0			Sound Level
OLA71	0	0		53.2	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects		
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023	
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM	
CASE:	BMV	ORGANIZATION:		
UNITS:	Metric	ANALYSIS BY:	saarnold	
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT		
ATMOSPHERICS:	20°C, 50%	Average pavement type sh	all be used unless a state	
PAVEMENT TYPE(S) USED:	Average	highway agency substantia	tes the use of a different	
		type with approval FHWA.		

	Receiver			Modeled Traffic Noise Levels				
		Nb.			_Aeq	Increase ov	er Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
OLA72	0	0		53.0	0.0			Sound Level
OLA73	0	0		52.9	0.0			Sound Level
OLA74	0	0		53.0	0.0			Sound Level
OLA75	0	0		53.5	0.0			Sound Level
OLA76	0	0		53.5	0.0			Sound Level
OLA77	0	0		53.7	0.0			Sound Level
OLA78	0	0		54.3	0.0			Sound Level
OLA79	0	0		54.7	0.0			Sound Level
OLA80	0	0		55.6	0.0			Sound Level
OLA80A	0	0		56.0	0.0			Sound Level
OLA81	0	0		53.9	0.0			Sound Level
OLA82	0	0		53.9	0.0			Sound Level
OLA83	0	0		54.9	0.0			Sound Level
OLA84	0	0		55.3	0.0			Sound Level
OLA84B	0	0		58.1	0.0			Sound Level

REPORT:	Results: Sound Levels -	Results: Sound Levels - No Barrier Objects		
TNM VERSION	3.1.7970.37608	REPORT DATE:	27 February 2023	
CALCULATED WITH:	3.1.7970.37608	CALCULATION DATE:	2/24/2023 11:58:34 AM	
CASE:	BMV	ORGANIZATION:		
UNITS:	Metric	ANALYSIS BY:	saarnold	
DEFAULT GROUND TYPE:	HardSoil	PROJECT/CONTRACT		
ATMOSPHERICS:	20°C, 50%	Average pavement type sh	all be used unless a state	
PAVEMENT TYPE(S) USED:	Average	highway agency substantia	tes the use of a different	
		type with approval FHWA.		

Receiver			Modeled Traffic Noise Levels					
		Nb.			_Aeq	Increase o	ver Existing	
Name	No.	R.R.	Existing		Absolute		Relative	Туре
			LAeq	Calc.	Criterion	Calc.	Criterion	of
			dBA	dBA	dBA	dBA	dBA	Impact
OLA84A	0	0		72.1	0.0			Sound Level
OLA91	0	0		60.5	0.0			Sound Level
OLA92	0	0		60.0	0.0			Sound Level
POR093	0	0		60.8	0.0			Sound Level
OLA93	0	0		63.2	0.0			Sound Level
POR026	0	0		61.5	0.0			Sound Level
CAL1	0	0		59.3	0.0			Sound Level
CAL2	0	0		58.3	0.0			Sound Level
CAL3	0	0		69.4	0.0			Sound Level
CAL4	0	0		72.2	0.0			Sound Level
CAL5	0	0		57.2	0.0			Sound Level
CAL6	0	0		56.6	0.0			Sound Level
OLA02	0	0		55.6	0.0			Sound Level
POR094	0	0		61.7	0.0			Sound Level
POR095	0	0		60.8	0.0			Sound Level

Appendix B.5 - Project Noise Impact Only - Ambient Excluded

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}
DOD001	Façade	64	65
POR001	OLA	66	-
POR002	Façade	64	66
PORUUZ	OLA	66	-
DOD002	Façade	61	62
POR003	OLA	64	-
DOD004	Façade	65	66
POR004	OLA	66	-
POR005	Façade	62	63
PORUUS	OLA	64	-
DOD000	Façade	62	62
POR006	OLA	63	-
DOD007	Façade	62	63
POR007	OLA	64	-
POR008	Façade	64	64
PORUUO	OLA	65	-
PODAAA	Façade	65	65
POR009	OLA	66	-
POR010	Façade	62	62
PORUIU	OLA	65	-
POR011	Façade	64	65
PORUTI	OLA	66	-
POR012	Façade	60	61
PORUIZ	OLA	62	-
POR013	Façade	64	64
PORUIS	OLA	65	-
POR014	Façade	65	65
	OLA	66	-
POR015	Façade	66	66
	OLA	67	-
POR016	Façade	64	65
	OLA	66	-

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}
00047	Façade	65	65
POR017	OLA	66	-
DOD040	Façade	61	62
POR018	OLA	51	-
000040	Façade	63	64
POR019	OLA	51	-
DODOO	Façade	63	64
POR020	OLA	62	-
505004	Façade	63	63
POR021	OLA	55	-
DODOO	Façade	62	63
POR022	OLA	60	-
DODAAA	Façade	62	63
POR023	OLA	54	-
505004	Façade	64	65
POR024	OLA	66	-
	Façade	63	64
POR025	OLA	65	-
PODAA	Façade	65	66
POR026	OLA	67	-
00007	Façade	62	63
POR027	OLA	51	-
DODOO	Façade	63	63
POR028	OLA	50	-
POD000	Façade	61	61
POR029	OLA	51	-
POD020	Façade	59	60
POR030	OLA	52	-
000004	Façade	63	64
POR031	OLA	62	-
DODO22	Façade	62	63
POR032	OLA	50	-
DOD022	Façade	67	67
POR033	OLA	65	-

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}
00000	Façade	67	67
POR034	OLA	66	-
DODASE	Façade	66	67
POR035	OLA	63	-
DODOO	Façade	61	62
POR036	OLA	63	-
00007	Façade	60	61
POR037	OLA	62	-
DODAA	Façade	62	62
POR038	OLA	63	-
DODAA	Façade	62	62
POR039	OLA	63	-
505040	Façade	64	64
POR040	OLA	65	-
202011	Façade	63	64
POR041	OLA	65	-
505040	Façade	66	67
POR042	OLA	67	-
505040	Façade	66	66
POR043	OLA	65	-
000011	Façade	59	60
POR044	OLA	57	-
000045	Façade	65	66
POR045	OLA	51	-
DOD010	Façade	54	54
POR046	OLA	52	-
DOD047	Façade	65	66
POR047	OLA	67	-
DOD 040	Façade	61	62
POR048	OLA	62	-
000040	Façade	60	61
POR049	OLA	62	-
DODOCO	Façade	64	64
POR050	OLA	65	-

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}
000054	Façade	62	62
POR051	OLA	63	-
DOD052	Façade	62	62
POR052	OLA	64	-
DOD052	Façade	60	61
POR053	OLA	62	-
DODOC4	Façade	62	62
POR054	OLA	64	-
DODOSS	Façade	61	62
POR055	OLA	63	-
DODAGA	Façade	64	64
POR056	OLA	65	-
000057	Façade	63	64
POR057	OLA	63	-
DODOCO	Façade	65	66
POR058	OLA	67	-
	Façade	65	66
POR059	OLA	67	-
DODOO	Façade	64	65
POR060	OLA	66	-
DODOCA	Façade	63	64
POR061	OLA	65	-
DODOO	Façade	61	62
POR062	OLA	62	-
DODOO	Façade	50	51
POR063	OLA	50	-
DOD 004	Façade	55	57
POR064	OLA	57	-
DODOGE	Façade	59	61
POR065	OLA	61	-
DODAAA	Façade	57	58
POR066	OLA	57	-
000007	Façade	63	64
POR067	OLA	65	-

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}
00000	Façade	60	61
POR068	OLA	58	-
DODOCO	Façade	60	62
POR069	OLA	62	-
000070	Façade	60	61
POR070	OLA	61	-
000074	Façade	59	60
POR071	OLA	57	-
202020	Façade	62	63
POR072	OLA	63	-
000070	Façade	62	63
POR073	OLA	64	-
	Façade	62	63
POR074	OLA	63	-
	Façade	60	62
POR075	OLA	44	-
	Façade	62	63
POR076	OLA	63	-
202077	Façade	63	64
POR077	OLA	63	-
000070	Façade	63	64
POR078	OLA	64	-
000070	Façade	63	64
POR079	OLA	63	-
202000	Façade	62	64
POR080	OLA	47	-
202004	Façade	62	63
POR081	OLA	63	-
00000	Façade	62	63
POR082	OLA	63	-
000000	Façade	62	63
POR083	OLA	48	-
	Façade	62	64
POR084	OLA	48	-

Receptor ID	Receptor Location	Pre-Project Daytime Sound Levels (dBA) L _{eq(16)}	Pre-Project Nighttime Sound Levels (dBA) L _{eq(8)}
POR091	Façade	62	62
	OLA	-	-
POR092	Façade	65	66
	OLA	63	-
POR03	Façade	59	60
	OLA	-	-
POR094	Façade	58	58
	OLA	-	-
POR095	Façade	58	59
	OLA	-	-

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Noise and Vibration Technical Report

Appendix C Metrolinx Monitoring Requirements

Monitoring Requirements for Metrolinx Projects

In areas where it is predicted that the noise and vibration limits may be exceeded after mitigation, a noise and/or vibration monitoring is required. Monitoring may also be warranted when:

- Construction duration is over a month;
- Construction includes pile driving;
- Nighttime construction is anticipated; or
- The anticipated community response to the construction is negative.

Monitoring Type

Table below outlines the type of monitoring that is required under various conditions based on the project location, duration, presence of night-time activity, and receptor proximity. The monitoring types include:

- Type 1: Monitoring continuously throughout the project.
- Type 2: Monitoring during most impactful phases of the project only.
- Type 3: Monitoring in response to complaints only.

Project Parameters		
Project	Urban	
Location	Suburban	
-	Rural	3
Project Duration	Over 12 months	
	1 to 12 months	
	Less than 1 month	
Nighttime Majo Activity	Major (constant, high intensity sources with frequent elevated sounds)	
	Intermediate (occasional events, moderate sources)	
	Minor (infrequent events or continuous minor sources)	3
Receptor Location *	Within zone of influence	
	Near zone of influence	
	Far from zone of influence	3

Required Noise and Vibration Monitoring

Note: * The zone of influence covers the area where, without mitigation, receptors could experience noise and vibration levels that exceed the criteria at anytime. Where a project triggers more than one type of monitoring, the more stringent type will apply.

In general, the type of monitoring shall be dictated by the parameter that calls for the most stringent type of monitoring. For instance, if the location of the project is urban, then Type 1 monitoring will be implemented irrespective of the other project parameters. Similarly, if the location of the project is suburban but the project involves major night-time activity, then Type 1 monitoring will be preferred. Given the large variability within each parameter, it is understood that this simple strategy may not be appropriate for all projects. More often than not, the project

team will be called upon to apply its professional judgement to select the most appropriate type of monitoring.

Implementation

Noise and vibration monitoring should be conducted at the closest point of reception to the construction. If multiple points of reception are in close proximity to the construction, monitoring may need to occur at multiple locations to characterize variable noise and vibration impacts in the community.

Prior to construction, noise and vibration monitoring should be completed to determine the baseline levels and to help inform future attribution of elevated noise and vibration levels to construction or the ambient environment.

Monitoring must be conducted using equipment capable of satisfying the requirements of MECP NPC-103 and other applicable MECP guidance and be overseen by a qualified acoustical engineer. The noise and vibration monitoring system must output the relevant metrics considered for the construction assessment (i.e. L_{MAX} , L_{EQ}).

If noise or vibration levels above the relevant limits are measured and attributed to the construction activities, the monitoring engineer will notify Metrolinx and take action to adjust operations at the offending source to ameliorate the potential excess. If necessary, additional measurements will be conducted to determine and rectify the source of the exceedance.

Noise:

Noise monitoring is deemed to be an effective tool for enforcing noise exposure limits, avoiding legitimate public complaints, and investigating complaints. It is, however, a relatively demanding task that may need to be tailored to the type of the project. To this end, two types of projects are identified:

Type 1 Projects:

These are projects that are largely localized and "stationary", and they expose the same receptors to noise for an extended period of time. Examples of Type 1 projects include the construction of grade separation structures (bridges or tunnels), train stations, and rail maintenance facilities, as well as construction staging and laydown sites.

Type 2 Projects:

Projects that are geographically "mobile" and do not expose the same receptors to noise for an extended period of time. These include linear projects such as construction related to rail electrification and rail track or signaling improvements.

The following noise monitoring requirements are recommended for the two types of projects:

Noise Monitoring in Type 1 Projects:

Project Co shall monitor continuously each geographically distinct, active construction site with one monitor located strategically to capture the highest noise exposure level based on planned construction activities and the number, geographic distribution and proximity of noise sensitive receptors. The location of the monitor shall be adjusted in response to

changes in construction activity to continue to capture the highest noise exposure level. The microphone of the monitor will be placed at 1.5 - 4.5 m above the ground level depending on the receptor height.

Noise Monitoring in Type 2 Projects:

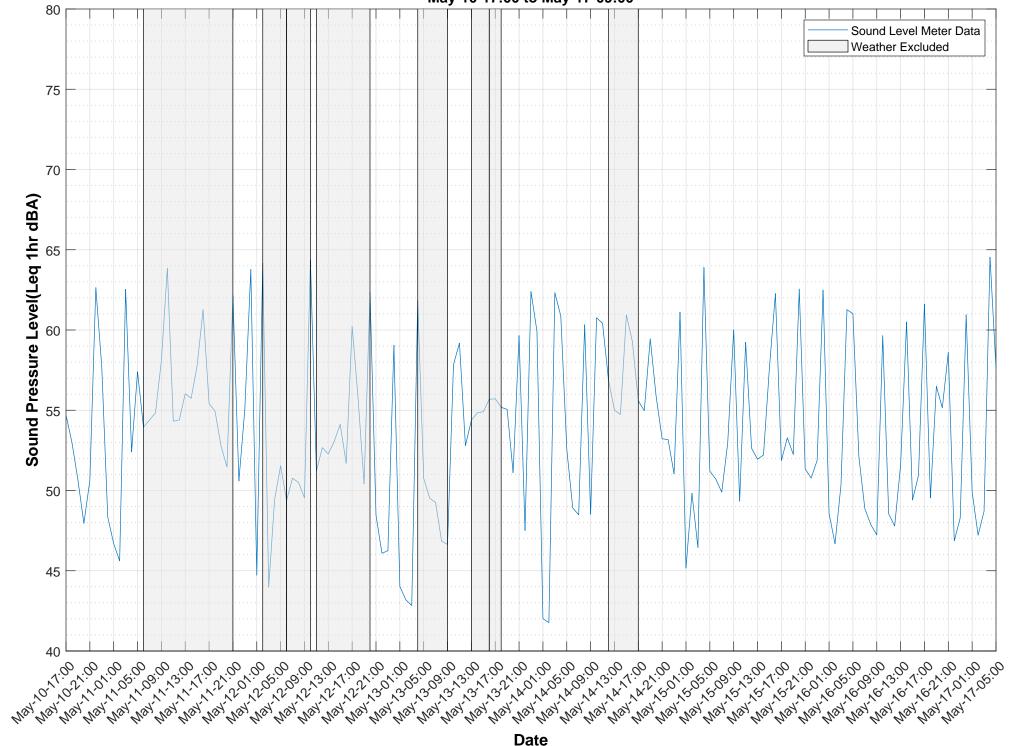
Project Co shall not need to monitor noise continuously during these projects unless one of the following two conditions applies:

- any of the processes and equipment Project Co plans to use for over 15 minutes during the daytime / nighttime has a noise emission level exceeding 85 / 75 dBA, whichever is applicable. Noise emission levels are noise levels measured at 15 m from the process or equipment, operating at maximum rate and/or power setting
- or
- b) any of the noise sensitive receptors is located less than 50 m from any boundary of the construction, staging or laydown site.

In projects that require noise monitoring, each work crew shall employ one portable noise monitor, which shall be located at or close to the boundary of the work site and at a location that will capture the highest noise exposure level. This location will usually be one as close as possible to the nearest unshielded noise sensitive receptor. The work crew will reposition the monitor as soon as the location of the work changes. The microphone of the monitor will be placed at 1.5 - 4.5 m above the ground level depending on the receptor height.

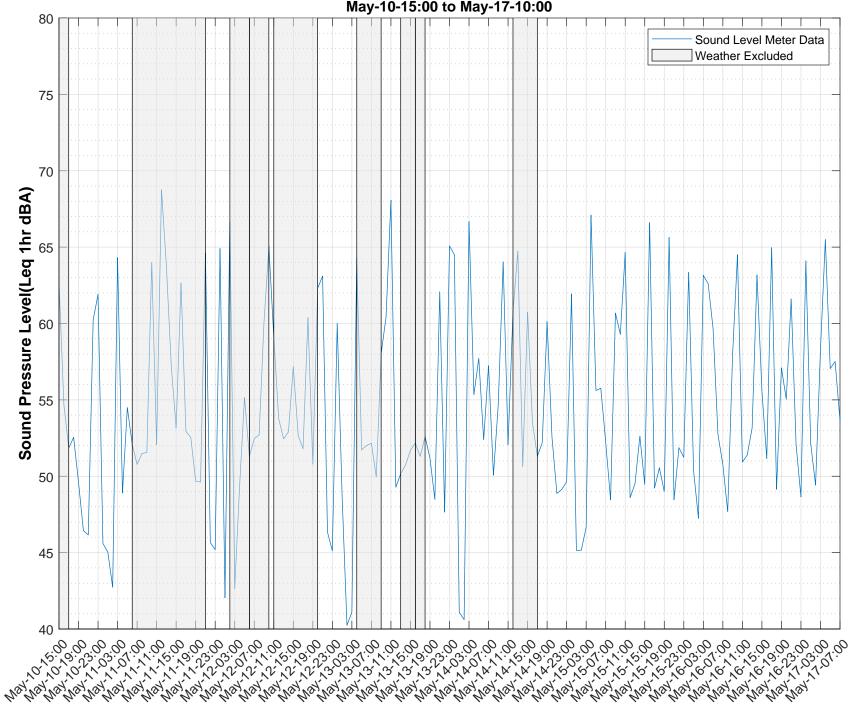
Noise Monitoring Provisions Common to Type 1 and 2 Projects

Project Co shall employ Type 1 or Class 1 integrating sound level meters meeting the IEC Standard 60651, 60804 or 61672. Each meter shall be calibrated within one week prior to its initial use and once per month thereafter. The frequency weighting of the meter will be set to "A" and the speed of response to "fast".


The output of each noise meter will be continuously stored in the "cloud" and made simultaneously available to the designated Metrolinx office. The output data will contain, for each day, the maxima level recorded, each 15-minute average, and each 16-hour daytime (7:00 - 23:00) and each 8-hour night-time average.

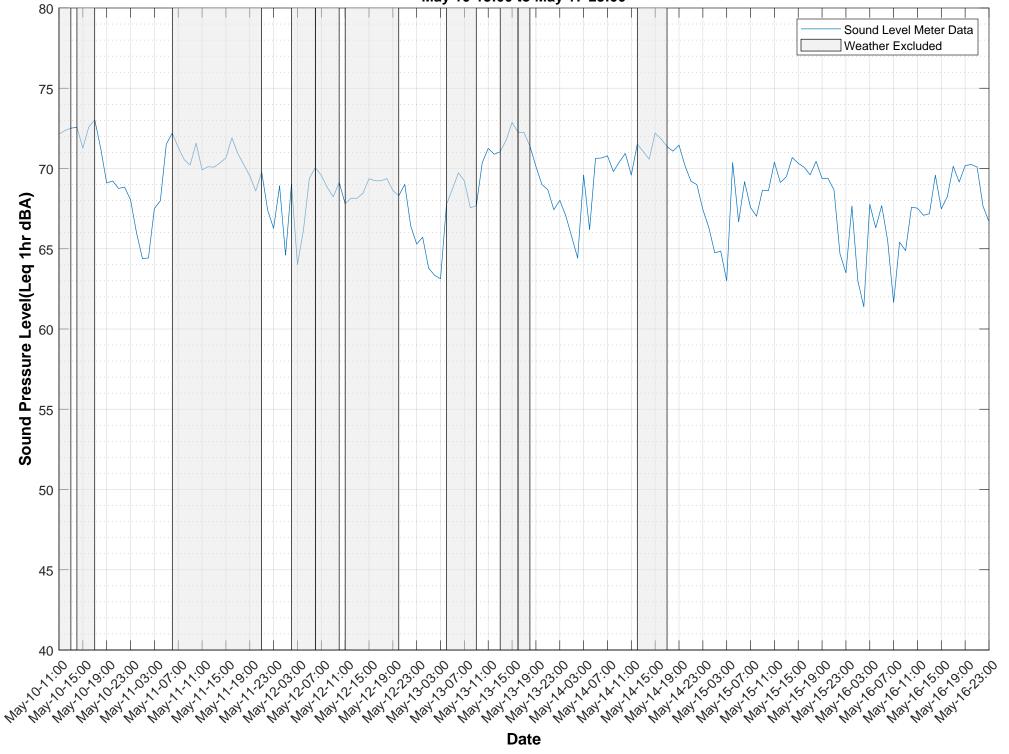
Project Co shall submit monthly summary reports to MX for each monitoring location. The reports shall include but not be limited to the number and duration of any incident during which any of the MX noise exposure limits were exceeded, the probable cause of each exceedance, the incident-specific measure(s) implemented, and the resulting mitigated noise levels.

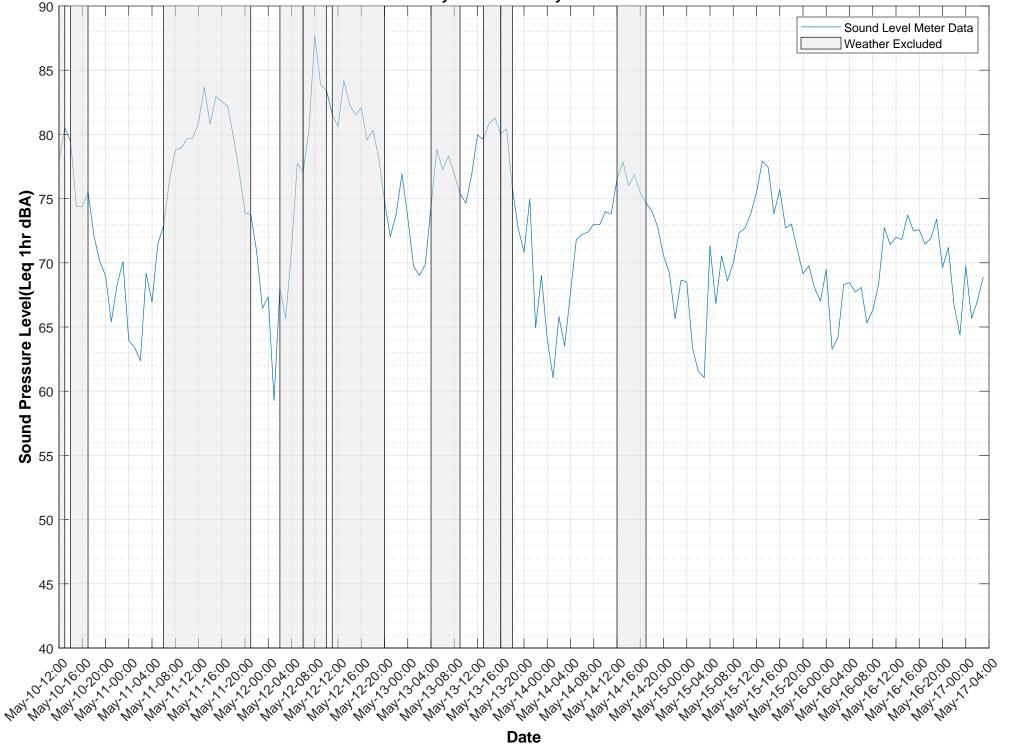
The noise monitors should be calibrated by independent certification lab within 2 years of measurements and should be field calibrated with a portable precision acoustic calibrator.


Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Noise and Vibration Technical Report

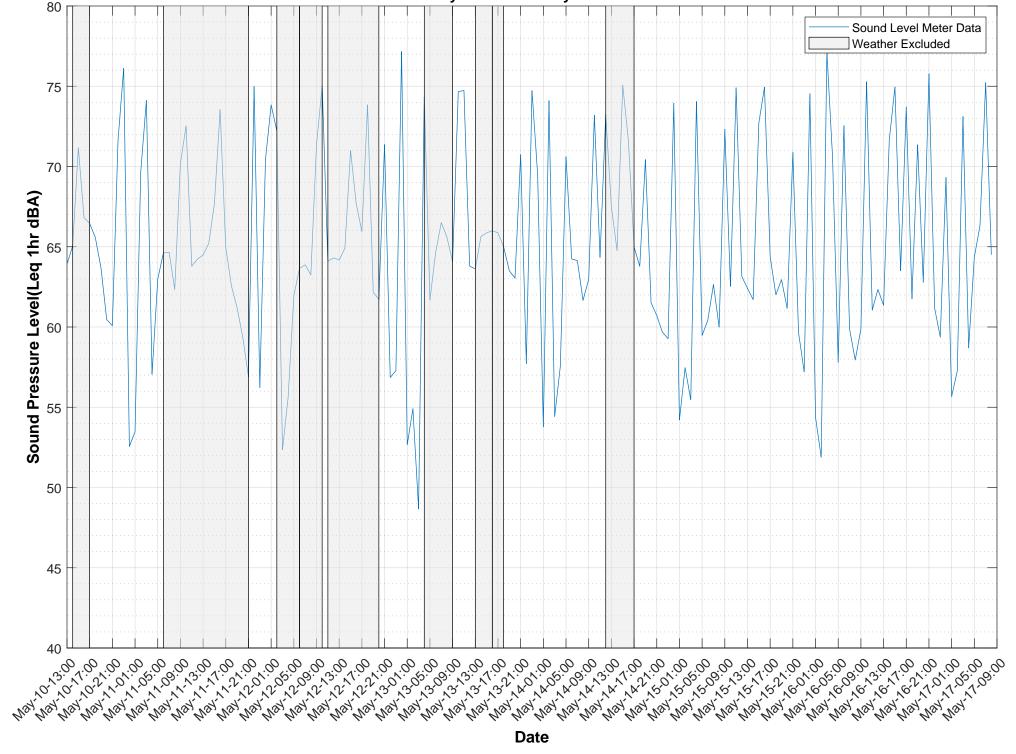
Appendix D Baseline Noise and Vibration Monitoring Data

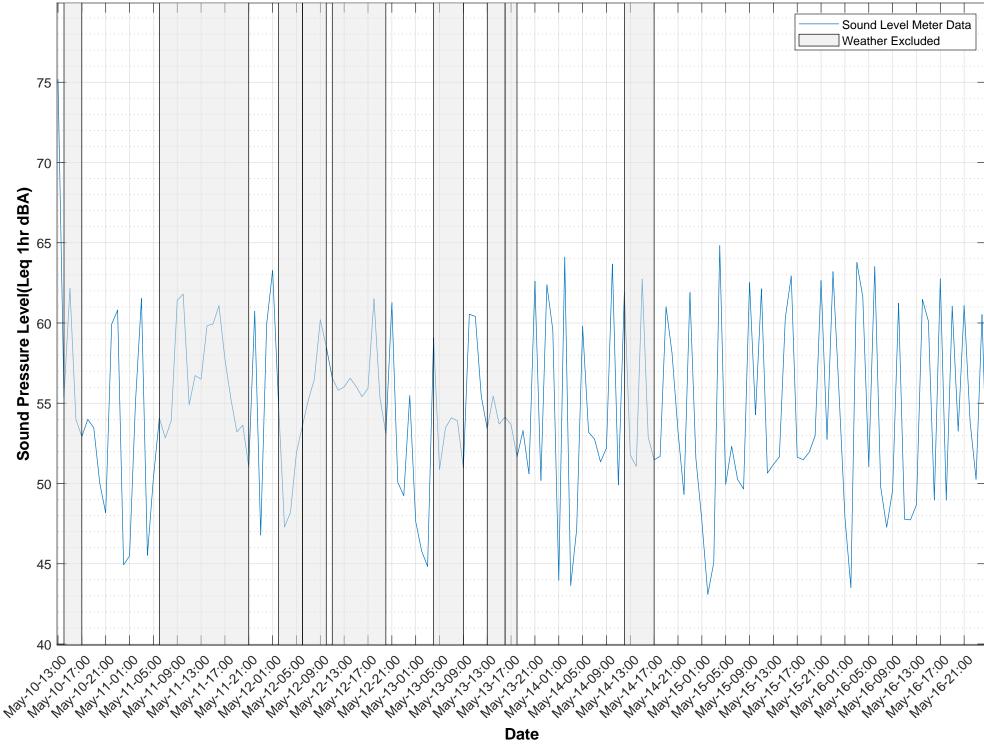
NM01 May-10-17:00 to May-17-09:00


Date

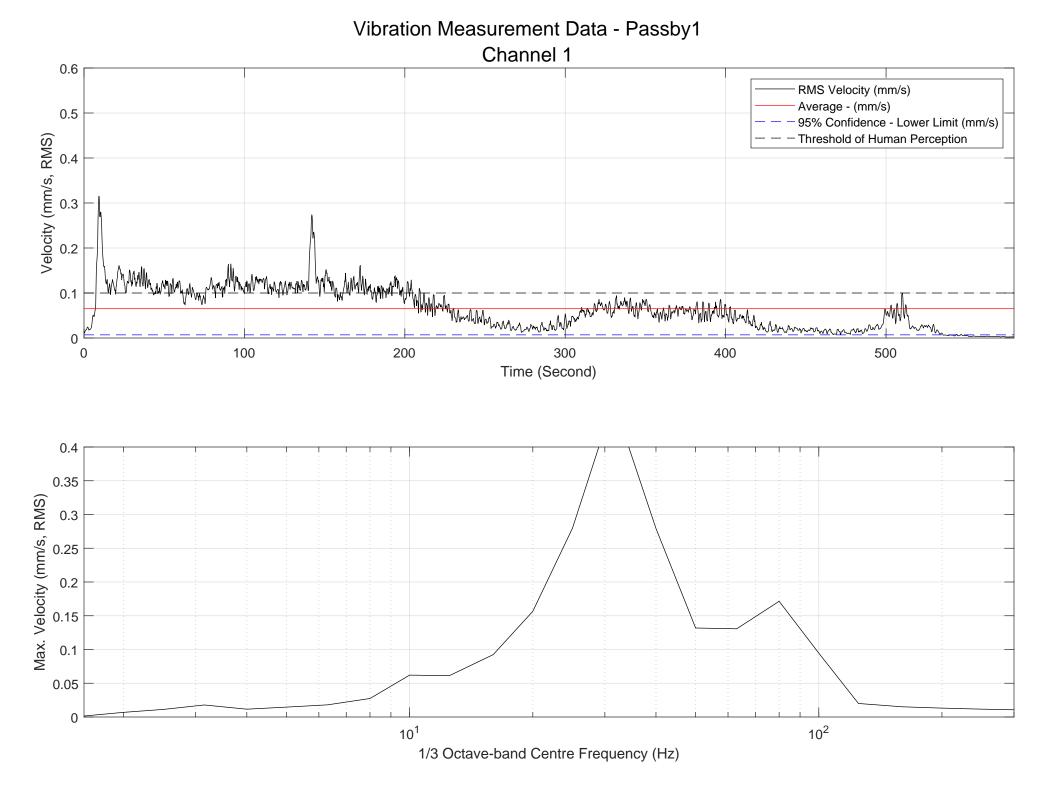

NM02 May-10-15:00 to May-17-10:00

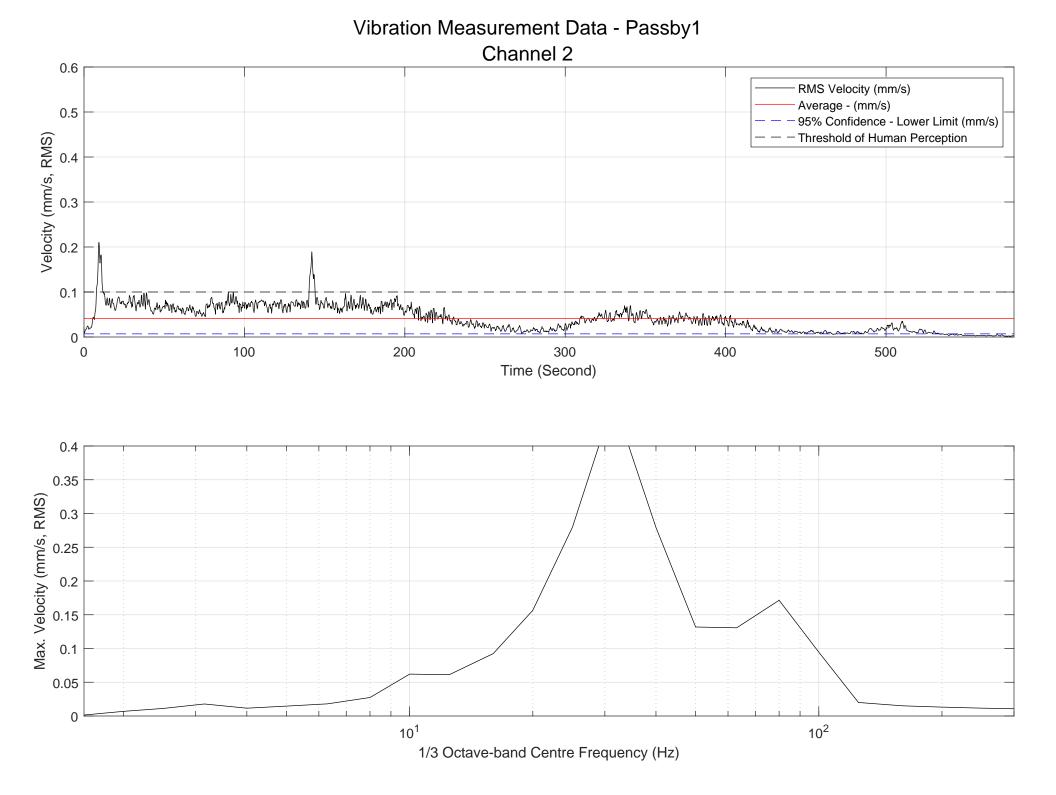
Date

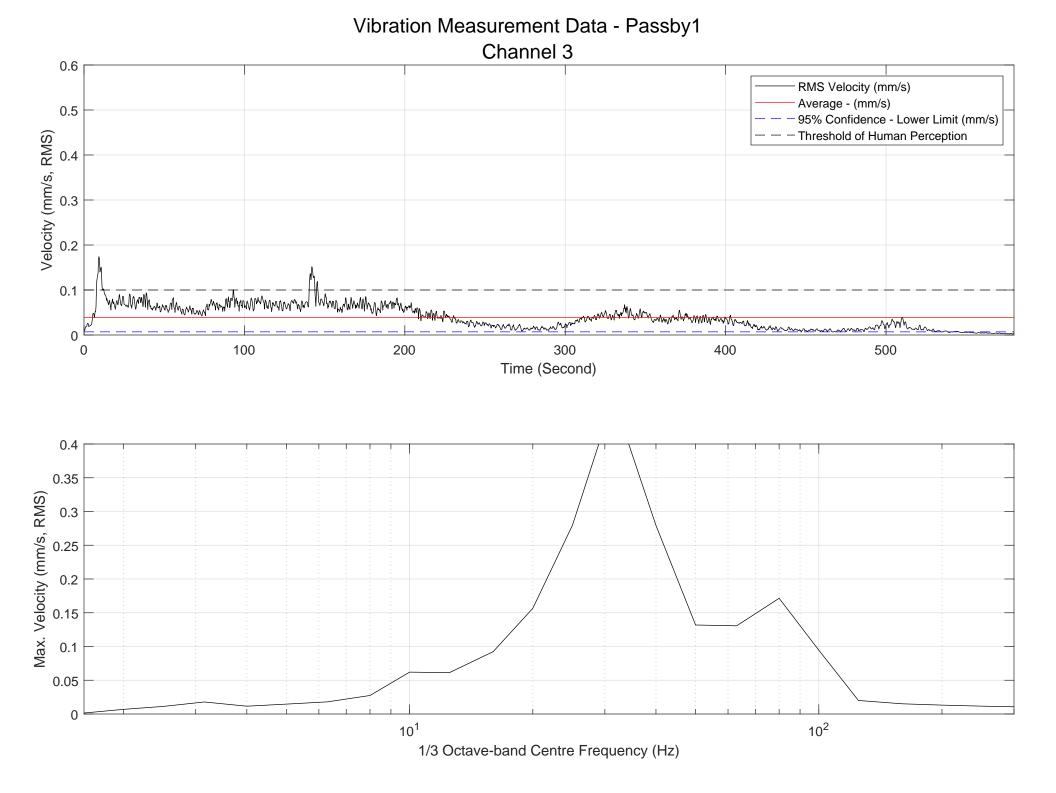

NM03 Southport May 10-13:00 to May 17-23:00

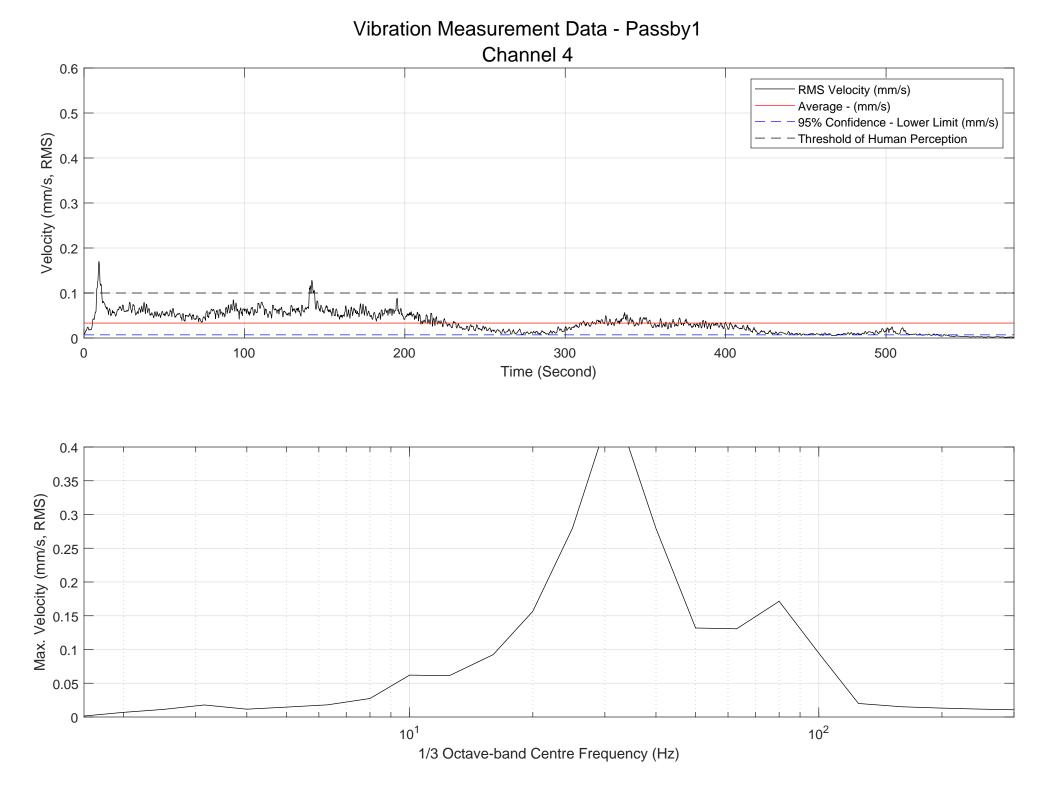


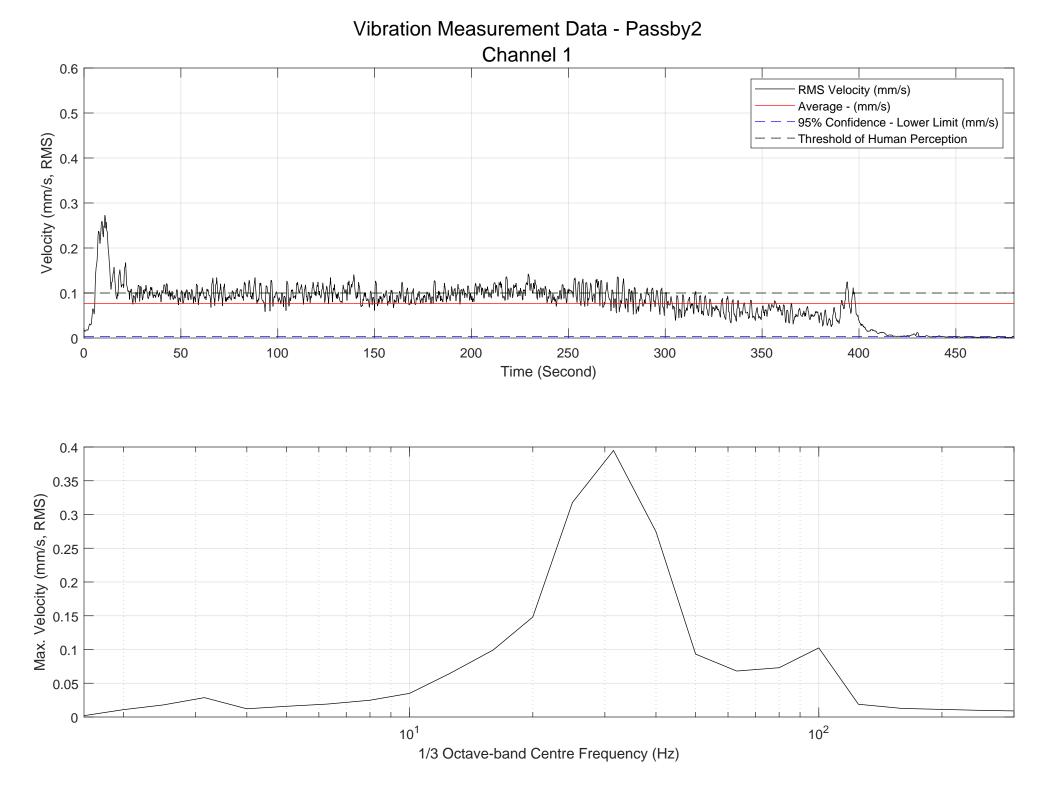
NM04 Courtice GO May 10-12:00 to May 17-05:00

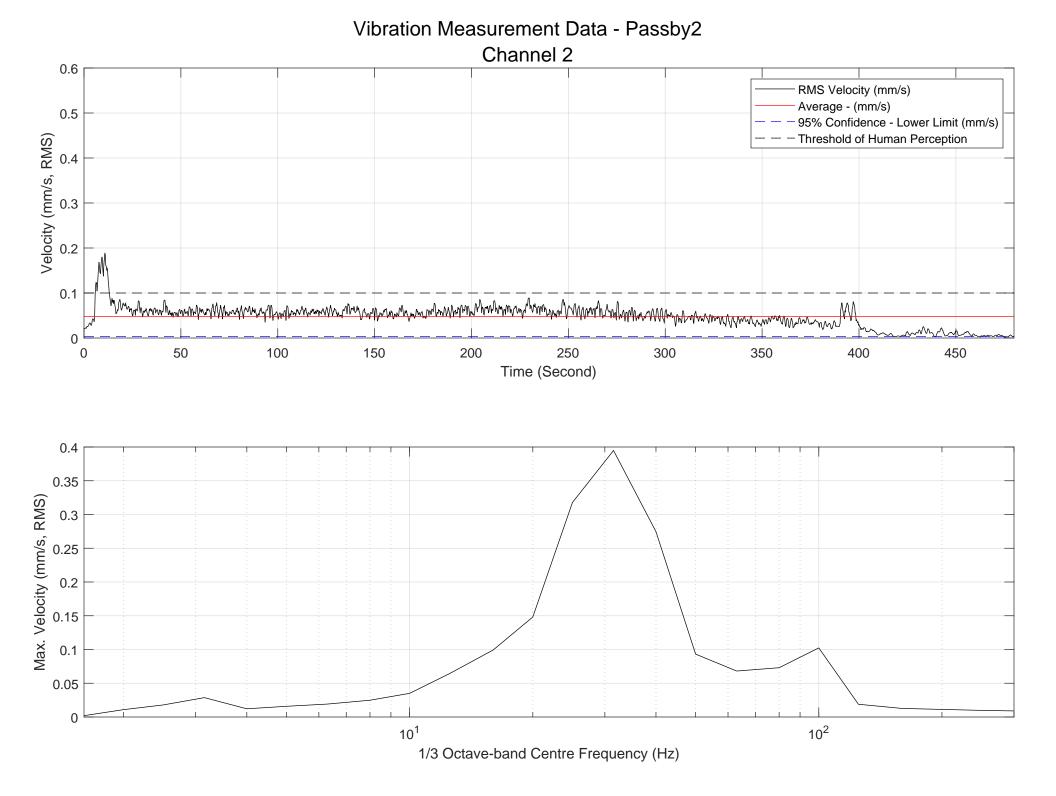

NM05 Holt Road May 10-13:00 to May 17-10:00

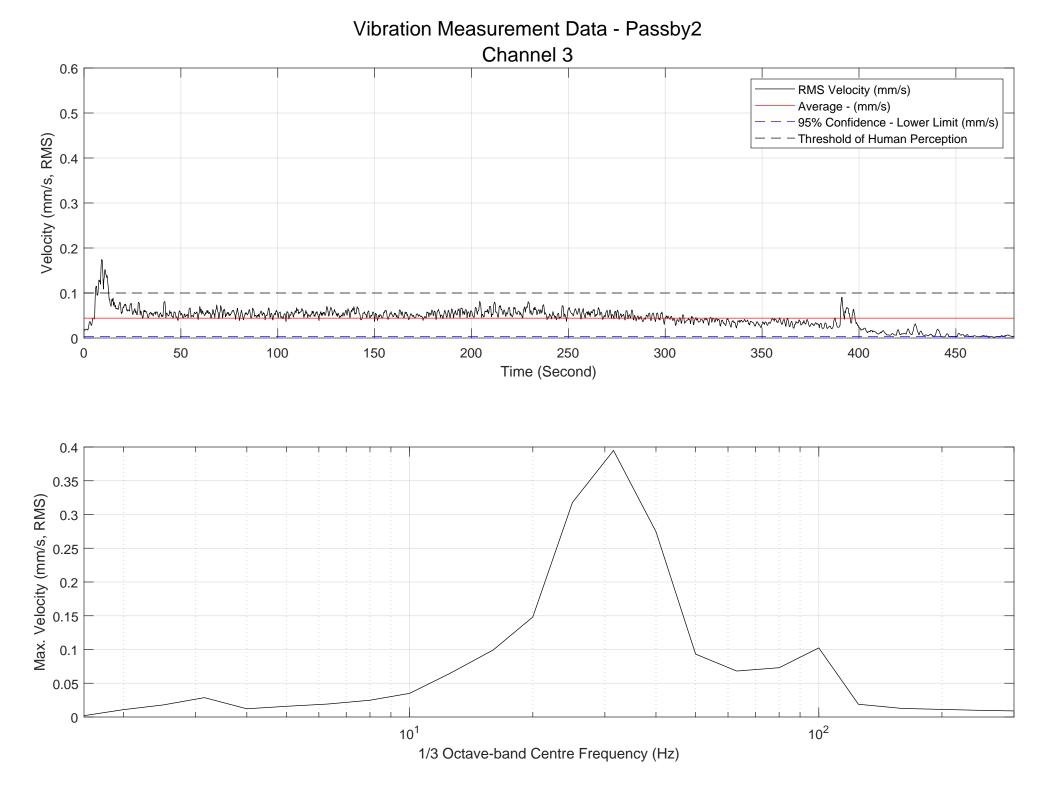


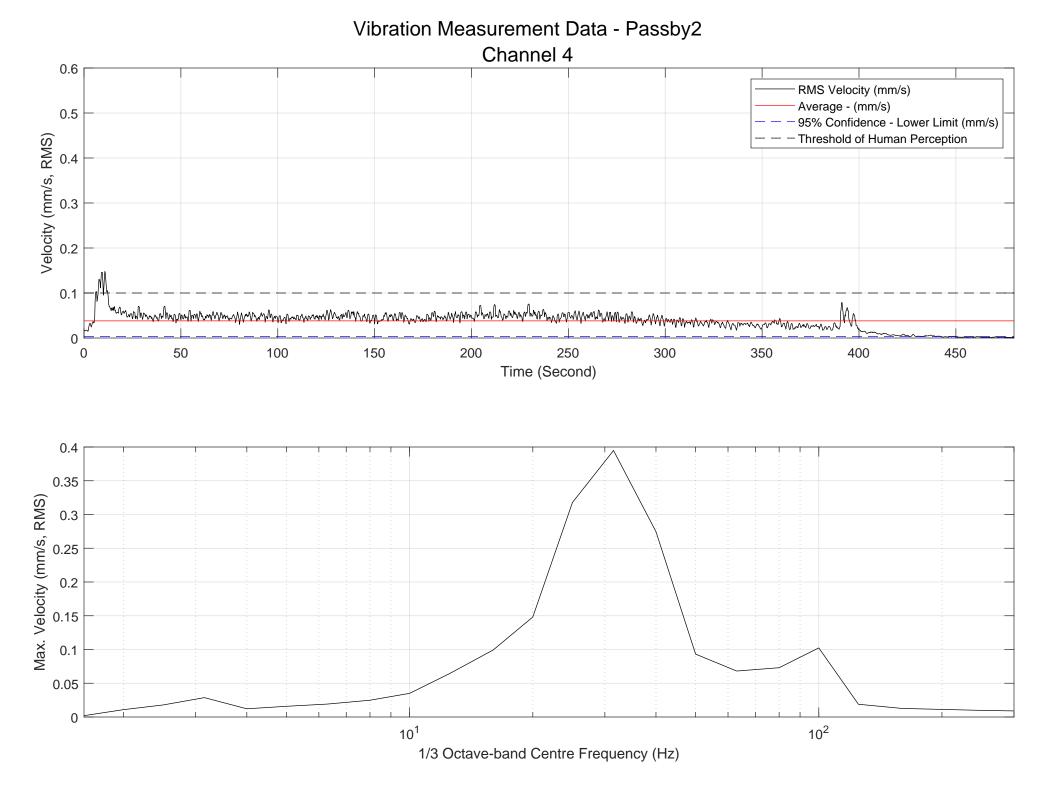


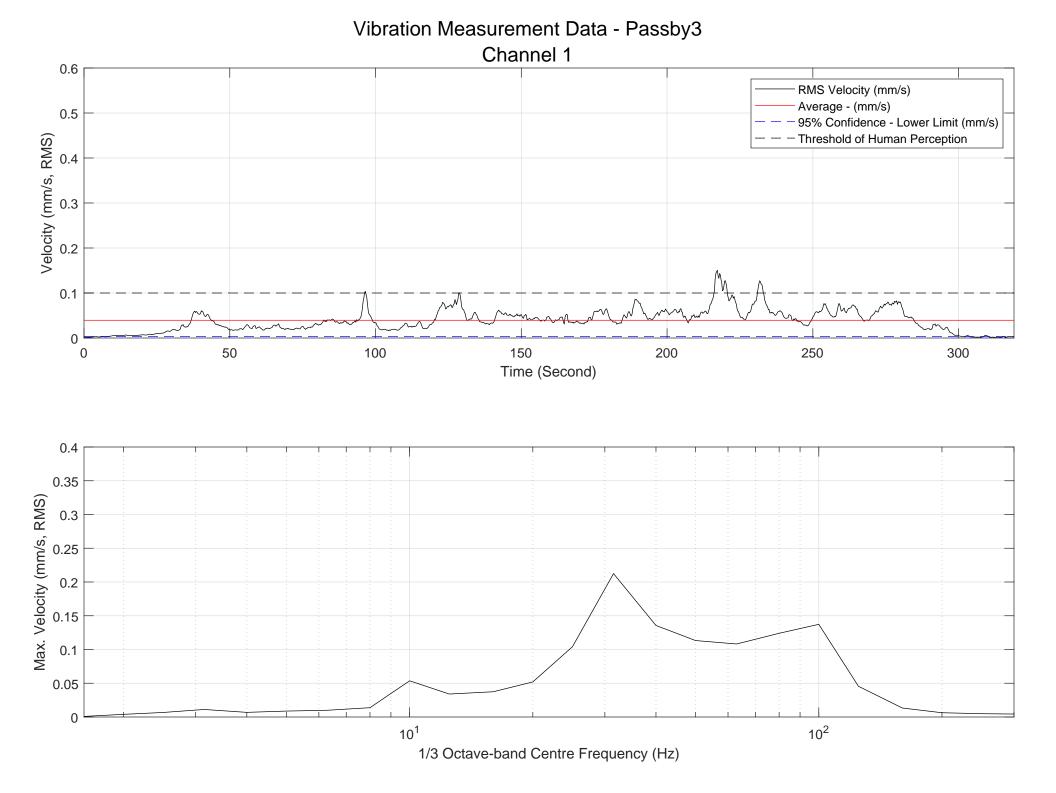

NM06 Bowmanville Carpool Lot May 10-13:00 to May 17-04:00

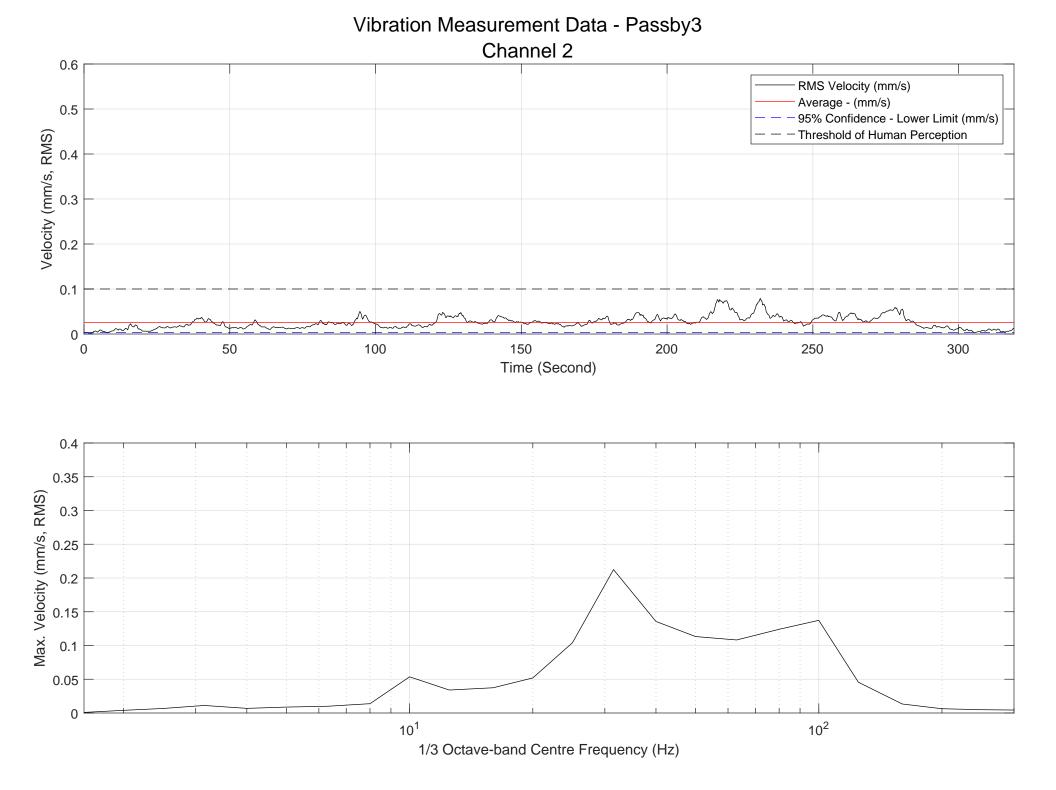

Date

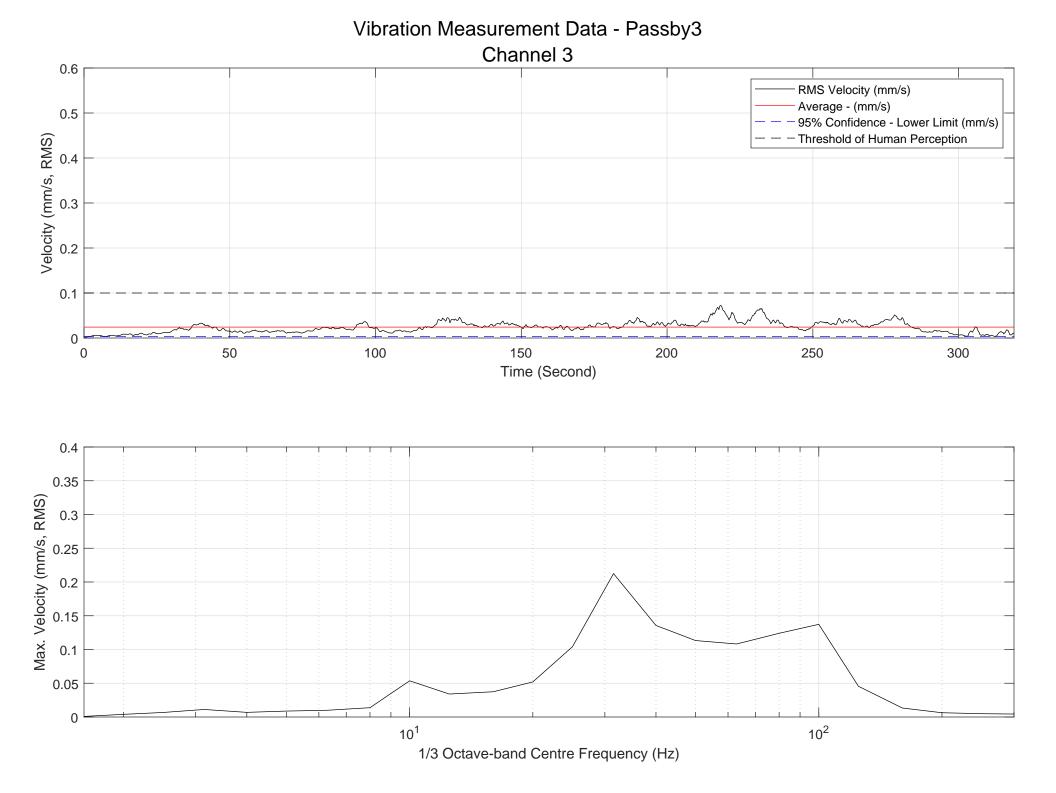


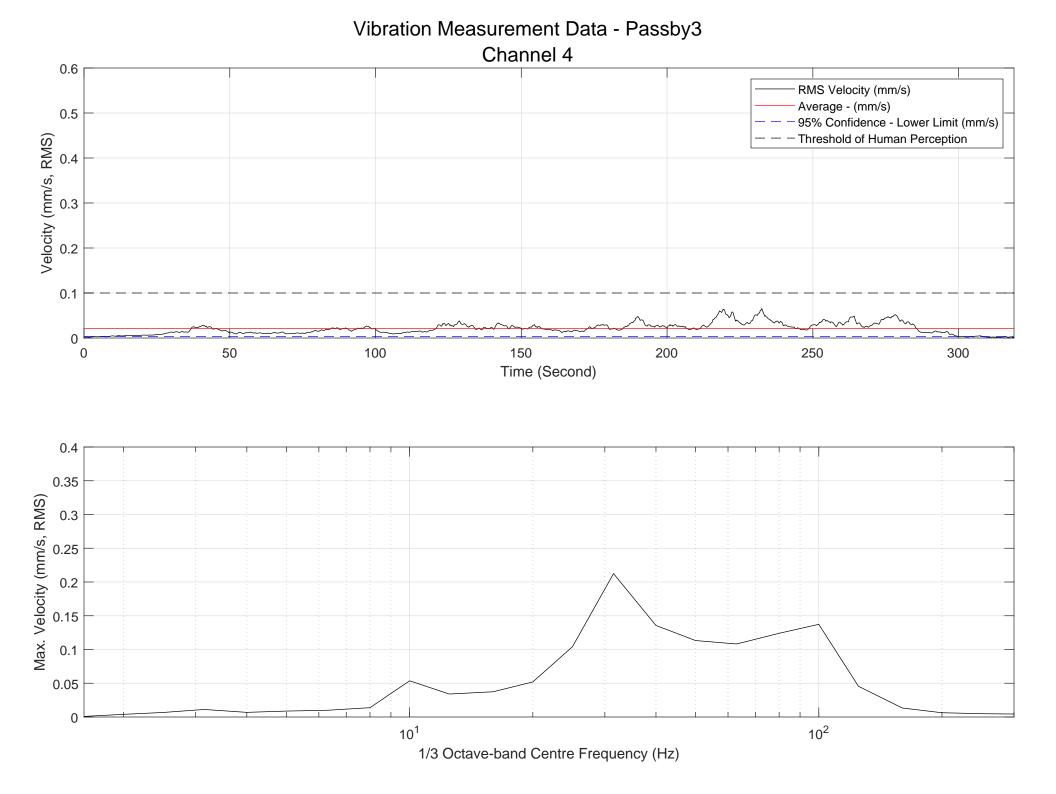


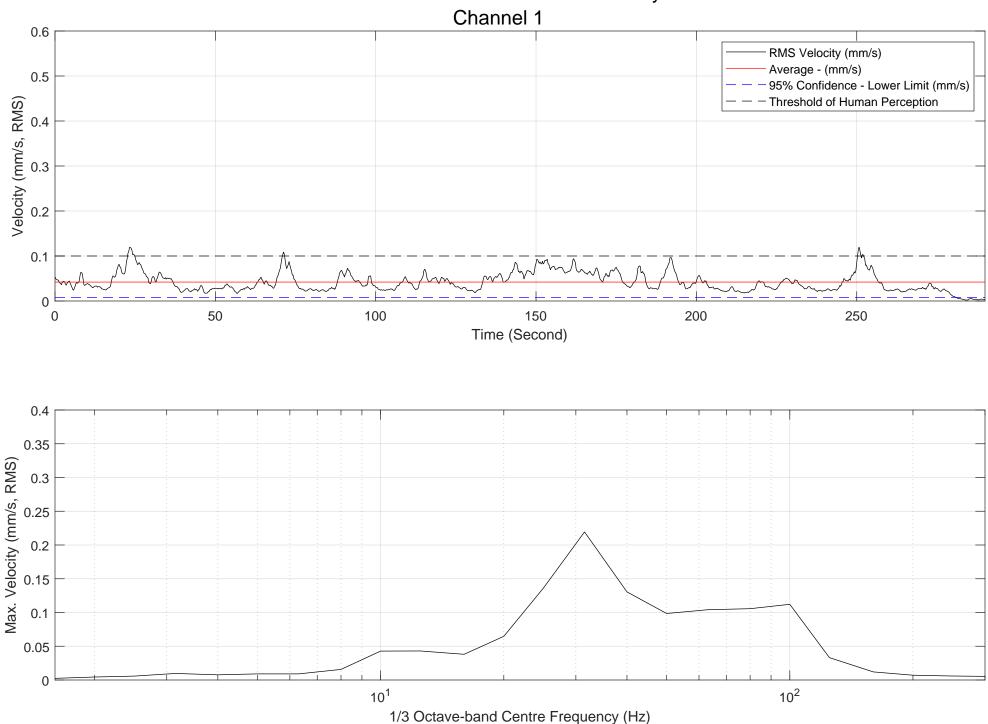


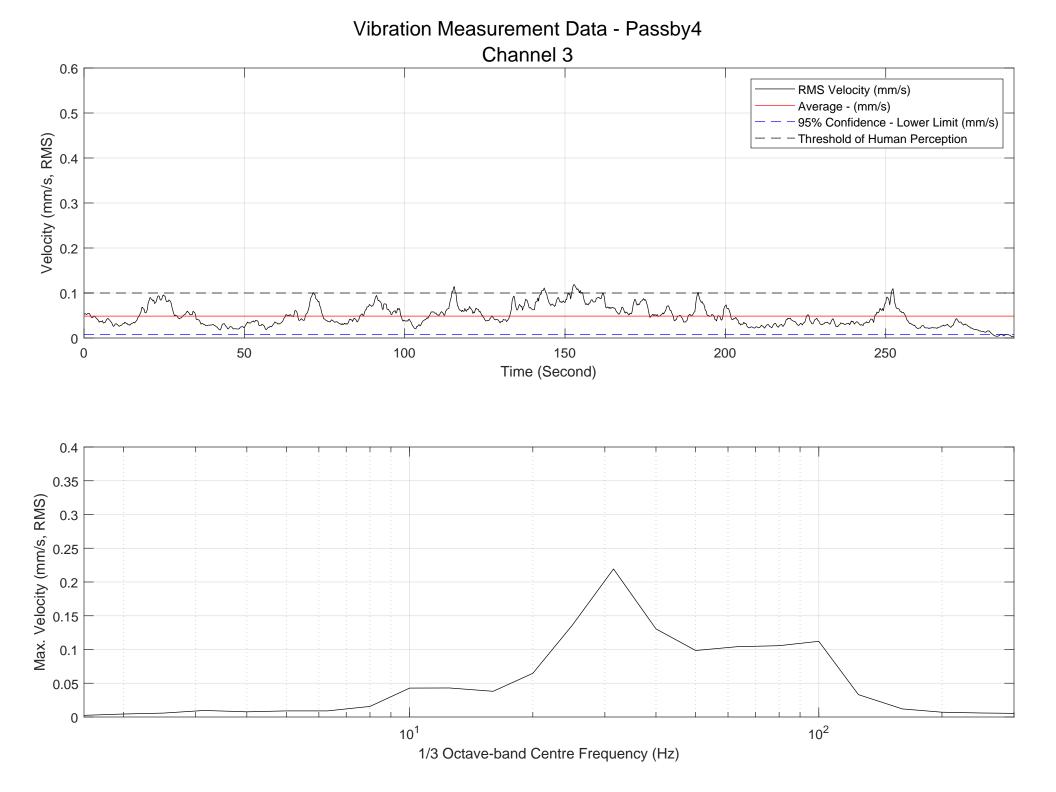


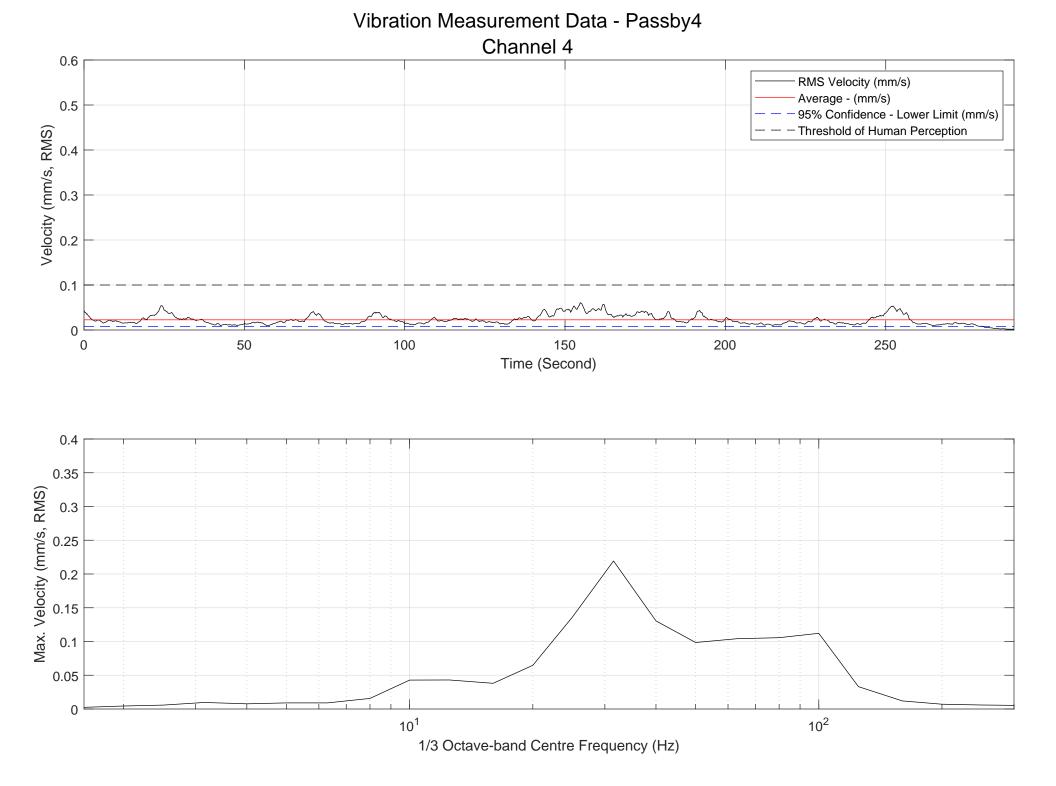


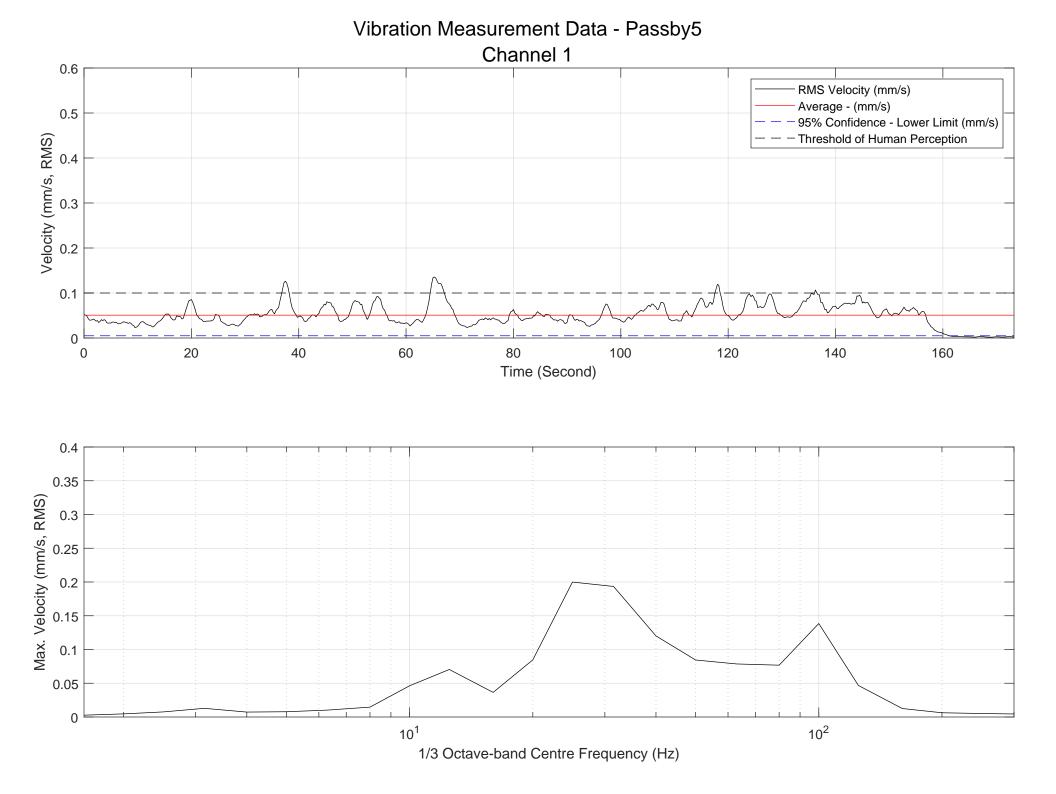


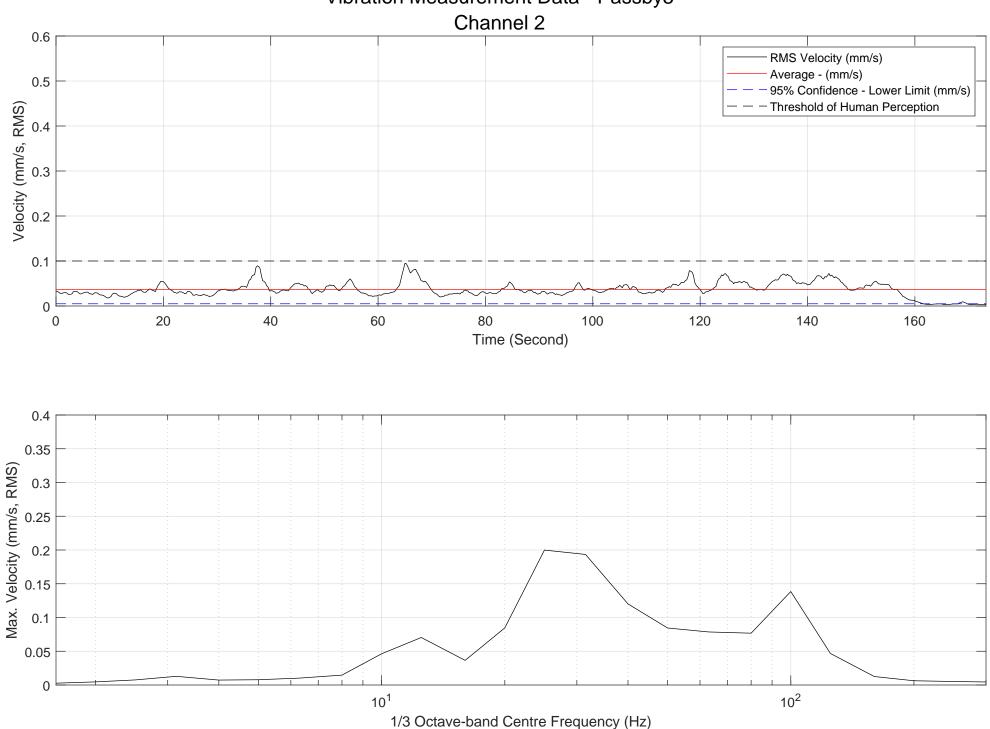


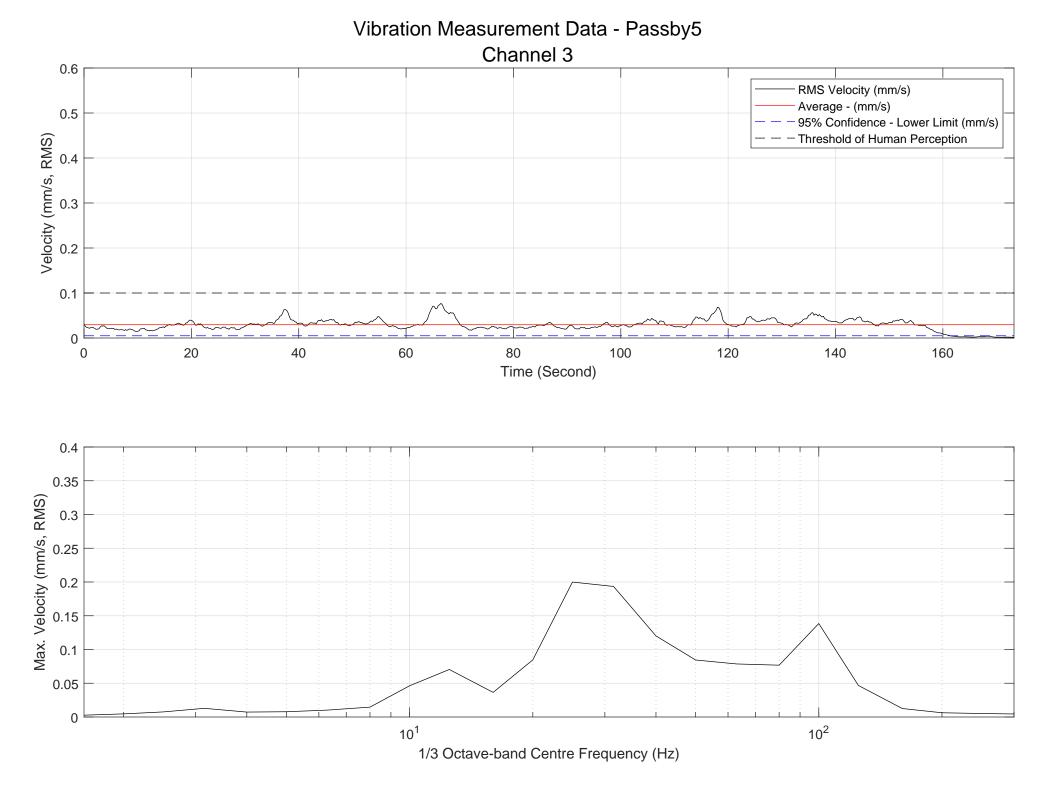


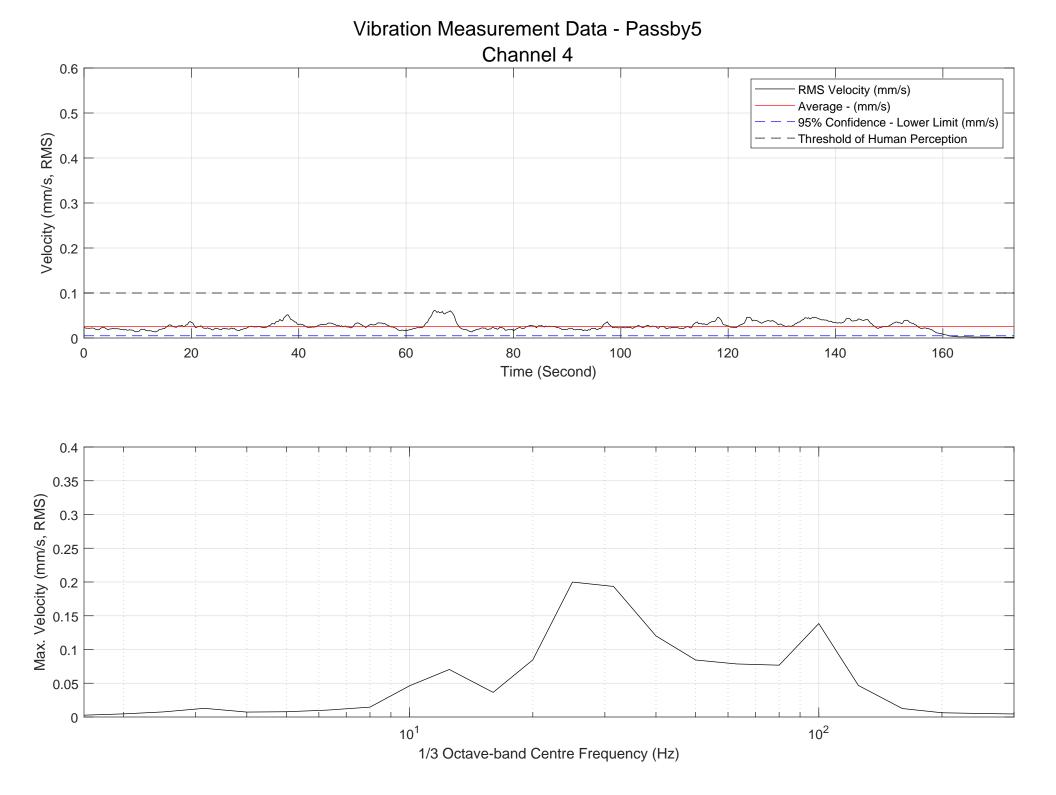


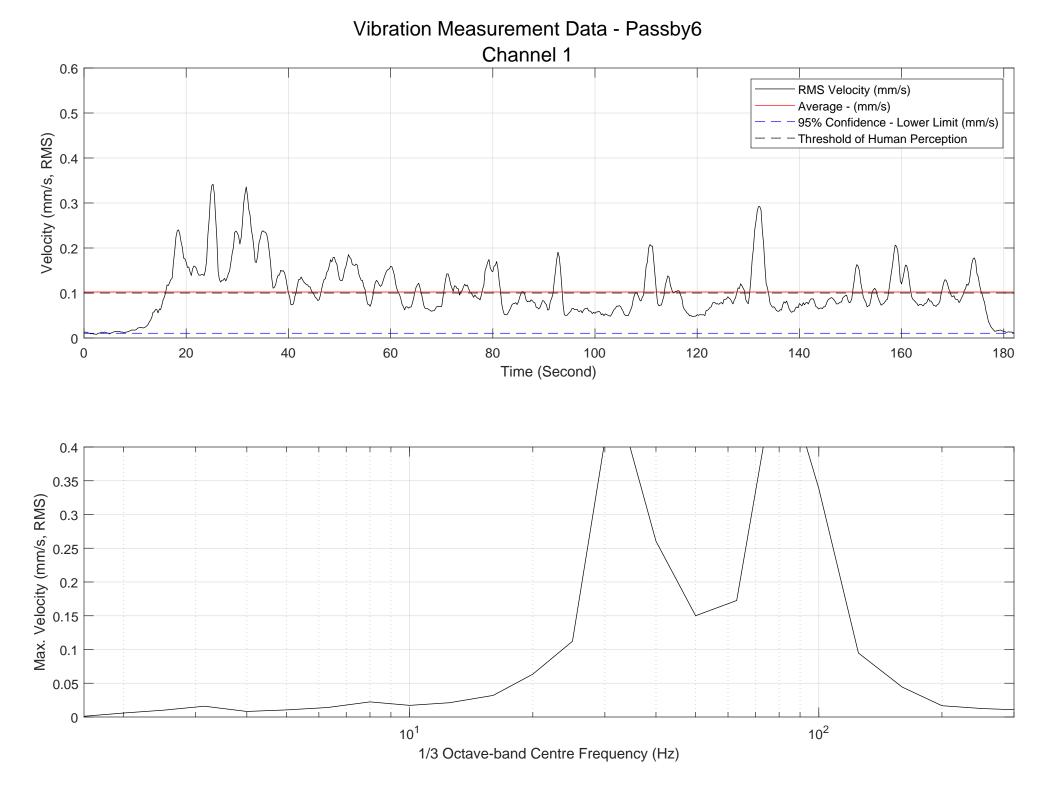


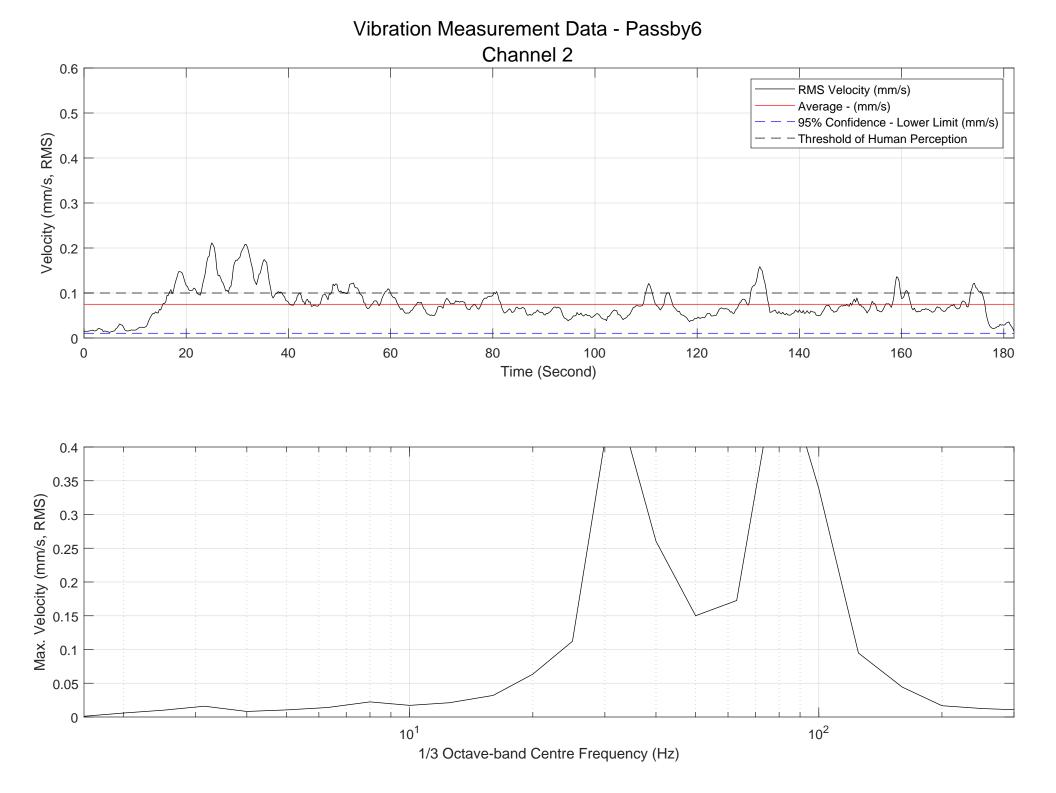


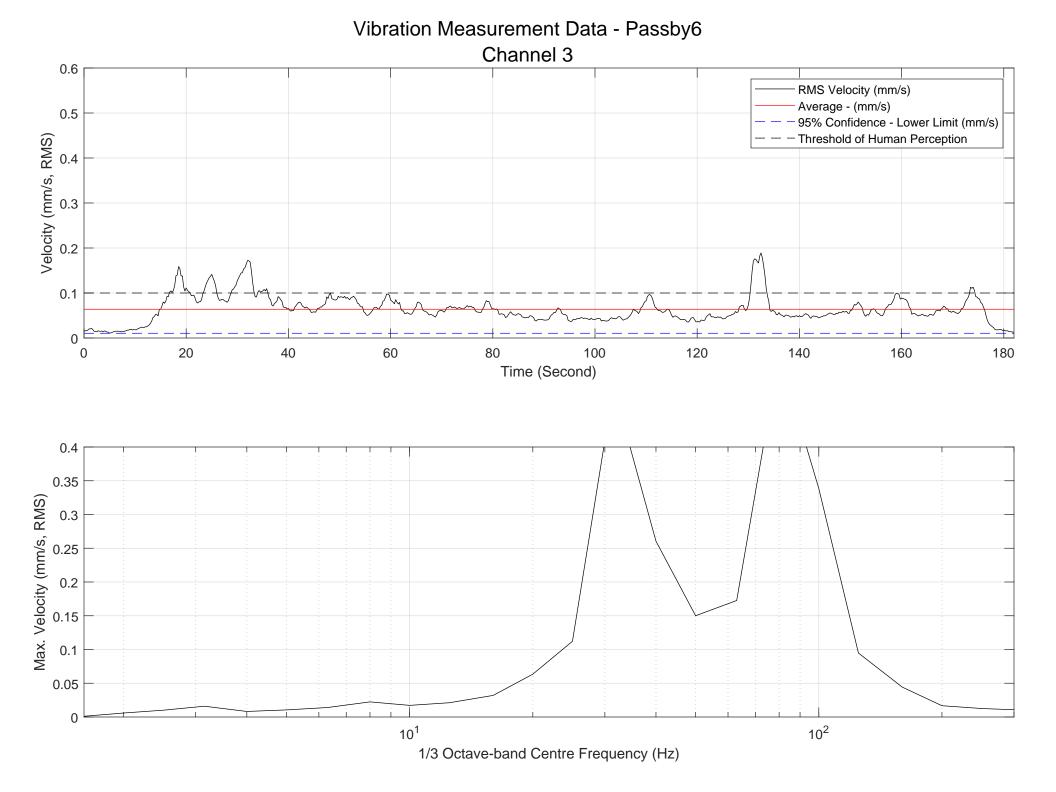


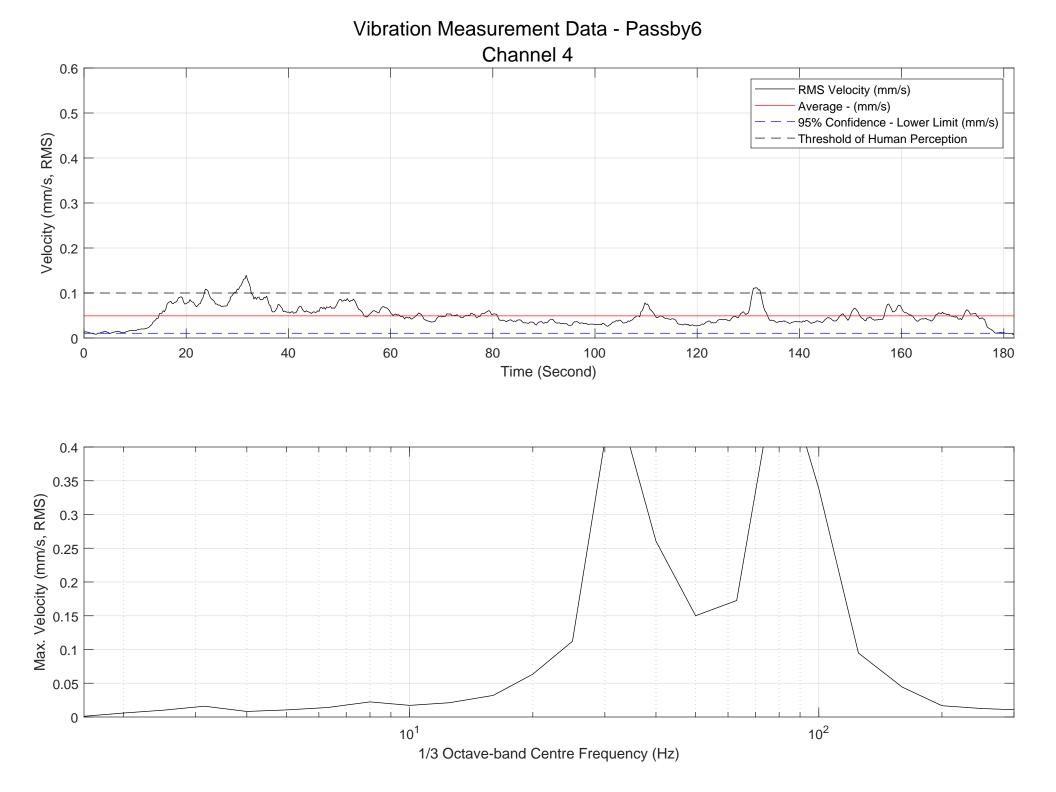


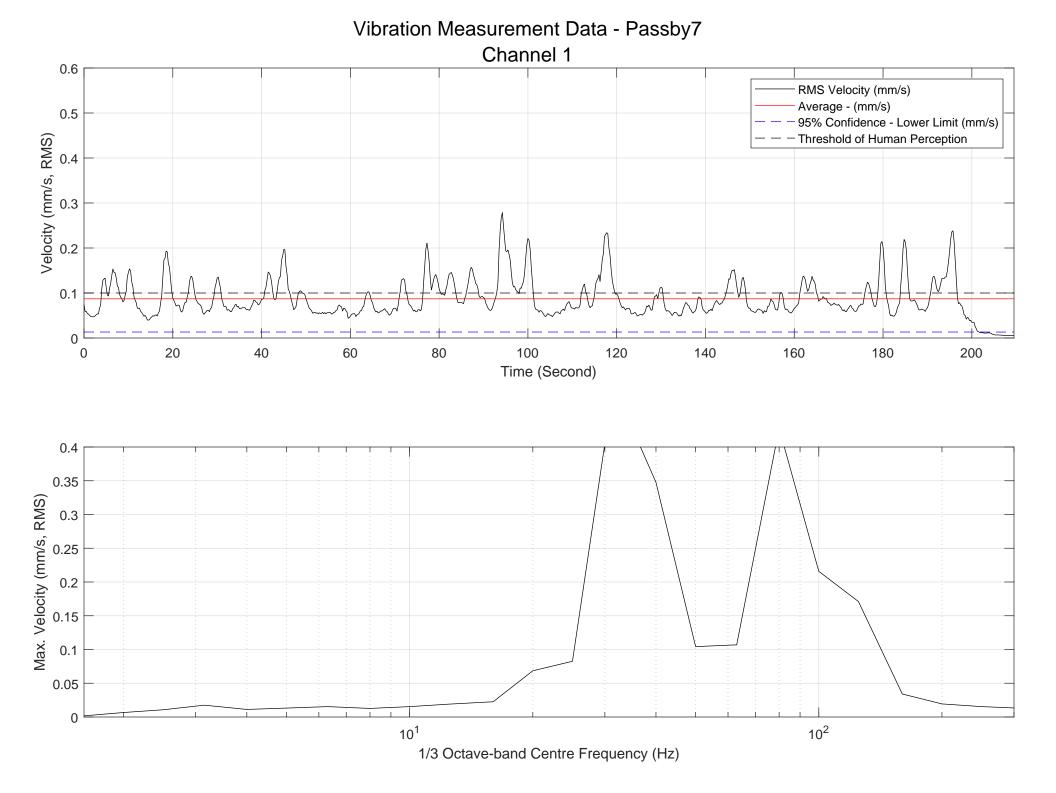


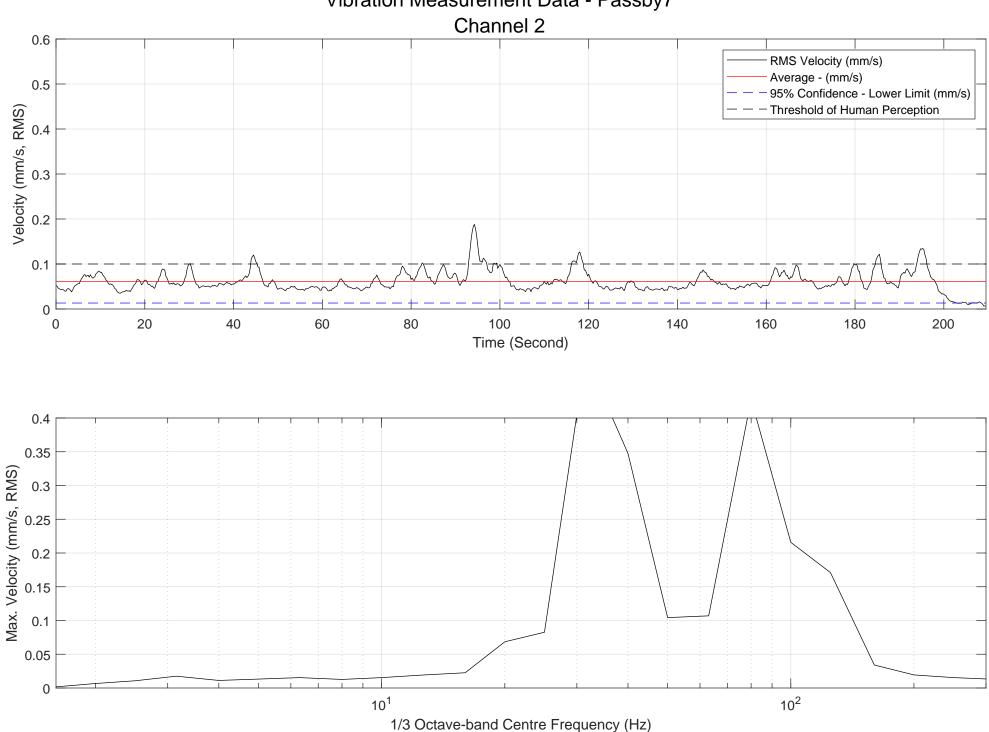


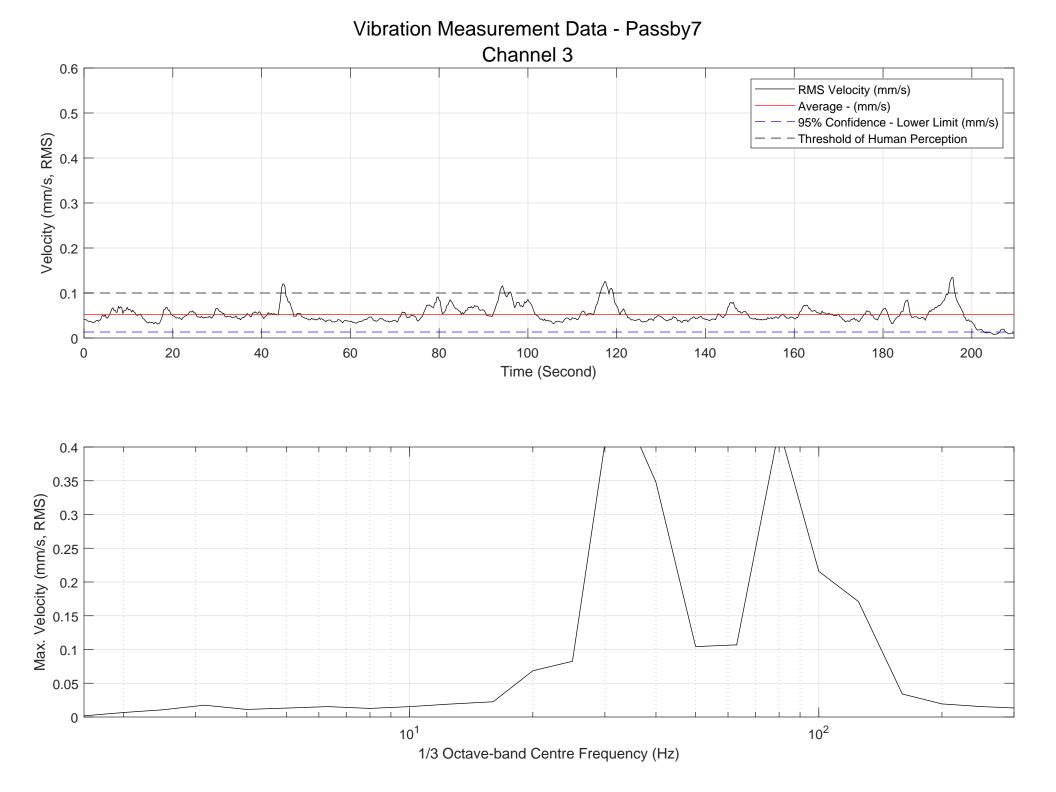


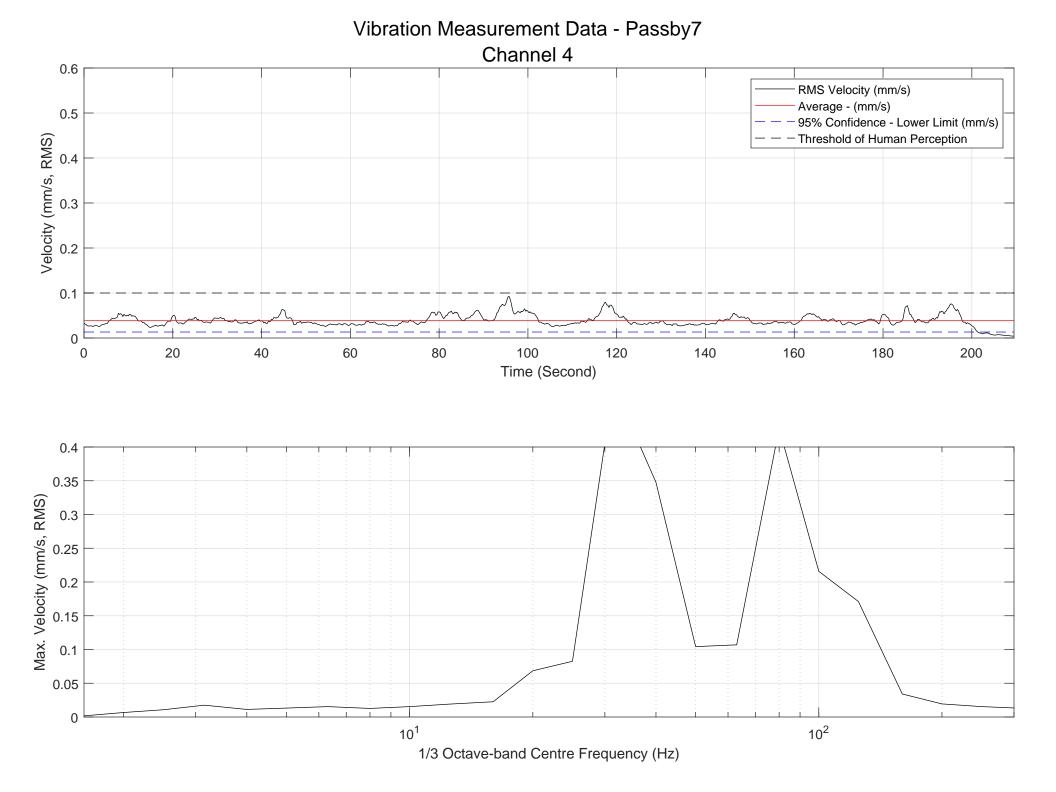


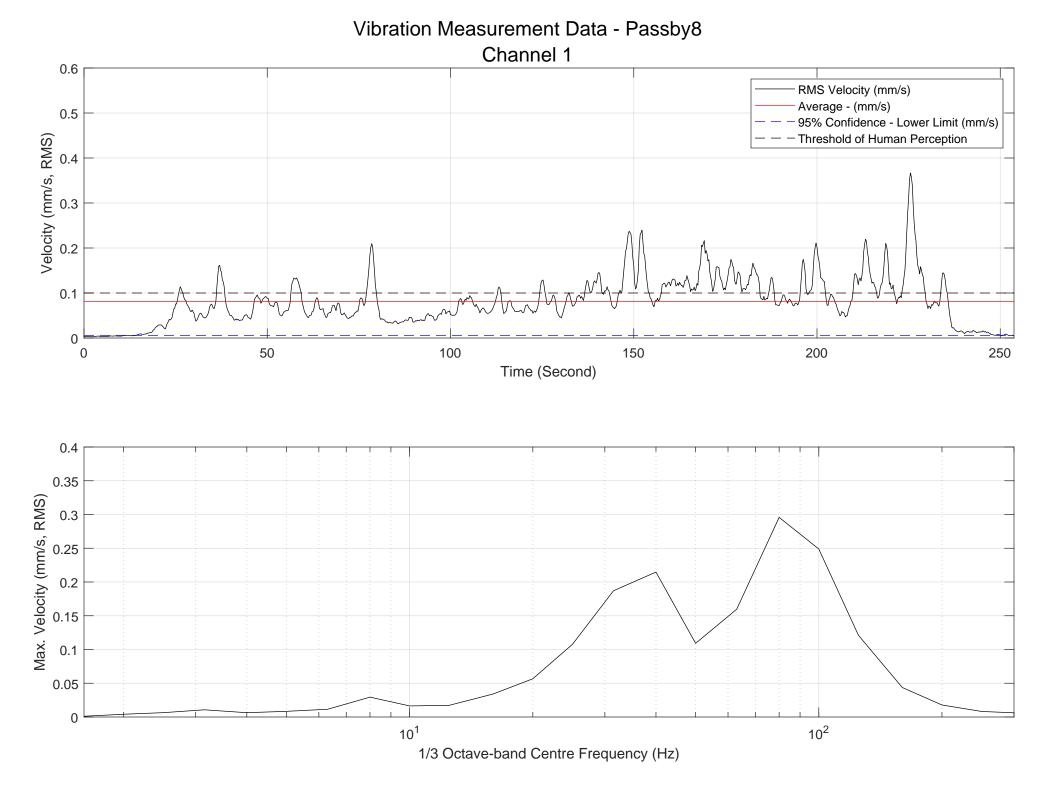


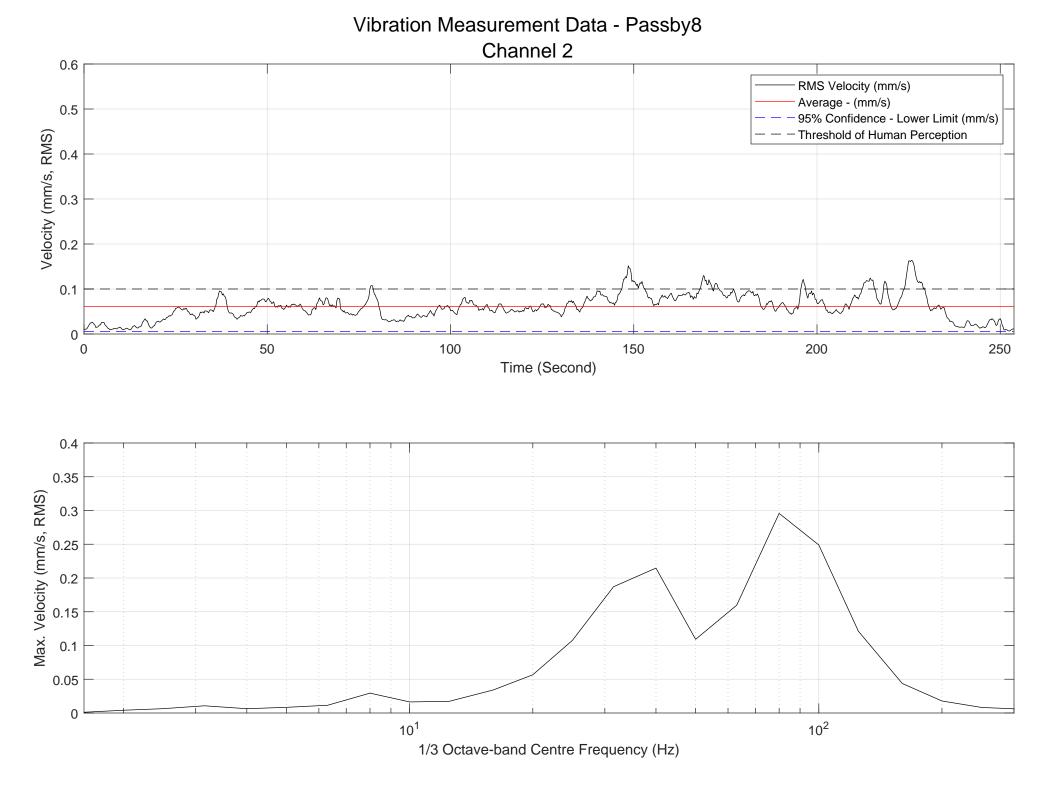


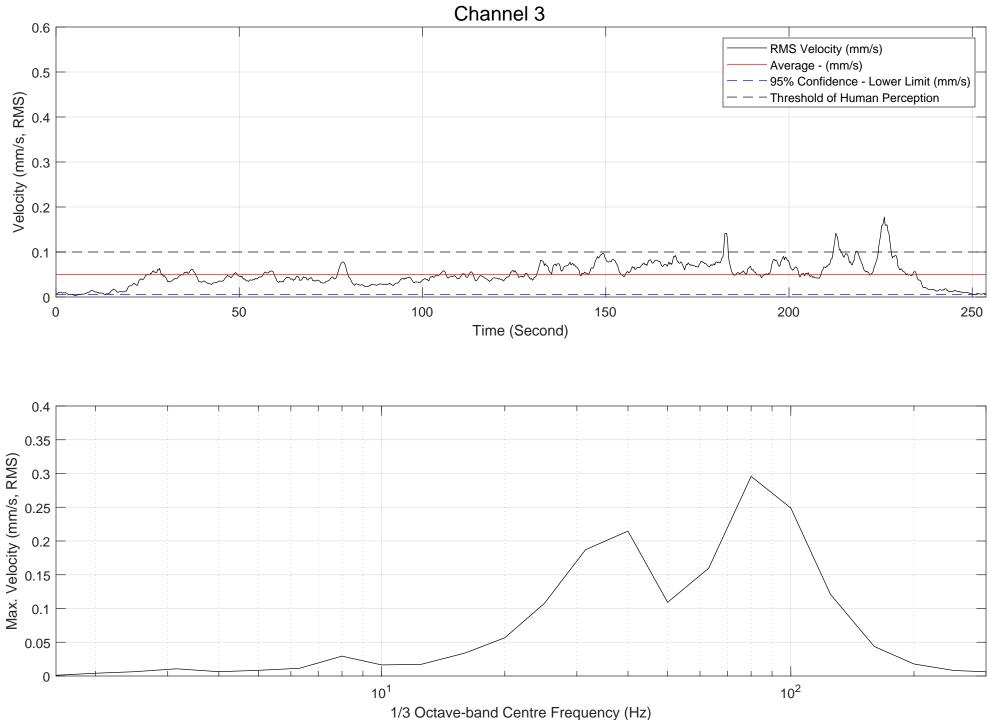


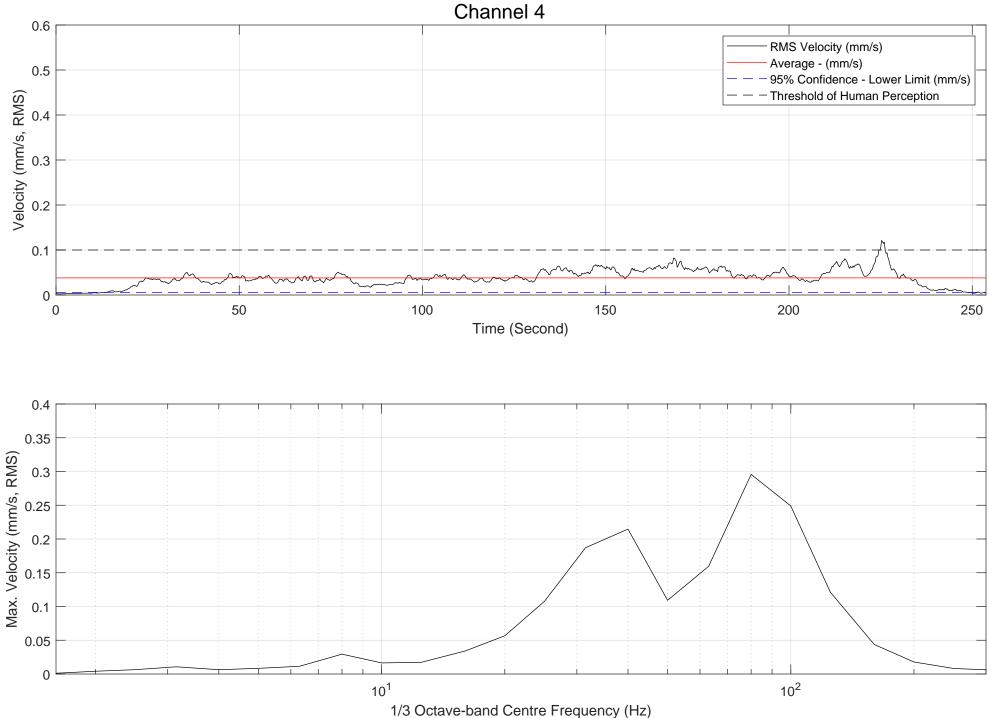


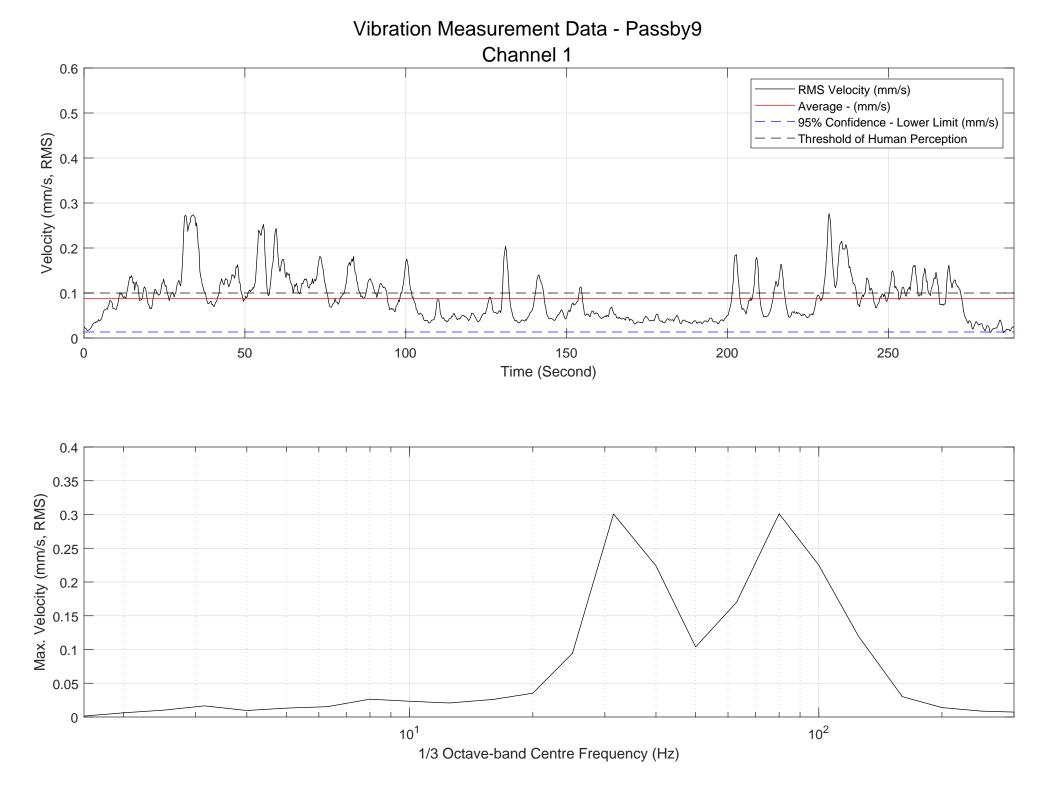


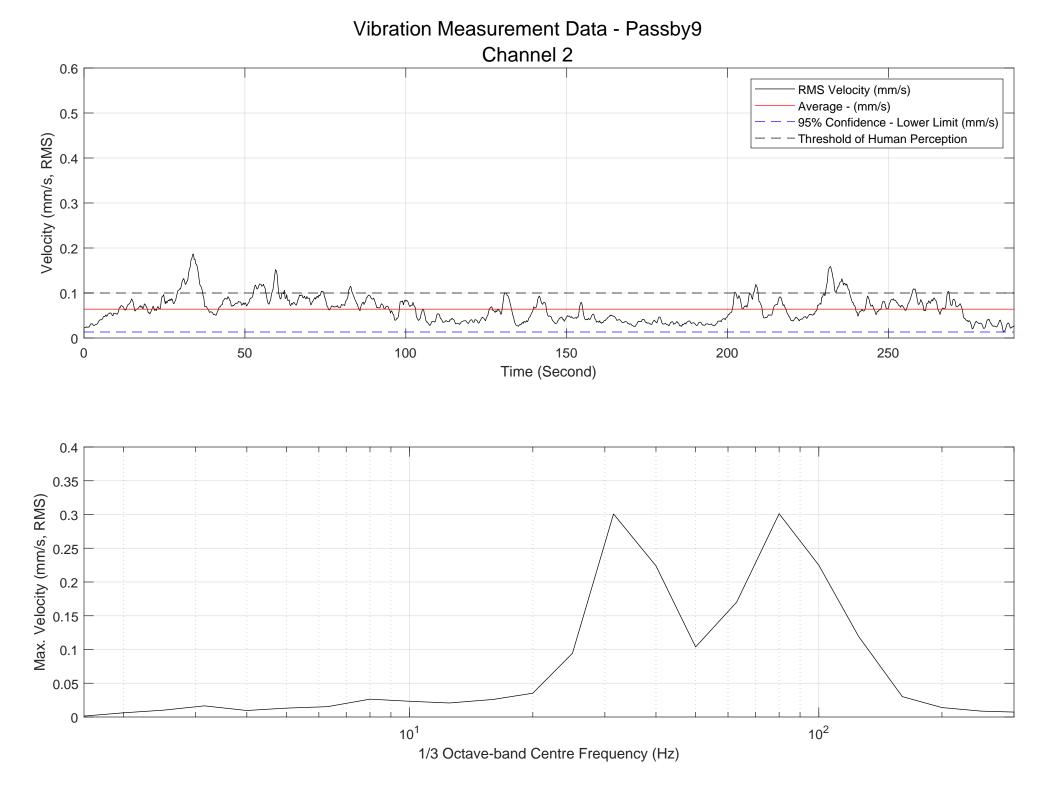


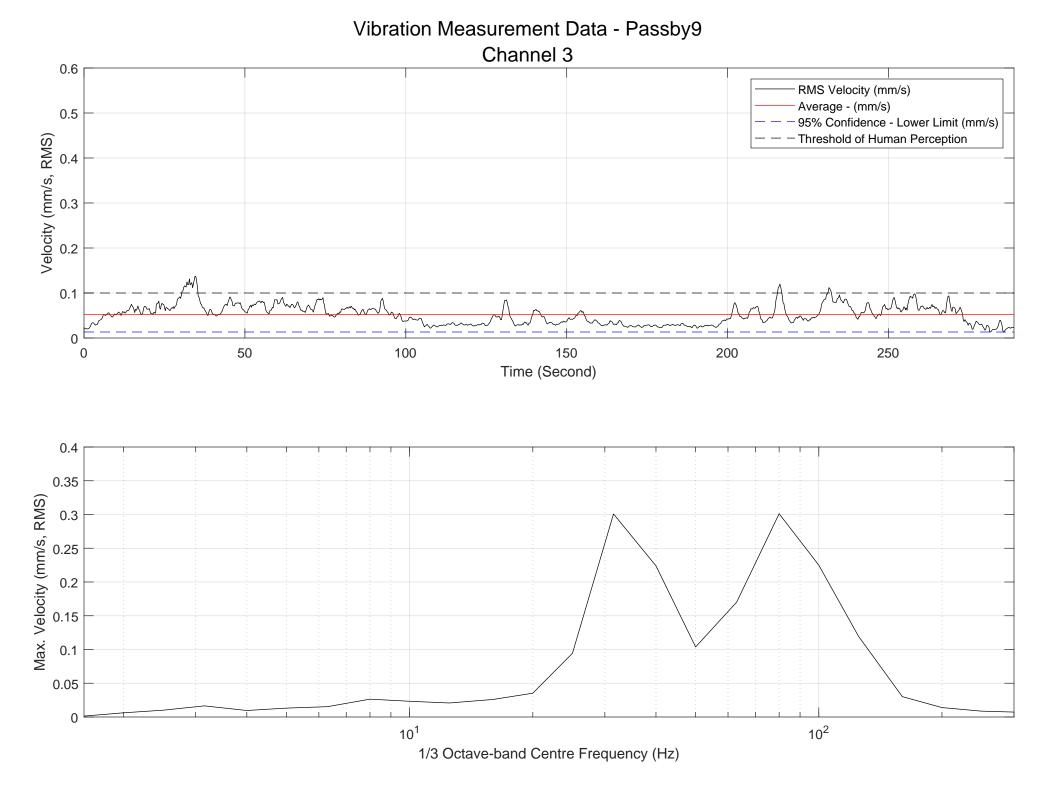


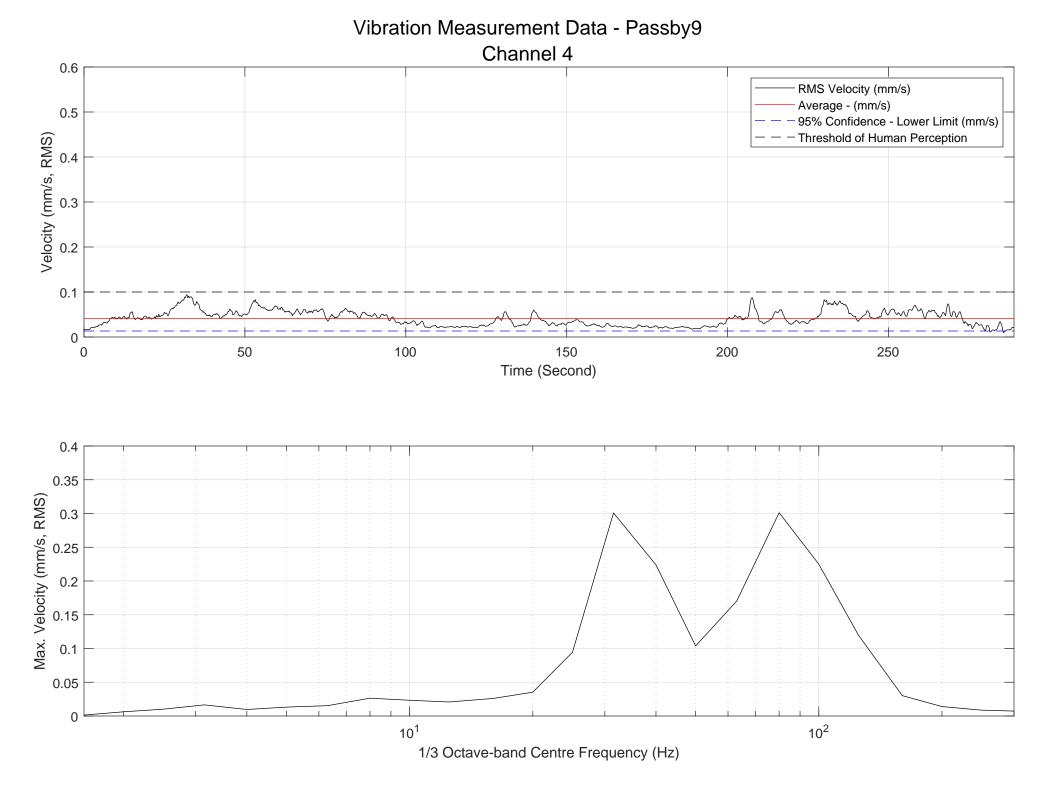


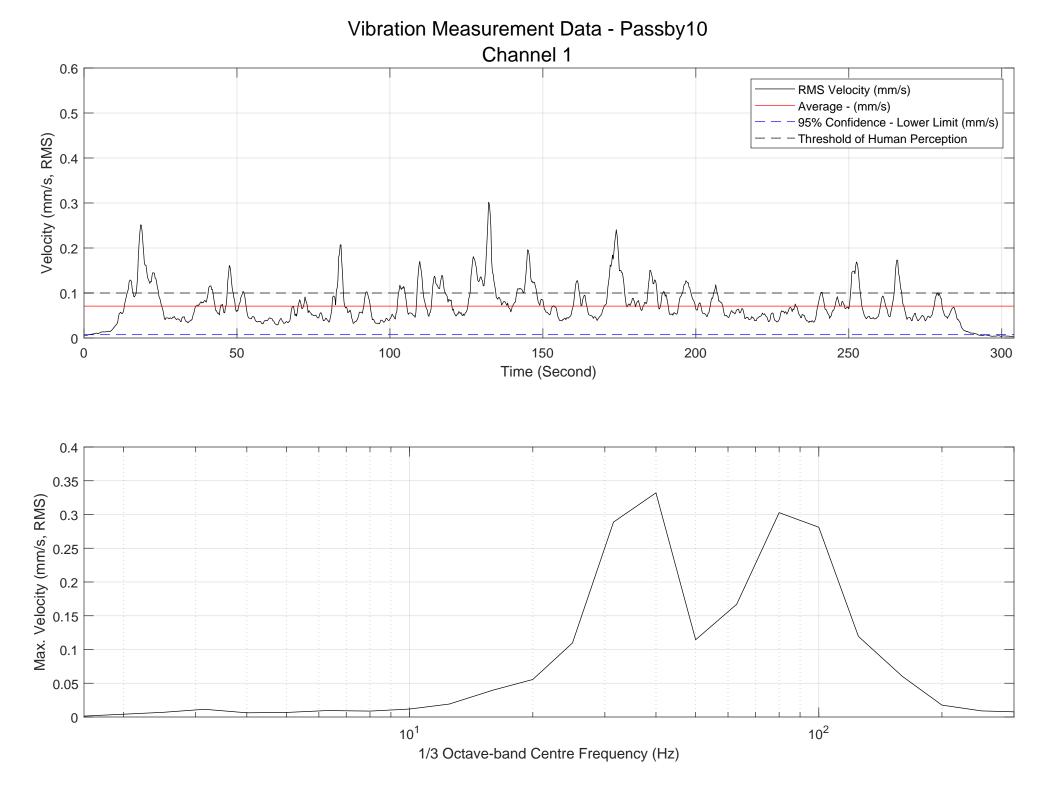


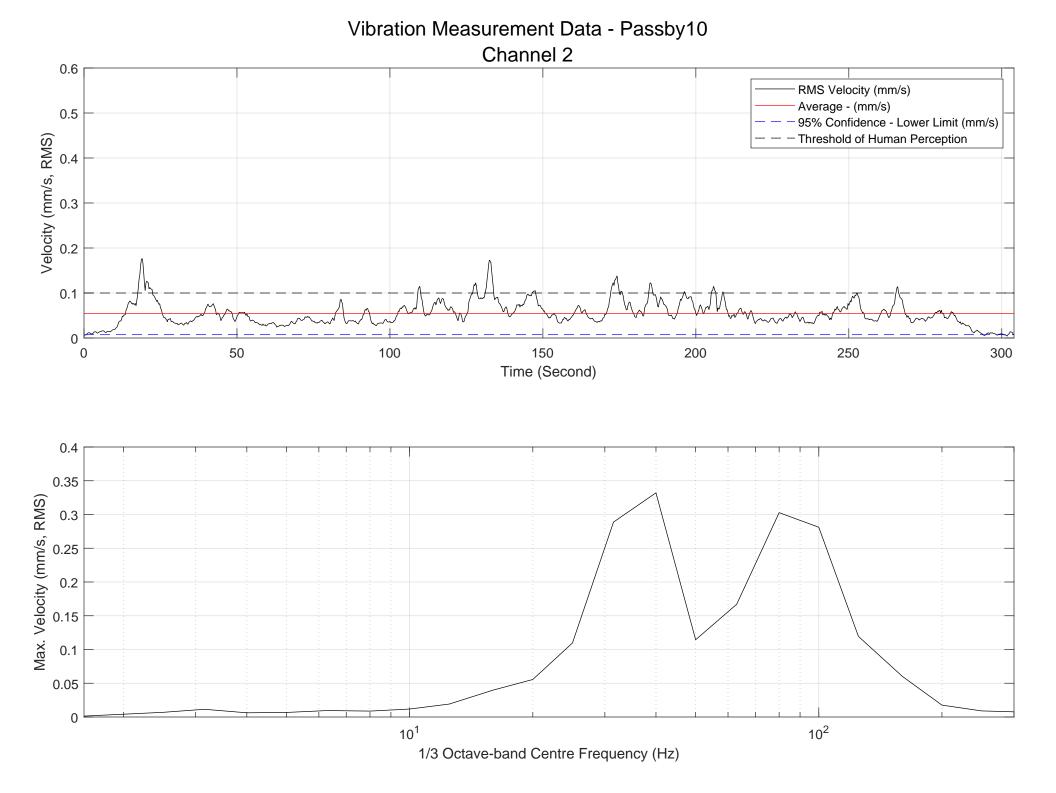


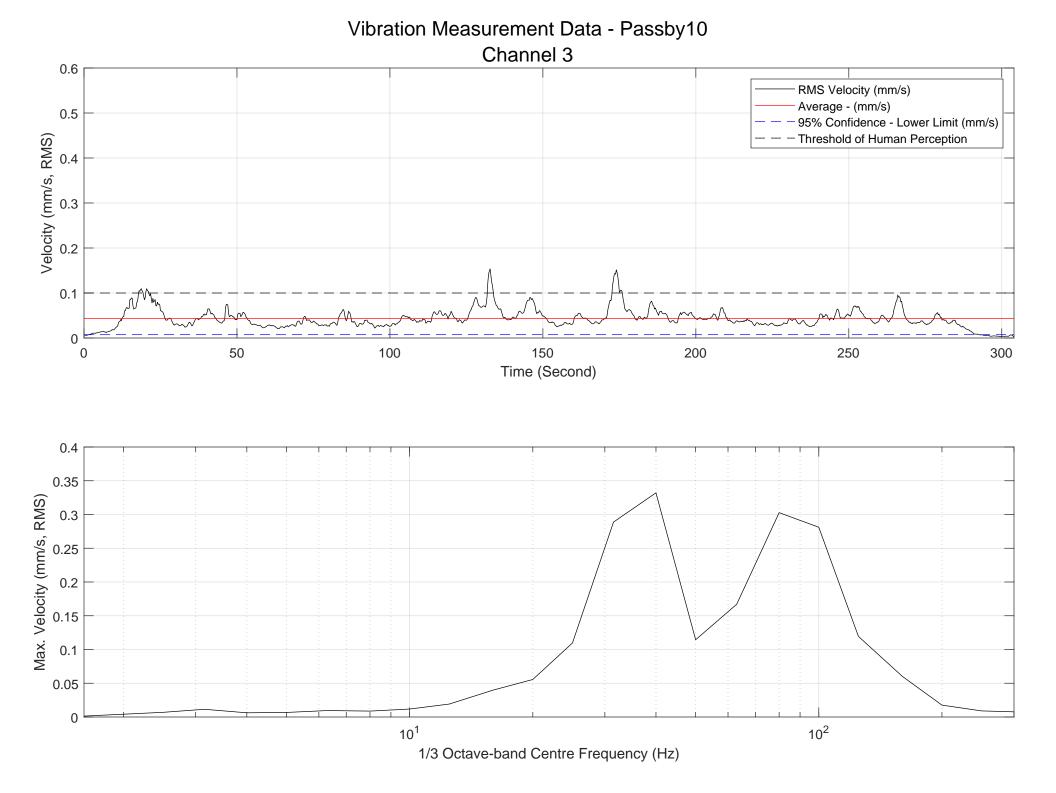


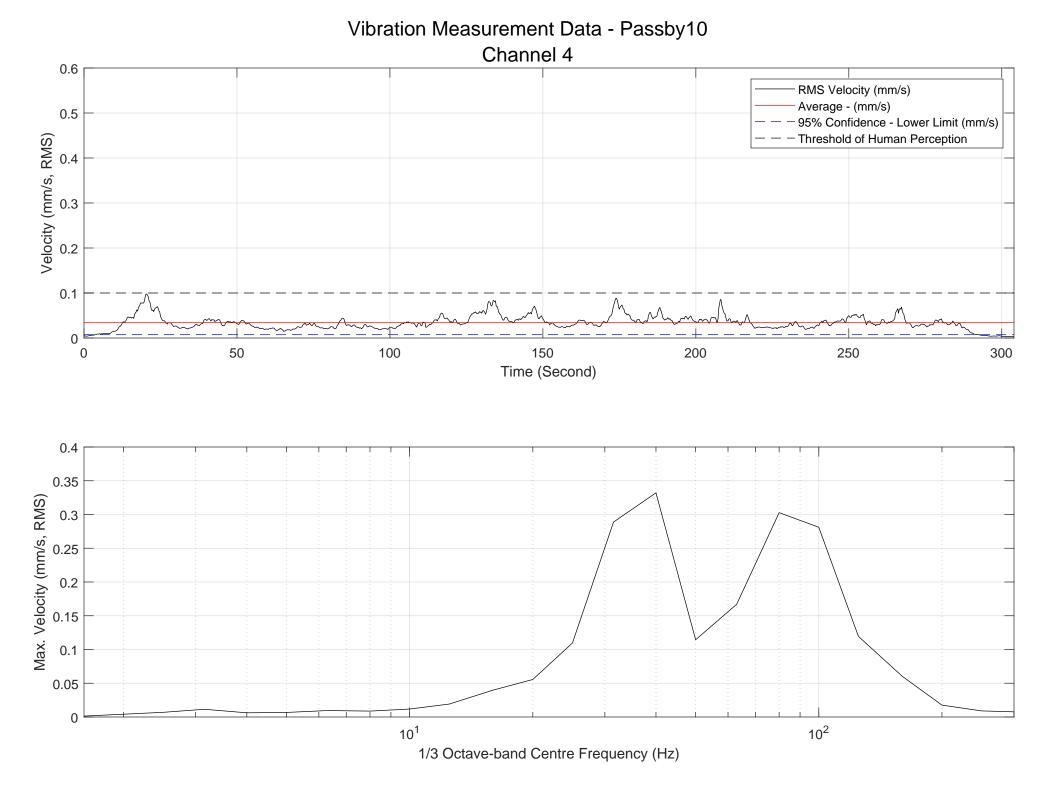


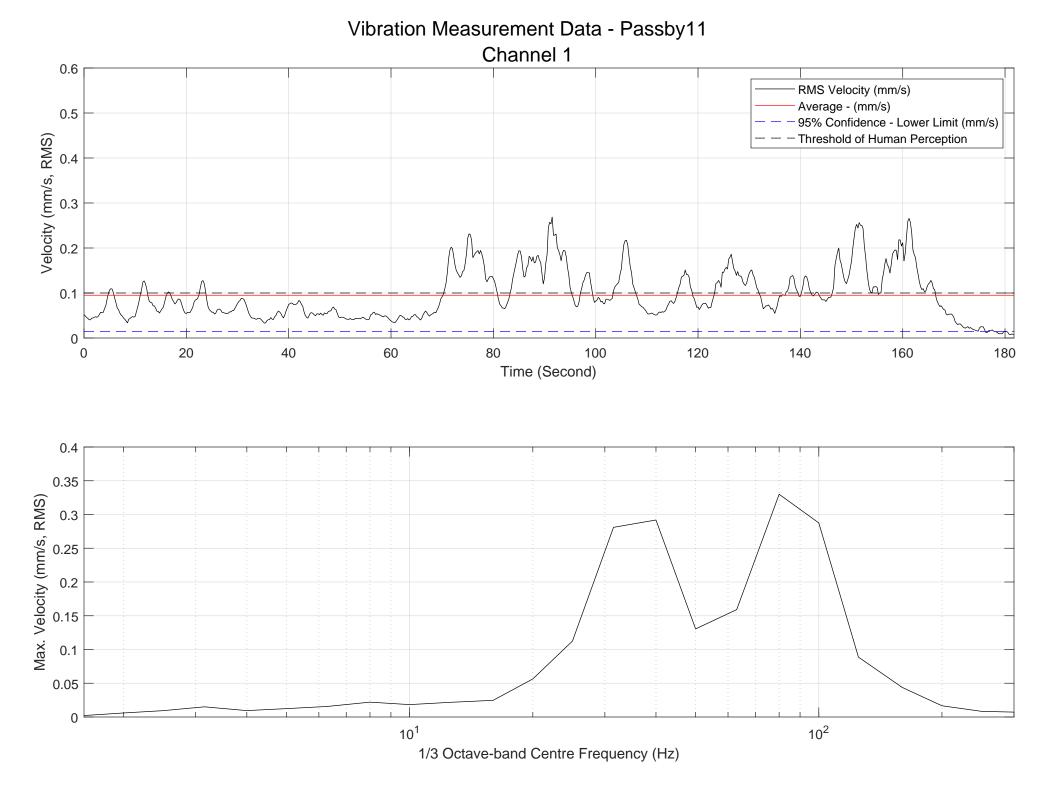


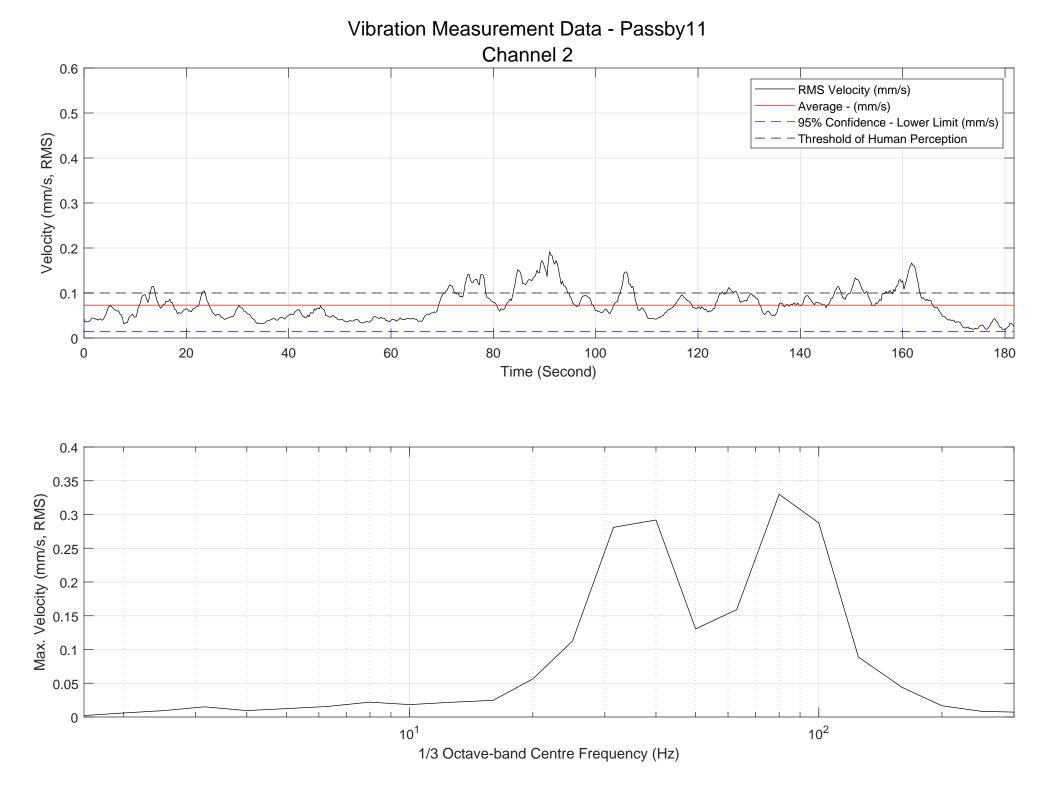


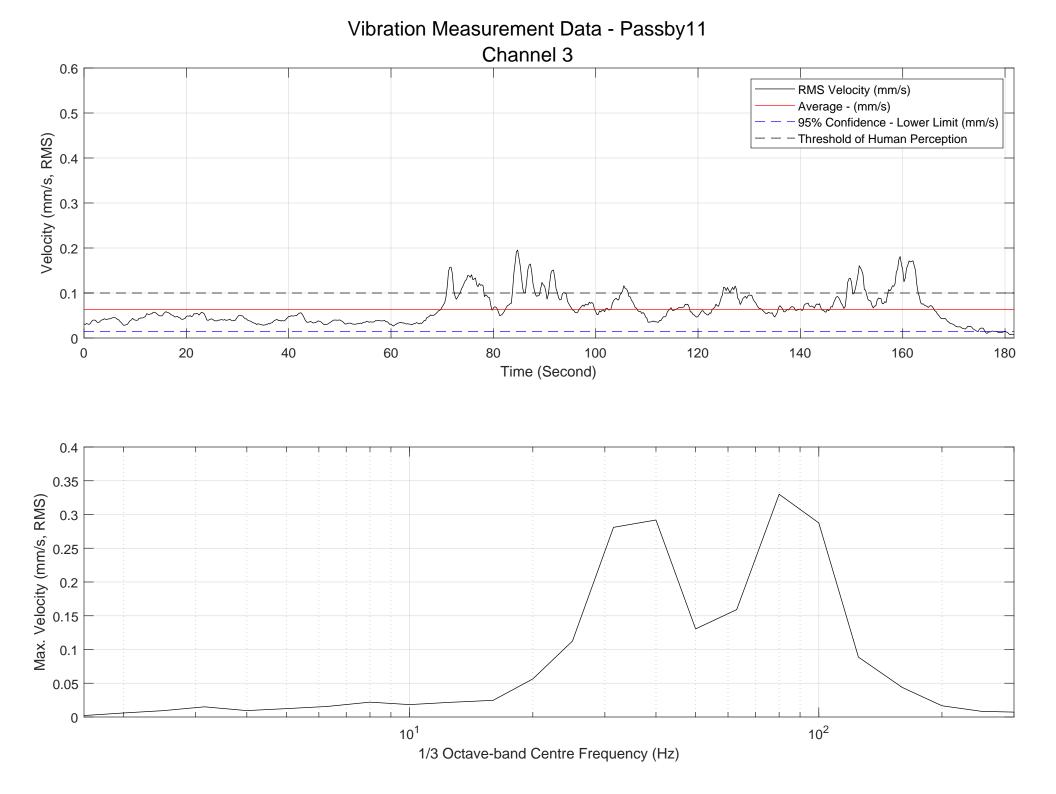


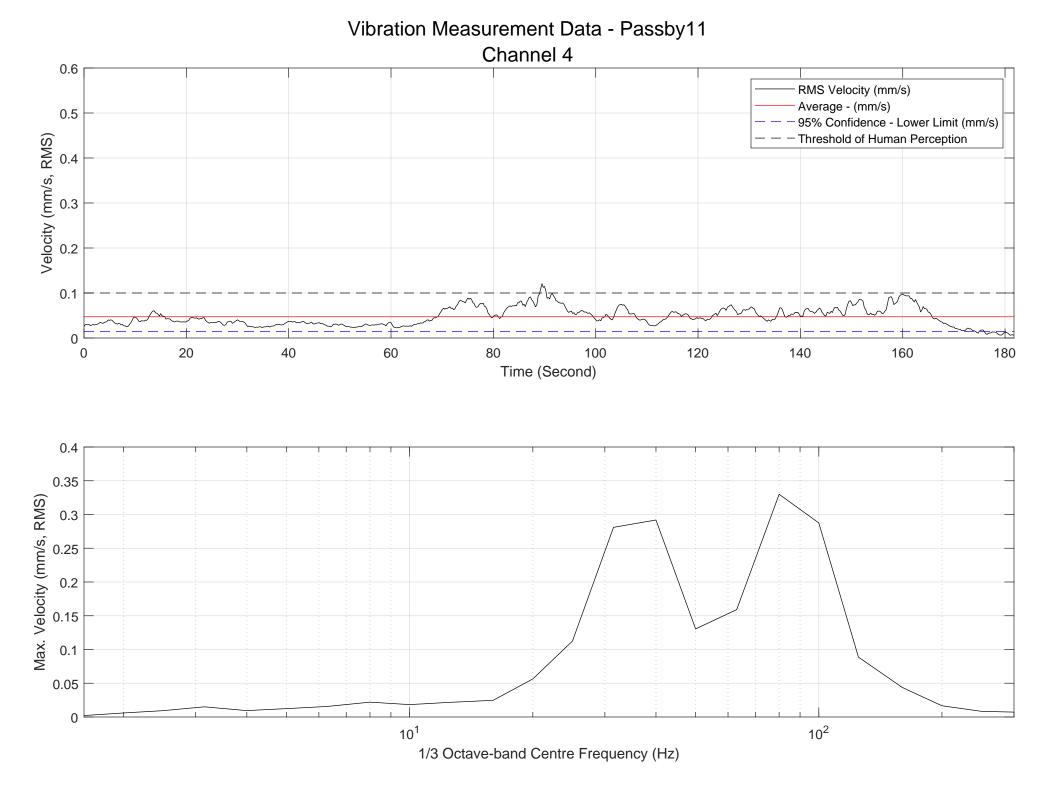












Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Noise and Vibration Technical Report

Appendix E Metrolinx Construction Best Practices

Best Construction Practices for Noise and Vibration Control

The application of best practices is perhaps the easiest and cheapest way to control noise. These practices are numerous to discuss one by one. They are summarized below:

- 1. Adopt working hours to restrict noisy activities (such as demolition or pile driving) to regular working hours of the week.
- 2. Arrange delivery times to suit the area in general, daytime for residential areas and nighttime for commercial areas.
- 3. Plan deliveries and vehicle movements so that vehicles are not waiting or queuing on public roads. If waiting and queuing is unavoidable then engines should be turned off.
- 4. Plan site layout to ensure that reversing is kept to a minimum and, where practicable, eliminated altogether.
- 5. Where reversing is required, use broadband reverse sirens/alarms or, where it is safe to do so, disengage all sirens and alarms and use flag-men.
- 6. Locate noisy plant and equipment as far away as possible from sensitive receptors and orient it judiciously.
- 7. Use plant and equipment only in tasks for which they are designed.
- 8. Use equipment with the lowest noise and vibration emission levels.
- 9. Use equipment powered by electricity rather than diesel engines.
- 10. Minimize the use of diesel electric generators and use mains electricity where available.
- 11. Shut down or throttle down to a minimum all plant and equipment between works.
- 12. Fit all plant and equipment with appropriate mufflers and silencers of thee type recommended by the manufacturer.
- 13. Reduce the need for noisy assembly practices; e.g., by fabricating off site.
- 14. Rather than breaking in-situ, remove larger sections and break them either in an area away from sensitive receptors or off-site.
- 15. Locate the site access points and the construction vehicle routes as far away as possible from sensitive receptors.
- 16. Keep haul roads well maintained.
- 17. Avoid steep gradients on internal haul routes.
- 18. During weekends and nights, stockpile material within the site such that it can be removed during normal working hours.

- 19. Where site space is limited and volume of vehicles attending the site is high, seek vehicle holding location(s) to use with just-in-time delivery systems.
- 20. Minimise the drop height into hoppers, trucks and other plant/equipment.
- 21. Choose the working method with the lowest N&V impacts; e.g.,
 - in demolition work, avoid the use of percussive demolition techniques, use hydraulic shears instead of hydraulic impact breakers;
 - when breaking payments, use methods other than pneumatic breakers and drills, including chemical splitters and falling weight breakers; and
 - when excavating hard material, use rotary drills and bursters actuated by hydraulic or electrical power.
- 22. Adopt the following hierarchy of groundwork/piling methods:
 - Pressed-in methods, e.g. hydraulic jacking
 - Auger / bored piling
 - Diaphragm walling
 - Vibratory piling
 - Driven piling
- 23. Use vibratory equipment in a mode that minimizes the incident vibration at nearby receptors; e.g., by using smaller equipment, turning off the mechanical vibration on vibratory rollers and conducting more passes, engaging concentric weights only when running at speed.
- 24. Avoid sound traps that amplify noise.
- 25. Maximize the screen effect of buildings and temporary stockpiles.
- 26. Minimize opening and closing of site access gates through good co-ordination of deliveries and vehicle movements.

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Noise and Vibration Technical Report

Appendix F Mitigation and Monitoring Measures

→ METROLINX

POTENTIAL EFFECTS, MITIGATION MEASURES AND MONITORING - NOISE AND VIBRATION

Environmental Component	Potential Effect	Mitigation Measure(s)	Monitoring
Operational Noise (<i>Trains)</i>	Environmental noise may cause disturbance and/or annoyance. Project noise from operations may be a concern for the receptors within the Study Area	Predicted sound levels from Project rail operations are above the MOEE/GO Draft Protocol limits at several sensitive points-of-reception. Therefore, noise mitigation measures are recommended for Project rail and GO Station operation. Trains are expected to stop and/or move at a reduced speed station associated with B1 Thornton's Corners East GO Station. Curved portion of the track at this location should be designed and maintained with track lubrication to minimize or eliminate squeal noise from curved rail. Noise barriers are recommended to mitigate the noise impact of rail corridor operations as shown in Figure set 6-7. A summary of noise barriers is provided in Table 6-10.	Noise monitoring is
Construction Noise	 Environmental noise may cause disturbance and/or annoyance. The severity of the noise effects resulting from construction projects varies, depending on: Scale, location and complexity of the project Construction methods, processes and equipment deployed Total duration of construction near sensitive noise receptors Construction activity periods (days, hours, time period) Number and proximity of noise-sensitive sites to construction area(s) 	 Assessment results indicate that few of the construction equipment emission sound levels exceed the MECP limits. The equipment exceeding the MECP limits would require an investigation of additional noise control for the construction phase. Prior to commencement of construction, develop and submit a detailed Construction Noise Management Plan base on the actual equipment sound levels and their locations. The Construction Noise Management Plan shall: Document and commit to all measures to be taken for meeting the noise exposure limits documented in the Metrolinx Guide for Noise and Vibration Assessment (2019) at every directly exposed sensitive receptor and throughout the entire project. Determine the Zone of Influence for construction related noise based on the noise exposure limits outlined in the Metrolinx Guide for Noise and Vibration Assessment (2019) and taking into consideration the construction site, staging and laydown sites and hauling routes, each stage of the construction (including demolition), the overall construction schedule along with the schedule of each major component and associated major construction processes and equipment usage. Identify all sensitive receptors that fall within the Zone of Influence for construction measures will be proposed for these sensitive receptors, and the effects of the proposed mitigation measures will then be evaluated using noise modelling. If results of the modelling indicate that any sensitive receptors still remain within the Zone of Influence for construction operational changes are recommended and subsequently modelled until the sensitive receptor does not fall within the Zone of Influence; or ✓ If mitigation strategies are not viable, receptor-based mitigation will be proposed. 	 The Construction Norrequirements related Monitor noise why that noise exposure noise continuously with one monitor based on planned distribution and preports describing collected for the numeric limited to the numeric noise exposure limeric Vibration Assesses exceedance, the initigated noise lete Establish a Commeric to issues that devision and preports that devision and preports describing collected for the numeric distribution and preports describing exceedance, the initigated noise leteration and preports describing to issues that devised and preports describing exceedance.
Operational Vibration (<i>Trains)</i>	Vibration can cause disturbance and/or annoyance.	Operation vibration levels are expected to be higher than the criteria limits at the receptors (dwellings) located within 30 m from the centerline of the proposed GO track (PORs 007, 009, 13, 14, 31, 32, 42, 43 and 47). To mitigate operational vibration impacts, ballast mats are recommended for the dwellings represented by PORs 007, 009, 13, 14, 31, 32, 42, 43 and 47. The area identified area shown in Figures 10-1 through 10-4.	Vibration monitoring
Construction Vibration	Exposure to vibration may result in public annoyance and complaints. Vibration may also cause damage to buildings and other structures.	 Construction vibration ZOI is established for the equipment expected to generate the highest vibration level for each construction phase. Based on the established construction vibration ZOIs (Table 6 4), some of the heritage and non-engineered timber/masonry buildings (typical buildings) fall within the ZOIs, hence impacted by construction vibration. The potential vibration effects from construction equipment can be controlled by increasing the setback distance. Therefore, construction operational changes (e.g., maintaining setback distance and switching to lesser impactful equipment, etc.) are recommended. The owners of the properties within the ZOIs should be notified at least a week (preferably earlier) before commencing any nearby construction activities. Develop and implement a detailed Construction Vibration Management Plan for Metrolinx review and approval with minimum requirements outlined below: Complete a detailed construction related vibration assessment prior to the commencement of construction that includes assessment of the vibration ZOI. 	 The Construction Vik requirements related complaints: Monitor vibration Vibration Manage within the ZOI for as requested by N The type of Vibrat the vibration ZOI, activity, and recept ✓ Type 1: Monitow within the ZOI

Guideline for Impact Assessment, Mitigation and Monitoring

Design, Construction and Operations – Noise and Vibration

is not required for Project operations.

Noise Management Plan shall incorporate the following ted to monitoring of noise and noise related complaints:

where the Construction Noise Management Plan indicates osure limits may be exceeded. At these locations, monitor usly at each geographically distinct, active construction site tor located strategically to capture the highest exposure level ed construction activities and the number, geographic proximity of noise sensitive receptors. Develop weekly ing the monitoring conducted and summarizing the data e reporting period. The reports will include but not be umber and duration of any incident during which any of the limits documented in the Metrolinx Guide for Noise and ssment (2019) were exceeded, the probable cause of each e incident-specific measure(s) implemented, the resulting e levels and the complaints investigation procedure. nmunications Protocol and a Complaints Protocol to respond levelop during construction.

ing is not required for Project operations.

Vibration Management Plan shall incorporate the following ted to monitoring of vibration and vibration related

ion continuously at structures where the Construction agement Plan indicates that structures are deemed to be for construction related vibration or at additional structures ^v Metrolinx.

ration Monitoring Program that is established is based on OI, the project location, duration, presence of nighttime ceptor proximity. The monitoring types include:

nitoring continuously throughout the project (for receptors 201).

Environmental Component	Potential Effect	Mitigation Measure(s)	Monitoring
		 Complete pre-construction condition surveys for properties within the vibration ZOI of the planned work prior to beginning of any work. Identify any heritage structures and other sensitive structures, buildings or infrastructure vulnerable to vibration damage, assess requirements and, if necessary, develop mitigation measures. Identify buildings, where vibration sensitive activities such as sound recording or medical image processing take place, assess requirements and, if necessary, develop mitigation measures. Select construction/maintenance methods and equipment with the least vibration impacts. In the presence of persistent complaints and subject to the results of a field investigation, identify alternative vibration control measures, where reasonably available. 	 Type 2: Monitor receptors outs of the construct Type 3: Monitor of the ZOI and Establish a Comm to issues that devo

Guideline for Impact Assessment, Mitigation and Monitoring

Design, Construction and Operations – Noise and Vibration

nitoring during most impactful phases of the project only (for utside of the ZOI Influence but within 50 m of the boundary ruction site).

itoring in response to complaints only (for receptors outside nd beyond 50 m of the boundary of the construction site).

munications Protocol and a Complaints Protocol to respond levelop during construction.