Oshawa to Bowmanville Rail Service Extension: Environmental Project Report Addendum

Appendix A3 Air Quality Technical Report

Final

August 24, 2023

Prepared for:

Metrolinx 20 Bay Street, 6th Floor Toronto ON M5J 2W3

Prepared by:

Stantec Consulting Ltd. 300W-675 Cochrane Drive Markham ON L3R 0B8

Project Number: 165011019

Limitations and Sign-off

The conclusions in the Report titled Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Metrolinx (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided to applicable authorities having jurisdiction and others for whom the Client is responsible, Stantec does not warrant the services to any third party. The report may not be relied upon by any other party without the express written consent of Stantec, which may be withheld at Stantec's discretion.

Prepared by	Gruz,	Digitally signed by Cruz, Ashley Date: 2023.09.21 16:26:05 -04'00'	Prepared by	Lim, Connie	Digitally signed by Lim, Connie Date: 2023.09.22 12:01:58 -04'00'
		ature)		(signa	ture)
Ashley Cruz	, M.Env.Sc.		Connie Lim, B.A.Sc.		
Reviewed by	Gregory Crooks, M.Eng., P.Eng.	Digitally signed by Gregory Crooks, M.Eng., P.Eng. Date: 2023.09.21 15:26:20 -04'00'	Reviewed by	0	Digitally signed by Vicki Corning Date: 2023.09.25 09:18:26 -03'00'
		ature)			ature)
Gregory Crooks, M.Eng., P.Eng.		Vicki Cornir	ng, P.Eng. (AB, N		
Approved by	Michael CHurghy	Digitally signed by Michael C. Murphy, PhD, P.Eng, Date: 2023.09.25 10:03:28 -03'00'			
,	2 A C -	ature)			

Michael C. Murphy, Ph.D., P.Eng.

 \bigcirc

Executive Summary

Stantec Consulting Ltd. (Stantec) was retained by Metrolinx, an agency of the Province of Ontario, to complete an Air Quality Impact Assessment Report for the Oshawa to Bowmanville Rail Service Extension Project (the Project) located in the City of Oshawa and the Municipality of Clarington, within the Regional Municipality of Durham, Ontario. This Assessment is to support the Addendum to the Rail Service Extension Report (EPR Addendum). This Report has been prepared in accordance with Ontario Regulation 231/08 - Transit Projects and Metrolinx Undertakings.

The Project includes the extension of GO rail service from the Durham College (DC) Oshawa GO Station¹ (formerly Oshawa GO Station) through to Bowmanville. The following Project components are proposed to be located on or adjacent to the rail corridor between the DC Oshawa GO and Bowmanville Avenue in the Municipality of Clarington (i.e., GO Subdivision Mile 11.67 in the west to CP Belleville Subdivision Mile 164.8 in the east):

- Tracking and supporting track infrastructure:
 - Proposed new track within the existing GO Lakeshore East Rail Corridor at the western limit of the Project, crossing Highway 401 via the existing General Motors (GM) Spur bridge. A new bridge will be constructed adjacent to the existing GM Spur bridge for the proposed realigned CP Rail track. The new GO track will extend north to the existing CP Rail corridor, ending at Bowmanville Avenue.
 - Retaining walls and grading to support track infrastructure
- Proposed GO Station locations in proximity to:
 - Fox Street (B1 Thornton's Corners East)
 - Front Street (B2 Ritson)
 - Courtice Road (B3 Courtice)
 - Bowmanville Avenue (B4 Bowmanville)
- New bridges at the following locations:

¹ In October 2022, Metrolinx announced that the Oshawa GO Station has been renamed Durham College Oshawa GO. Therefore, throughout the EPR Addendum and this Project, the Oshawa GO Station is referred to as Durham College Oshawa GO, or DC Oshawa GO.

- Highway 401
- GM Spur
- Oshawa Creek
- Wilson Road
- Farewell Creek
- Harmony Creek
- Green Road
- New multi-use crossing (bridge or tunnel, to be determined)
 - Front Street (Michael Starr Trail)
- Bridge replacements at the following locations:
 - Simcoe Street
 - Ritson Road
 - Farewell Street²
- Bridge removal at Albert Street
- Bridge expansions at the following locations:
 - DC Oshawa GO pedestrian bridge
 - Stevenson Road
 - Park Road
 - Harmony Road
 - Courtice Road
- Widening of at-grade crossings to accommodate GO track(s) at the following locations:
 - Bloor Street

² Multi-use rail crossing for pedestrians and cyclists.

- Prestonvale Road
- Private crossing for Dom's Auto
- Trulls Road
- Baseline Road (two crossings)
- Rundle Road
- Holt Road
- Private farm crossing west of Maple Grove Road
- Maple Grove Road

Further details of the Project and Project components are included in Section 1.4 and figures in Appendix A.

The purpose of this Report is to assess the potential impacts on air quality associated with the construction and operation of the Project, and to identify mitigation measures and monitoring activities for any negative impacts to air quality as a result of the construction and operation activities.

The air contaminants of interest (COI) included in this assessment are outlined in Section 2.1 and these have been selected in accordance with the Draft Metrolinx Environmental Guide: Recommended Approach for Assessing and Mitigating Air Quality Impacts and Greenhouse Gas Emissions of Metrolinx Public Transit Projects (Metrolinx Guide) (Metrolinx, 2019a) and MTO Environmental Guide for Assessing and Mitigating the Air Quality Impacts of Greenhouse Gas Emissions of Provincial Transportation Projects (MTO Guide) (MTO 2020). Section 1.5 provides an overview of the methodology undertaken for the assessment, which includes conducting air dispersion modelling using site specific information for each of the four Project components at representative worst-case locations for the construction phase and the entire GO line during the operation phase. An assessment of direct and indirect greenhouse gas (GHG) emissions from the Project is also included for both the construction phase and the operation phase.

Air Quality Assessment – Construction

For the construction phase, a representative worst-case location for each of the four Project components was selected for the detailed quantitative assessment (including air dispersion modelling) based on a review of the available Project design, construction activity and duration, the expected construction equipment to be used, the expected Project footprint and the receptor types and their proximities to the construction area. Rationales for their selection are provided in Table 1.2. For all modelling assessment

locations, maximum construction activity levels that result in maximum emissions were assessed. Ground level concentrations (GLCs) were predicted at sensitive (residential) and critical (schools, hospitals, retirement homes, childcare centres, and similar institutional buildings) receptors identified in the vicinity of the representative locations.

Additionally, GLCs were predicted over a receptor grid extending 500-m around each location to:

- develop concentration contour plots
- identify concentration impact zones³
- support recommendations for mitigation where required

The results of the detailed assessment for each worst-case Project component location were applied to the other Project component locations to develop site-specific recommendations.

Project Alone Predictions

The dispersion modelling of air contaminants generated during construction predicted that applicable provincial and national ambient air quality criteria and standards are met for 10 of the 12 COIs. For the two that exceeded the standard, NO₂ and PM₁₀, the maximum predicted concentrations at both sensitive and critical receptors are below their applicable criteria 99.9% of the time. These predictions assume a maximum construction emissions scenario in which no additional mitigation measures other than standard methods are applied. When a construction phase exceedance is predicted to occur, the area of exceedance around the Project component is predicted to extend no greater than:

- 60 m for widening of at-grade crossings
- 100 m for GO station construction
- 10 m for tracking and grading construction
- 25 m for bridge construction

Cumulative Predictions

Maximum predicted cumulative concentrations (i.e., Project plus background concentrations) of COIs at sensitive and critical receptors are predicted to remain below the applicable provincial and national ambient air quality criteria and standards for 7 of the 12 COIs. For those five that exceeded a standard, NO₂, TSP, PM₁₀, benzene and benzo(a)pyrene, it is noted that: i) the 1-hour and annual average background NO₂ concentrations used are by themselves 67% and 118% of the 1-hour and annual

³ A concentration impact zone is the maximum distance from the Project footprint or construction activity to where an air quality objective is predicted to be exceeded.

CAAQS, respectively; ii) the background annual benzene and 24-hour and annual benzo(a)pyrene concentrations are 119%, 278% and 858% of their respective criteria with the Project having only a minor contribution to the cumulative levels.

Construction Mitigation and Monitoring Recommendations

Based on the results of the air quality assessment, Stantec has recommended additional mitigation measures beyond those included in the modelling assessment. With the implementation of the additional mitigation measures recommended in Section 8.0 of this report, no significant adverse effects from the Project construction phase are expected. Additionally, scheduling construction activities to minimize activities that generate emissions from occurring concurrently will aid in reducing the potential for adverse effects.

Monitoring activities recommended in Section 8.0 of this report for Project construction will be implemented to verify that mitigation measures are effectively being implemented. The contractor will monitor the air quality and the weather in the vicinity of the construction activities and review the measurements on an on-going basis. When the ambient measurements indicate that concentrations are increasing and approaching an air quality action threshold, criteria or standard, remedial actions to reduce construction related emissions will be implemented by the contractor. For example, the contractor may need to apply additional dust suppressant (e.g., increasing watering amounts or frequency of application), and/or reduce the number of vehicles/equipment operating at the site.

At the time of this study, the construction project is still in the preliminary planning stages and details regarding construction activities, schedule, and operations are limited. Assumptions used in the air dispersion modelling were based on information available at the time of the study and best estimates. If the actual construction operations differ significantly from the maximum emissions scenario parameters and assumptions used in this study, the air quality impacts of the Project should be re-assessed to guide the contractor's planning of mitigation measures.

Air Quality Assessment – Operation

The air quality assessment for the operation phase considered Project related incremental changes in air quality due to the addition of GO trains, GO bus service and parking at the proposed GO stations. Three scenarios were assessed for Project operations:

- Baseline (2021) (i.e., existing conditions)
- Future (2031) No Build (i.e., future conditions without the Project)
- Future (2031) Build (i.e., future conditions with the Project)

Project Alone Predictions

Project Alone concentrations at special/critical receptors for the COIs are predicted to be higher in the Future Build scenario compared to the Existing and Future No Build scenarios, but below their respective AQ objectives except for nitrogen dioxide (NO₂) concentrations for the Future Build scenario. There is a predicted exceedance of the 1-hour average 98th percentile and annual CAAQS by 145% and 6% respectively. No Project Alone exceedances were predicted to occur at special receptors for the Existing and Future No Build scenarios.

Cumulative Predictions

With the addition of background concentrations, the maximum cumulative concentrations of COIs remain below their AQ objectives at sensitive and critical receptor locations for the Existing, Future No Build and Future Build scenarios other than:

- NO₂ for the Future Build Scenario (exceeds the 1-hour and annual 2025 CAAQS by 212% and 125%, respectively)
- Benzene for the Existing/Future No Build (exceeds the annual AAQC by 20%) and Future Build scenarios (exceeds the annual AAQC by 32%)
- Benzo(a)pyrene for the Existing/Future No Build (exceeds the 24-hour and annual AAQC by 208% and 781%) and Future Build scenarios (exceeds the 24-hour and annual AAQC by 252% and 844%)

Similar to the findings for construction, the background levels during operation of benzene and benzo(a)pyrene are above their respective air quality objectives, with the Project only contributing a small amount (less than 21%) to the cumulative levels.

Greenhouse Gases Assessment – Construction and Operation

Direct and indirect (third-party) GHG emissions are estimated for the Project activities during construction and operation of the Project.

Direct GHG emissions are expected during construction and operation as a result of equipment and vehicles burning hydrocarbon fuel(s). Direct construction phase emissions are estimated to be 4.1 kilotonnes of carbon dioxide equivalent (kt CO₂e) per year. Direct operation phase emissions are estimated to be 14.7 kt CO₂e/year.

Following implementation of mitigation measures, direct Project contributions to GHG emissions from annual construction and operation are estimated to be:

- 0.001% (construction) and 0.002% (operation) of Canada's total GHG emissions
- 0.003% (construction) and 0.009% (operation) of Ontario's total GHG emissions

- 0.002% (construction) and 0.008% (operation) of the Canadian Transportation sector emission total
- 0.008% (construction) and 0.03% (operation) of the Ontario Transportation sector emission total

Indirect (third-party) GHG emissions from electricity may be released during operation as a result of additional electrical power required to operate the stations and for wayside power. Predicted annual indirect (third-party) electricity operation emissions are estimated to be 0.4 kt CO₂e/year.

The GHGs released by the Project are expected to comprise 0.004% and 0.01% of the Government of Canada's and Province of Ontario's 2030 emission target, respectively.

The implementation of the Project is predicted to reduce the use of private vehicles in and near the Project footprint. Over a 60-year lifecycle, Metrolinx estimates that the Project can result in a reduction of 1.7 billion vehicle kilometers travelled and is equivalent to a reduction of up to 353 kt CO₂e. The reduction is estimated using a Canada specific average fuel consumption emission factor per kilometer travelled for light duty vehicles (IEA, 2019). On an annual basis, the Project can reduce up to 31 million vehicle kilometers traveled which is equivalent to 6.4 kt CO₂e. It is expected that over time, more electric vehicles will be deployed in the area and the electricity GHG intensity will decline, leading to less GHG savings from the project annually over time.

The preliminary GHG emissions are estimated assuming that diesel locomotives will be used for the 60-year lifecycle of the Project. This may change over time toward the use of some electrically driven locomotives. This assumption for GHG emissions from the Project is therefore conservative. Nevertheless, there is expected to be a small net increase in GHG emissions as a result of the operation of the Project. The operation of the Project is therefore not expected to help the Government of Canada or the Government of Ontario to meet its future 2030 GHG emissions targets.

Table of Contents

Execu	utive Summary	i
Abbre	eviations	xiii
1.0 1.1 1.2 1.3	Introduction Project Overview Purpose of the Addendum to the Environmental Project Report Purpose of the Air Quality Impact Assessment Report	1 1
1.4 1.5 1.6	Project Description Assessment Methodology Study Area and Selection of Air Dispersion Modelling Locations	3 5
1.7	Study Area for GHG Assessment	
2.0	Contaminants of Interest and Regulatory Overview	
2.1 2.2	Air Contaminants of Interest Greenhouse Gases	
2.3 2.4	Regulatory Framework - Air Contaminants Regulatory Framework - Greenhouse Gases	
3.0 3.1	Existing Conditions	
	3.1.1 Temperature	27
	3.1.2 Precipitation3.1.3 Humidity	
	3.1.4 Wind Speed and Direction	29
3.2 3.3	Ambient Air Quality Background Levels Greenhouse Gas Baseline Levels	
3.3 3.4	Zoning and Land Use Information	
4.0	Sources of Air Contaminants and Greenhouse Gases	
4.1	Construction Phase4.1.1Construction Equipment Tailpipe Emission Estimation	
	4.1.1 Construction Equipment Talipipe Emission Estimation	
	4.1.3 Road Detour Vehicle Emissions	
	4.1.4 Road Detour Dust Emissions	
4.2	Operation Phase	
	4.2.1 Baseline/Future No Build Operation Sources	
	4.2.2 Future Build Operations Sources	
4.3	Greenhouse Gas Emissions	
	4.3.1 Assessment Approach4.3.2 Direct Greenhouse Gas Emission Sources and Emission	42
	4.3.2 Direct Greenhouse Gas Emission Sources and Emission Estimates	43

	4.3.3	Indirect (Third-Party) GHG Emission Sources and Emission	
	4.0.4	Estimates	
	4.3.4	Avoided GHG Emission Estimation	45
5.0	Air Dispe	ersion Modelling Methodology	46
5.1	Modelling	Assessment Approach	46
5.2		rsion Modelling Methodology	
	5.2.1	Dispersion Model Used	
	5.2.2	Special Receptors and Receptor Grid	
	5.2.3	Meteorological Data Sources	
	5.2.4	Building Downwash	
	5.2.5	Topographic Data	
	5.2.6	Averaging Periods	
	5.2.7	Conversion of Nitrogen Oxides to Nitrogen Dioxide	
	5.2.8	Emission Source Data	
6.0	Air Dispe	ersion Modelling Impact Assessment	57
6.1		tion Phase	57
	6.1.1	At Grade Crossing Widening - Rundle Road	
	6.1.2	GO Station - B4 Bowmanville	63
	6.1.3	Trackwork and Grading - Farewell Street Multi-use Bridge to	
		West of Harmony Road Bridge	
	6.1.4	Bridge Reconstruction - Simcoe Street Bridge	
6.2	•	ns Phase	
	6.2.1	Project Alone Predictions - Special Receptors	
	6.2.2	Cumulative Concentration Predictions - Special Receptors	
	6.2.3	Gridded Receptor Predictions	83
7.0	Greenho	use Gas Impact Assessment	87
7.1	Direct G⊢	IG Emissions During Construction	87
7.2		IG Emissions During Operation	
7.3	Third Par	ty (Indirect) Emissions During Operations	89
7.4		ent of Cumulative Impacts	
7.5		ation of Significance and Prediction Confidence	
7.6	The Proje	ect and Canada's Efforts to Reduce GHG Emissions	91
8.0	Effects A	ssessment	92
8.1		Effects, Mitigation and Monitoring	
8.2		and Monitoring Considerations at Each Project Location	
9.0	Permits a	and Approvals	117
10.0	Conclusi	ons	118
10.1		y Assessment - Construction	
10.2		y Assessment - Operation	
		,	

10.3	Green	house Gases Assessment - Construction and Operation	121
11.0	Refer	ences	123
List o	fTable	es	
Table	1.1:	Summary of Project Components and Construction Information	9
Table	1.2:	Selection of Modelling Assesment Locations - Construction	. 18
Table	2.1:	Applicable Air Quality Objectives and Mitigation Thresholds	. 24
Table	3.1:	Summary of Average Temperature Data	. 27
Table	3.2:	Summary of Average Precipitation Data	. 28
Table	3.3:	Summary of Average Relative Humidity Data	. 28
Table	3.4:	Summary of Wind Data	
Table		NAPS Locations and Data Considered in the Assessment	
Table		Summary of Background Ambient Air Quality Concentrations	. 32
Table	3.7:	Ontario, Canada and Sector GHG Emissions and Government of	
		Canada Reduction Target	
Table		Calculation Methods for GHG Emission Estimates	
Table		Summary of Dispersion Modelling Scenarios Assessed	. 46
Table	6.1:	Summary of Construction Phase Air Dispersion Modelling Results	~ ~
-		at Special Receptors - Rundle Road Crossing Widening	. 60
Table	6.2:	Rundle Road Crossing Construction Scenario - Predicted Impact	00
Tabla	C D .	Zones	. 63
Table	6.3:	Summary of Construction Phase Air Dispersion Modelling Results	66
Tabla	6 1.	at Special Receptors - B4 Bowmanville GO Station B4 Bowmanville GO Station Construction Scenario -	. 00
Table	0.4.	Predicted Impact Zones	60
Table	65.	Summary of Construction Phase Air Dispersion Modelling Results	. 09
Table	0.5.	at Special Receptors - Track and Grading Construction (west of	
		Farewell Street to west of Harmony Road)	71
Table	6 6 [.]	Track and Grading Construction Scenario - Predicted Impact Zones	
Table		Summary of Construction Phase Air Dispersion Modelling Results	. / 4
Table	0.7.	at Special Receptors - Simcoe Street - Bridge Replacement	77
Table	6 8 [.]	Simcoe Street Bridge Construction Case 2 - Predicted Impact	
rabio	0.0.	Zones	
Table	6.9:	Operation - Predicted Impact Zones	. 83
Table		Summary of Operations Phase Air Dispersion Modelling Results at	
		Special Receptors – DC Oshawa GO to Bowmanville	. 84
Table	7.1:	Estimated Direct GHG Emissions from Project (Construction)	
Table	7.2:	Comparison of Estimated Direct GHG Emissions from Project	
		(Construction) to National Baseline and Target Levels	. 88
Table	7.3:	Comparison of Estimated Direct GHG Emissions from Project	
		(Construction) to Provincial Baseline and Target Levels	. 88
Table	7.4:	Estimated Direct GHG Emissions from Project (Operation)	. 89

Table 7.5:	Comparison of Estimated Direct GHG Emissions from Project	
	(Operation) to National Baseline and Target Levels	89
Table 7.6:	Comparison of Estimated Direct GHG Emissions from Project	
	(Operation) to Provincial Baseline and Target Levels	89
Table 7.7:	Estimated Project Indirect GHG Emissions (Operation)	90
Table 8.1:	Summary of Potential Effects, Mitigation and Monitoring for All	
	Project Locations	93
Table 8.2:	Construction Mitigation and Monitoring Considerations at each	
	Project Location	100
	-	

List of Figures

Figure 5.1:	Rundle Road/Courtice Segment Site-Specific Wind Class	50
	Frequency Distribution (2016-2020)	. 52
Figure 5.2:	Rundle Road/Courtice Segment Site-Specific Wind Rose	
	(2016-2020)	. 52
Figure 5.3:	Other Construction and Operations Site Specific Meteorology -	
-	Wind Class Frequency Distribution (2016-2020)	. 53
Figure 5.4:	Other Construction and Operations Phase Site Specific Wind Rose	
	(2016-2020)	. 54
Figure 6.1:	Comparison of Selected Construction Phase Cumulative COI	
i igui o orri	Predictions to Air Quality Objectives - Rundle Road Crossing	62
Figure 6.2:	Comparison of Selected Construction Phase Cumulative COI	. 02
rigure 0.2.	Predictions to Air Quality Objectives - B4 Bowmanville GO Station	60
Eiguro 6 2		. 00
Figure 6.3:	Comparison of Selected Construction Phase Cumulative COI	
	Predictions to Air Quality Objectives - Track and Grading	-
	Construction (west of Farewell Street to west of Harmony Road)	. 73
Figure 6.4:	Comparison of Selected Construction Phase Cumulative COI	
	Predictions to Air Quality Objectives - Simcoe Street Bridge	
	Construction (Case 1)	. 79
Figure 6.5:	Comparison of Selected Construction Phase Cumulative COI	
U	Predictions to Air Quality Objectives - Simcoe Street Bridge	
	Construction (Case 2)	. 80
Figure 6.6:	Comparison of Selected Operation Phase Cumulative COI	
	Predictions to Air Quality Objectives – DC Oshawa GO to	
	Bowmanville	. 86
		. 00

List of Appendices

Appendix A	Project Footprint and Components
Appendix B	Zoning Maps
Appendix C	Air Quality Emission Sources and Emission Estimation
Appendix D Table D.1 Figure D.1	List and Location of Special Receptors List of Special Receptors Special Receptor Locations
Appendix E	Summary of Air Dispersion Modelling Inputs
Appendix F	Contour Plots (Project Alone Concentrations)
Appendix G	Greenhouse Gas Emission Sources and Emission Estimation

Abbreviations

AAQC	ambient air quality criteria
AERMOD	Air dispersion model developed by the American Meteorological Society and United States Environmental Protection Agency
AQ	air quality
CAAQS	Canadian Ambient Air Quality Standards
CAC	criteria air contaminants
CARB	California Environmental Protection Agency Air Resources Board
CAS	Chemical Abstracts Service
CCME	Canadian Council of Ministers of the Environment
COI	contaminant of interest
EA	Environmental Assessment
EPR	Environmental Project Report
FHWA	Federal Highway Administration
GHG	Greenhouse Gas
GLCs	Ground level concentrations
GTHA	Greater Toronto and Hamilton Area
HEP	Head End Power
IPCC	Intergovernmental Panel on Climate Change
ISR	In-stack ratio
MECP	Ontario Ministry of the Environment, Conservation and Parks
MOVES	U.S. EPA Motor Vehicle Emission Simulator
МТО	Ministry of Transportation – Ontario
N/A	not applicable

NAPS	National Air Pollution Surveillance
O. Reg.	Ontario Regulation
OLM	Ozone Limiting Method
PBL	Planetary Boundary Layer
Stantec	Stantec Consulting Ltd.
TPAP	Transit Project Assessment Process
U.S. EPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
WRAP	Western Regional Air Partnership
WGS84	World Geodetic System, established in 1984

Units of Measurement

μg	microgram	1 x 10 ⁻⁶ grams
°C	degrees Celsius	3
g	gram	
h	hour	
L	litre	
m ³	cubic metre	1 m ³ = 1 x 10 ³ L
min	minute	
S	second	
yr	year	
kph	kilometres per h	our
ppb	Part per billion	
ppm	Part per million	

Elements and Compounds

B(a)P	benzo(a)pyrene
СО	carbon monoxide
CO ₂	carbon dioxide
HC	hydrocarbon
NOx	nitrogen oxides
NO ₂	nitrogen dioxide
PM _{2.5}	particulate matter with particles of diameter ≤2.5 µm
PM ₁₀	particulate matter with particles of diameter \leq 10 µm
PAHs	polycyclic aromatic hydrocarbons
SO ₂	sulphur dioxide
THC	total hydrocarbon
TSP	total suspended particulate
VOC	volatile organic compounds

Introduction August 24, 2023

1.0 Introduction

1.1 Project Overview

Stantec Consulting Ltd. (Stantec) was retained by Metrolinx, an agency of the Province of Ontario, to complete an Air Quality Impact Assessment Report) for the Oshawa to Bowmanville Rail Service Extension Project (the Project), formerly referred to as the Oshawa to Bowmanville Rail Service Extension Project in the 2011 Environmental Project Report (EPR). The Project is located in the City of Oshawa and Municipality of Clarington, within the Regional Municipality of Durham, Ontario.

1.2 Purpose of the Addendum to the Environmental Project Report

All-day rail service currently operates on the Lakeshore East Rail Corridor between Union Station in downtown Toronto and the Durham Collect (DC) Oshawa GO Station⁴ (formerly Oshawa GO Station). The Lakeshore East Rail Corridor extension from Oshawa to Bowmanville was originally identified as one of 52 rapid transit improvements and expansion projects in the *MoveOntario* 2020 plan (Government of Ontario 2007), Ontario's multi-year \$17.5 billion rapid transit action plan for the Greater Toronto and Hamilton Area (GTHA). More recently, the expansion initiative was supported through the Initial Business Case Update (Metrolinx 2020) and a preferred alignment option was selected.

The Oshawa to Bowmanville Rail Service Expansion and Rail Maintenance Facility Environmental Project Report (EPR) was completed in 2011, in accordance with the Transit Project Assessment Process (TPAP) outlined in Ontario Regulation (O. Reg.) 231/08 – Transit Projects and Metrolinx Undertakings, to assess Metrolinx's plan to expand GO Transit rail services from Oshawa to Bowmanville utilizing the Canadian Pacific (CP) Rail corridor.

⁴ In October 2022, Metrolinx announced that the Oshawa GO Station has been renamed Durham College Oshawa GO. Therefore, throughout the EPR Addendum and this Project, the Oshawa GO Station is referred to as Durham College Oshawa GO, or DC Oshawa GO.

Introduction August 24, 2023

Since the completion of the 2011 EPR, Metrolinx has advanced the design of the rail extension project, including updates to the alignment and infrastructure needs of the project. As outlined in Section 15 (1) of O. Reg. 231/08, if a proponent wishes to make a change to a transit project that is inconsistent with a completed EPR, an addendum to the EPR must be prepared. In addition, as per Section 16 of O. Reg. 231/08, should a project not commence within 10 years of the Statement of Completion, a review of the project documentation is required. The Statement of Completion for the 2011 EPR is dated April 13, 2011, and more than 10 years has lapsed since the filing of this document.

An EPR Addendum Report is being undertaken to document the changes to the transit project based on refinements to the design approach identified in the EPR, and to consider relevant updates to environmental conditions since the completion of the EPR in 2011.

1.3 Purpose of the Air Quality Impact Assessment Report

Metrolinx is conducting preliminary planning studies and developing a conceptual design for the Project. Potential environmental effects of the Project are being assessed to meet the requirements of the O. Reg. 231/08 and the Ontario *Environmental Assessment Act*. This Air Quality Impact Assessment Report (Report) considers the potential effects to air quality resulting from activities during both construction and operation, based on the proposed tracking and grading, new GO stations, new bridges/bridge replacement/bridge expansions and upgrades to at-grade crossings. This Report will be used to support the EPR Addendum.

The purpose of this Report is to:

- Assess the potential impacts on air quality associated with the construction of the Project
- Assess the potential impacts on air quality associated with the operation of the Project
- Identify mitigation measures and monitoring activities for any negative impacts to air quality as a result of the construction and operation activities

An assessment of direct and indirect greenhouse gas (GHG) emissions from the Project is also included for both the construction and operation phases. Project GHG emissions are compared with provincial, federal and sector GHG emissions totals and the federal GHG emissions reduction target.

Introduction August 24, 2023

This Report has been prepared in accordance with Ontario Regulation 231/08 – Transit Projects and Metrolinx Undertakings and contains the information outlined in Section 1.4 below.

1.4 Project Description

The current Project includes the extension of GO rail service from the DC Oshawa GO through to Bowmanville, with development of four new proposed GO stations. The following Project components (Figures A.1.1 to A.1.8 in Appendix A) are proposed to be located on or adjacent to the rail corridor between the DC Oshawa GO and Bowmanville Avenue in the Municipality of Clarington (i.e., GO Subdivision Mile 11.67 in the west to CP Belleville Submission Mile 164.8 in the east):

- Tracking and supporting track infrastructure:
 - Proposed new track within the existing GO Lakeshore East Rail Corridor at the western limit of the Project, crossing Highway 401 via the existing General Motors (GM) Spur bridge. A new bridge will be constructed adjacent to the existing GM Spur bridge for the proposed realigned CP Rail track. The new GO track will extend north to the existing CP Rail corridor, ending at Bowmanville Avenue.
 - Retaining walls and grading to support track infrastructure
- Proposed GO station locations in proximity to:
 - Fox Street (B1 Thornton's Corners East)
 - Front Street (B2 Ritson)
 - Courtice Road (B3 Courtice)
 - Bowmanville Avenue (B4 Bowmanville)
- New bridges at the following locations:
 - Highway 401
 - GM Spur
 - Oshawa Creek
 - Wilson Road
 - Farewell Creek

Introduction August 24, 2023

- Harmony Creek
- Green Road
- New multi-use crossing (bridge or tunnel, to be determined):
 - Front Street (Michael Starr Trail)
- Bridge replacements at the following locations:
 - Simcoe Street
 - Ritson Road
 - Farewell Street⁵
- Bridge removal at Albert Street
- Bridge expansions at the following locations:
 - DC Oshawa GO (pedestrian bridge)
 - Stevenson Road
 - Park Road
 - Harmony Road
 - Courtice Road
- Widening of at-grade crossings to accommodate GO track(s) at the following locations:
 - Bloor Street
 - Prestonvale Road
 - Private crossing for Dom's Auto
 - Trulls Road
 - Baseline Road (two crossings)

⁵ Multi-use bridge only. Multi-use bridges can be used by pedestrians and cyclists crossing the rail corridor.

Introduction August 24, 2023

- Rundle Road
- Holt Road
- Private farm crossing west of Maple Grove Road
- Maple Grove Road

1.5 Assessment Methodology

The scope of this study is based on the preliminary Project design information and construction schedule available at the time of the assessment (September 2021). Where applicable, guidance from the Draft, Environmental Guide: Recommended Approach for Assessing and Mitigating Air Quality Impacts and Greenhouse Gas Emissions of Metrolinx Public Transit Projects (Draft Metrolinx Guide) (Metrolinx 2019a) and the MTO Environmental Guide for Assessing and Mitigating the Air Quality Impacts of Greenhouse Gas Emissions of Provincial Transportation Projects (MTO Guide), (MTO 2020) was followed. The methodology used in this Report is described in detail below.

Study Area, Contaminants of Interest and Regulatory Framework

- Establishing a study area for the Project.
- Selection of one assessment location for each of the four main Project components listed in Section 1.4 for quantitative construction and operation air quality dispersion modelling (modelling assessment locations) and establishing a study area for each location.
- Identifying the air Contaminants of Interest (COI) and greenhouse gases (GHGs).
- Reviewing applicable air quality regulatory requirements/objectives.
- Identifying air emissions associated with construction of the Project, the operation of the Project (i.e., the Future Build scenario), as well as without the Project (i.e., the Future No-build scenario).
- Identifying GHG emissions associated with direct and indirect sources during construction and operation of the Project.

Existing Conditions

 Reviewing ambient monitoring data available from the National Air Pollution Surveillance Network (NAPS) or the Ministry of the Environment, Conservation and Parks (MECP) to establish baseline air quality levels.

Introduction August 24, 2023

- Identifying sensitive (residential) and critical (schools, hospitals, retirement homes, childcare centres, and similar institutional building) receptors (MTO 2020) in the Project study area and the study area for each location.
- Reviewing baseline GHG emissions at the provincial and national level, as well as for the provincial and national transportation sector.

Emission Inventory and Air Dispersion Modelling

- Conducting air dispersion modelling using site specific parameters for each of the four Project components at representative worst-case locations for the construction phase and the entire GO line during the operation phase, which entailed:
 - Developing maximum construction emissions scenarios for each of the four Project component locations and an operations emission scenario for the entire GO line based on available construction equipment and scheduling data, identification of laydown and staging areas, operation details, and road and rail line detours (if applicable).
 - Quantifying construction emissions, using standard methods and references, including the U.S. EPA AP-42: Compilation of Air Emissions Factors (U.S. EPA 2006 and 2011), Western Regional Air Partnership Fugitive Dust Handbook (WRAP 2006), U.S. EPA Exhaust Emission Standards (U.S. EPA 2016 and U.S. EPA 2020a), train and auxiliary engine load factors provided by Metrolinx (Metrolinx 2021a), and U.S. EPA's Motor Vehicle Emission Simulator (MOVES) 3 model (U.S. EPA 2020b).
 - Dispersion modelling of each Project component location using the U.S. EPA AERMOD model to predict changes in air quality during construction and operation. Impacts at identified special receptors and gridded receptors at specified spacings at each modelling location were assessed.
- Conducting a quantitative GHG assessment for the construction and operation of the Project components, including direct and indirect GHG emissions.

Effects Assessment

- Comparing the predicted Project Alone concentrations for construction and operation at the special or gridded receptors to applicable air quality criteria, standards, or Metrolinx thresholds.
- Comparing the predicted cumulative concentrations (Project plus background levels) for construction and operation to applicable air quality criteria, standards, or Metrolinx thresholds.
- Comparing Project construction and operation emissions on an annual basis to provincial, federal and transportation sector GHG emissions totals.

Introduction August 24, 2023

- Assessing the net contribution of the Project towards Canada's GHG emissions reduction target.
- Providing recommendations for mitigation measures to be implemented to manage and mitigate emissions associated with Project construction and operation at all locations and to provide recommendations for ambient air monitoring (e.g., air contaminants to monitor, monitoring locations), if required.

1.6 Study Area and Selection of Air Dispersion Modelling Locations

A study area has been identified based on the Project footprint and geographic limits within which the potential impact on air quality is assessed. Study areas were also identified for the footprints of the selected modelling assessment locations for each of the Project components (refer to Appendix A Figures A.1.1 to Figure A.1.8).

The Project footprint includes the total area potentially affected by the proposed construction activities and operations of the Project, which includes the four Project components as follows:

- tracking, supporting track infrastructure, grading
- new GO stations
- new bridges, bridge replacement/expansion and bridge removal
- at-grade crossing widening

The extent of the proposed physical works from construction and operation includes, but is not limited to, roadway detours, temporary laydown areas, retaining walls, new bridges, new stations, new railway track grading, at-grade crossing upgrades and utility realignments.

The study area for the Project location encompasses the Project Footprint and the land within 500 m of the boundaries of the Project Footprint. The study area for the modelling assessment of each Project component described above encompasses the land within 500 m of the footprint of the assessed Project component.

The assessed Project component locations, potential road detours, construction activities and estimated construction durations, sensitive and critical receptors in the vicinity of the Project component locations, are provided in Table 1.1 below. A detailed list of receptors and their locations is presented in Appendix D.

Introduction August 24, 2023

One representative modelling assessment location for each of the four Project components was selected for the detailed quantitative assessment (including air dispersion modelling) based on a review of the available Project design, construction activity and duration, the expected construction equipment to be used, the expected Project footprint and the receptor types and their proximities to the construction area.

For all modelling assessment locations, maximum activity levels during construction and operation that correspond to maximum emissions scenarios were assessed in this study (described in Section 4.0).

Introduction August 24, 2023

Table 1.1: Summary of Project Components and Construction Information

Location	Road Detours	Land Uses/Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
18.6 km of track extending from the DC Oshawa GO to Bowmanville Avenue in the Municipality of Clarington (GO Sub Mile 11.67 in the west to Canadian Pacific [CP] Mile 164.8 in the east)	Road detours not anticipated	 Residential, commercial, institutional, and agricultural land uses are located along the track. The closest sensitive receptors are located to the west of Farewell Street, and approximately 20 m to the south of the track. The closest critical receptor is a place of worship located to the east of Farewell Street, approximately 30 m to the north of the track. 	GradingTrack	 Estimated 18 months Estimated 18 months

Introduction August 24, 2023

GO Stations

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
B1 Thornton's Corners East	Road detours not anticipated	 Residential - 230 m to the north Commercial / industrial 35 m to the east, 50 m to the west and 150 m to the south 	 Land Clearing Parking Construction Building / Platform Construction 	 Estimated 1 month Estimated 9 months Estimated 24 months
B2 Ritson	Road detours not anticipated	 Institutional (Place of worship / community service) - 65 m to the west Residential - 10 m to 20 m to the north, east, west Industrial - 65 m to the south 		
B3 Courtice	Road detours not anticipated	 Residential farmhouse - 30 m to the north Agricultural land immediately to the north, east, west, and southeast Industrial - 50 m to the south 		
B4 Bowmanville	Road detours not anticipated	 Institutional (Senior's residence) - 20 m to the southwest Residential houses and condominiums - 40 m to the east and south, and 30 m to the southwest Commercial - 50 m to the northwest 		

Introduction August 24, 2023

Bridges - New Bridges

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities	
Highway 401	Road detours not anticipated	 Commercial / Industrial - 30 m to the southeast, 50 m to the southwest, and 140 m to the northeast Hotels - 150 m and 230 m to the southeast 	 Utility Relocation and Road Closure Abutment Construction 	 Road Closure Abutment Construction Estimated 1 model Estimated 2 model 	 Estimated 1 month Estimated 2 months Estimated 2 months
GM Spur	Road detours not anticipated	Commercial / Industrial - 50 m to the west, 200 m to the east and south	 Road reinstatement Site clean up 	Estimated 1 month	
Oshawa Creek	Road detours not anticipated	 Residential houses - over 100 m to the northeast, southeast, southwest and northwest Institutional (school) - sports field 45 m to the northwest, and school building 200 m to the northwest 	• Site clean up		
Wilson Road	Road detours not anticipated	 Institutional (school) - school building 50 m to the southwest Residential houses - 6 m to the west and over 20 m to the east 			
Farewell Creek	Road detours not anticipated	 Residential houses - 120 m to the northeast and 250 m to the northwest Golf course - 50 m to the south 	 Utility Relocation and Road Closure Abutment 	 Estimated 6 months Estimated 1 month Estimated 2 months 	
Harmony Creek	Road detours not anticipated	Residential houses - 65 m to the northeast, southwest and northwest	ConstructionSpan Construction	 Estimated 2 months Estimated 2 months 	

Introduction August 24, 2023

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
		Golf course and driving range - 50 m to the southwest and 25 m to the southeast	Road reinstatementSite clean up	Estimated 1 month
Green Road	Road detours not anticipated	Residential apartments - 30 m to the southeast and southwest		
		Residential houses - 100 m to the west and northwest		
		Residential houses - 400 m to the northeast		

New Multi-use Crossing - (bridge or tunnel, to be determined)

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
Front Street (Michael Starr Trail)	Road detours not anticipated	 Residential houses - 5 m to the northwest and 15 m to the south Institutional (place of worship and community centre) - 75 m to the southwest 	 Utility Relocation and Road Closure Abutment Construction Span Construction Road reinstatement Site clean up 	 Estimated 6 months Estimated 1 month Estimated 2 months Estimated 2 months Estimated 1 month

Introduction August 24, 2023

Bridges - Bridge Replacement

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
Simcoe Street	Potential road detours	 Commercial - 10 m to 15 m to the east and west Residential houses - 5 m to the west, 90 m to the east Institutional (Community services) - 10 m to the east. Institutional (place of worship) - 30 m and 150 m to the northeast 	 Utility Relocation and Road Closure Demolition of existing bridge Abutment Construction Span Construction 	 Estimated 6 months Estimated 1 month Estimated 1 month Estimated 2 months Estimated 2 months Estimated 1 month
Ritson Road	Potential road detours	 Residential houses - 10 m to the east and west, 30 m to the southwest, and 20 to 40 m to the northeast and northwest. Institutional (places of worship) - 8 m to the west/southwest. Institutional (place of worship and school) - 60 m and 110 m to the north Commercial - 45 m to the east 	 Road reinstatement Site clean up 	
Farewell Street	Road detours not anticipated	 Residential houses - 20 m to the northeast, 15 m to 20 m to the southeast and southwest Institutional (place of worship) - 50 m to the northwest and 150 m to the east Institutional (daycare) - 100 m to the northwest 		

Introduction August 24, 2023

Bridges - Bridge Removal

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
Albert Street	Road detours not anticipated	 Residential houses - 10 m to 15 m to the northwest, northeast and southeast Institutional (place of worship and community centre) 10 m to the east 	 Utility Relocation and Road Closure Demolition of existing bridge Site clean up 	 Estimated 6 months Estimated 1 month Estimated 1 month

Bridges - Bridge Expansion

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
Stevenson Road	Potential road detours	 Agricultural land - 50 m to the northeast Commercial - 30 m to the northwest, 70 m to the southeast, and 100 m to the northeast Residential houses - 35 m to the southeast and 80 m to the northwest 	 Removals and Site Preparation New soldier pile with concrete lagging and replacement of the south abutment Site 	 Estimated 1 month Estimated 4 months Estimated 1 month
Park Road	Potential road detours	 Residential houses - 25 m to 40 m to the northeast, northwest, southeast and southwest 	clean up	
Harmony Road	Potential road detours	 Residential houses - 30 m to the northeast, 15 m to the southwest and 70 m to the southeast and northwest 		

Introduction August 24, 2023

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
		 Institutional (place of worship and community centre) 110 m to the northwest 		
Courtice Road	Potential road detours	 Residential houses - 250 m to the northwest and southeast, and 300 m to the southwest. 		
		 Agricultural land - immediately northeast, northwest and southeast. 		
		• Commercial - 50 m to the southwest.		

Widening of At-grade Crossings

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
Bloor Street	Potential road detours	 Residential houses - 150 m to the north and southeast Undeveloped land / park immediately to the southeast, southwest and northwest Commercial - 100 m to the north 	Removals and Reconstruction (Grading work at the tracks near the crossing, which is part of the	• Typically, 2-3 days and maximum of 2 weeks per crossing
Prestonvale Road (crossing may be closed instead)	Potential road detours	 Residential house - 20 m to the west Agricultural / undeveloped land immediately to the east and west 	construction activities for the Project component. Tracking, Supporting	

Introduction August 24, 2023

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
Private crossing for Dom's Auto	Potential road detours	 Residential house - 80 m and 140 m southeast Industrial - 20 m to the north and south Agricultural land to the northeast and northwest 	Track Infrastructure, and Grading, may occur concurrently with construction for Widening of Crossings.)	
Trulls Road	Potential road detours	 Residential house - 80 m to the southwest Agricultural / undeveloped land immediately to the east and west Industrial - 30 m to the east Commercial (storage depot) - 100 m to the west 		
Baseline Road (M168.22)	Potential road detours	 Residential house - 55 m to the southwest Undeveloped land immediately to the northeast and northwest Industrial - 50 m to the southwest, and 100 m to the southeast 	 Removals and Reconstruction (Grading work at the tracks near the crossing, which is part of the construction activities for the Project component. Tracking, Supporting Track Infrastructure, and Grading, may occur concurrently 	Typically, 2-3 days and maximum of 2 weeks per crossing
Rundle Road	Road detours not anticipated	 Residential houses - 25 m to the west, 35 m to the southeast, and 50 m to the northwest Agricultural / undeveloped land immediately east, north and west Commercial (pigeon racing club) - 20 m to the east 		

Introduction August 24, 2023

Location	Road Detours	Land Uses / Receptors Adjacent to Project Component Footprint	Construction Activity	Estimated Duration of Construction Activities
Baseline Road (M166.92)	Potential road detours	 Residential houses - 60 m to the north, 100 m to the southeast Agricultural / undeveloped land 	with construction for Widening of Crossings.)	
Holt Road	Potential road detours	 immediately east and west Residential houses - 90 m to the west, and 100 m to the southeast 		
Private farm crossing west of Maple Grove Road	Potential road detours	Residential house – 340 m to the south		
Maple Grove Road	Potential road detours	• Residential house - 200 m to the north		

Introduction August 24, 2023

The representative locations and construction activity selected for each of the four Project components for the construction phase, along with the rationale for their selection are provided in Table 1.2.

The operations phase will assess all Project components along the entire length of the proposed train corridor between the DC Oshawa GO and the proposed B4 GO Station.

Project Component	Location	Construction Activity	Rationale
Tracking, supporting track infrastructure, grading	300 m segment of track west of Farewell Street Multi-use Bridge to west of Harmony Road Bridge	Grading	Multiple critical and sensitive receptors were identified to be closest to this segment of the track compared with other locations:
			 Critical receptors include places of worship located 30 m and 90 m north and a daycare located 145 m north of the proposed track.
			 Multiple sensitive receptors (residential houses) are located along the proposed track. The closest is within 20 m. Grading was selected for modelling
			as the worst-case construction equipment fuel combustion emissions are expected from the grading activities (refer to Section 4.1 for additional detail).
GO Station	B4 Bowmanville	Land Clearing	Multiple critical and sensitive receptors were identified to be closest to this GO station compared with the other GO station locations:
			• Critical receptor (senior's residence) located approximately 20 m to the southeast of the proposed GO station footprint.
			 Multiple sensitive receptors (residential houses and condominiums) are located within 40 m to the east, west and south of the proposed GO station.
			Land Clearing was selected for modelling as the worst-case fugitive dust emissions and worst-case

 Table 1.2:
 Selection of Modelling Assessment Locations - Construction

Introduction August 24, 2023

Location	Construction Activity	Rationale
		construction equipment fuel combustion emissions are expected from the Land Clearing activity (refer to Section 4.1 for additional detail).
Simcoe Street Bridge	Road Reinstatement	 Multiple critical receptors were identified to be closer to the Simcoe Street Bridge footprint relative to the other bridge locations: The closest critical receptor is a community centre located 10 m to the north. Places of worship are located approximately 40 m to the north, 170 m to the northeast, 180 m to the east, 180 m and 230 m to the south of the proposed bridge footprint. There are also two schools approximately 370 m to the north and 475 m to the west. Bridge replacement has the longest construction period compared with construction of new bridges or bridge
		expansions. Bridge replacements require demolition of the existing bridge and road work construction (including profiling, compaction of subgrade, asphalt paving) which are not required when constructing new bridges or bridge expansions. The Simcoe Street bridge is considered to be the worst-case bridge assessment location since the replacement will require demolishing the entire existing bridge (from Fisher Street to Albany Street), and then rebuilding the area. The construction area is also located in a relatively confined area with buildings in close proximity along both sides of the street which can potentially cause disturbance to the nearby properties. Road detours will be required during the Simcoe Street Bridge replacement construction. In addition to receptors near Simcoe Street Bridge, receptors
	Simcoe Street	Activity Simcoe Street Road

Introduction August 24, 2023

Project Component	Location	Construction Activity	Rationale
			Road Reinstatement was selected for modelling since it can potentially result in the highest construction equipment fuel combustion emissions and fugitive dust emissions (refer to Section 4.1 for additional detail).
At-grade crossing widening	Rundle Road crossing	Removals and Reconstruction	A sensitive receptor was identified to be closest to the Rundle Road crossing compared with other crossing locations:
			• A residential house is located 25 m to the west of the crossing footprint.
			Construction equipment, schedule and activities are similar for all at-grade crossing widenings. A worst- case emissions scenario was assumed for the assessment based on available construction details.
			As a conservative assumption, it was assumed that during the at-grade crossing widening, grading at the tracks may occur at the same time and emissions from grading were included in the assessment.

Design drawings for each of the modelling assessment locations as well as for the other Project component locations are provided in Appendix A.

1.7 Study Area for GHG Assessment

The study area for the GHG assessment encompasses the direct emissions in the Project footprint, as well as indirect emissions from the use of electricity in the Project footprint. Since GHG emissions affect the atmosphere globally, the GHG emissions from the Project are assessed in the context of provincial and national baseline and 2030 emissions targets. This approach aligns with guidance from Environment and Climate Change Canada's Strategic Assessment of Climate Change document (ECCC 2020a).

Contaminants of Interest and Regulatory Overview August 24, 2023

2.0 Contaminants of Interest and Regulatory Overview

2.1 Air Contaminants of Interest

Ambient air quality in the Project study area is influenced by emissions from local residential / commercial / industrial sources and vehicular traffic. The air contaminants of interest (COI) for the Project during construction include the products of diesel and gasoline combustion and dust generated from road traffic and construction equipment. The COI expected during operations come from the combustion of natural gas and diesel combustion products (e.g., from comfort heating units, emergency generators, trains).

The COI selected for the assessment were based on those regularly assessed in construction and transportation assessments in Ontario. Their selection was based on guidance from the Draft Metrolinx Guide (Metrolinx 2019a) and the MTO Guide (MTO 2020).

For this assessment, the COI are therefore:

- nitrogen dioxide (NO₂)
- carbon monoxide (CO)
- sulphur dioxide (SO₂)
- total suspended particulate matter (TSP)
- particulate matter less than 10 microns (PM₁₀)
- particulate matter less than 2.5 microns (PM_{2.5})
- crystalline silica
- acrolein
- benzene
- 1,3-butadiene
- acetaldehyde
- formaldehyde
- benzo(a)pyrene [B(a)P]

Contaminants of Interest and Regulatory Overview August 24, 2023

2.2 Greenhouse Gases

The sources of direct GHG emissions from the Project are expected to be the same fossil fuel combustion sources noted in Section 2.1. The GHG emissions assessment also includes indirect emissions from the use of purchased electricity at the Project site during operation.

ECCC's National Inventory Report (ECCC 2022) identifies the following GHGs:

- carbon dioxide (CO₂)
- methane (CH₄)
- nitrous oxide (N₂O)
- hydrofluorocarbons (HFCs)
- perfluorocarbons (PFCs)
- nitrogen trifluoride (NF₃)
- sulphur hexafluoride (SF₆)

The Project is expected to result in the release of CO_2 , CH_4 and N_2O . No significant sources of HFCs, PFCs, NF₃ or SF₆ are expected during the construction and operation of the Project.

Total GHG emissions are normally reported as carbon dioxide equivalent (CO₂e), whereby emissions of each of the specific GHGs are multiplied by their global warming potential (GWP) factors from ECCC's most recent National Inventory Report (ECCC 2022) and are reported as CO₂e. A GWP is a measure of the warming effect that the emission of a GHG might have on the atmosphere relative to carbon dioxide (ECCC 2022). The 100-year GWPs for the assessed GHGs are CO₂ = 1.0, CH₄ = 25, and N₂O = 298 which are consistent with the methods in Canada's submission to the United Nations Framework Convention on Climate Change (ECCC 2022).

2.3 Regulatory Framework - Air Contaminants

Table 2.1 presents a summary of the pertinent air quality objectives, guidelines, and standards for the COI according to the following applicable air contaminant guidelines from relevant agencies and organizations in Canada:

- Ontario Ambient Air Quality Criteria (AAQC) (MECP 2020b)
- Canadian Ambient Air Quality Standards (CAAQS) (CCME 2021)
- Metrolinx mitigation thresholds for construction projects (Metrolinx 2019a)

Contaminants of Interest and Regulatory Overview August 24, 2023

The Metrolinx mitigation thresholds are 15-minute exposure values provided in the Draft Metrolinx Guide (Metrolinx 2019a). The intent of this guideline is for managing temporarily elevated concentrations of particulate matter from construction projects. If the 15-minute threshold is exceeded by more than 20% during two consecutive 15-minute periods, mitigation measures, including stopping the activity generating the emission, will be implemented.

The Ontario AAQC, current 2020 CAAQS, proposed 2025 CAAQS, and Metrolinx mitigation thresholds are listed in Table 2.1. The 2020 CAAQS are applicable to the existing ambient conditions. The proposed 2025 CAAQS will be applicable when the Project begins operations in 2026.

Contaminants of Interest and Regulatory Overview August 24, 2023

Air Contaminant	Averaging Time	AAQC (μg/m³)	2020 CAAQS (μg/m³)	2025 CAAQS (µg/m³)	Metrolinx Mitigation Threshold (μg/m³)
NO ₂	1-hour	400	119 ^ª	83 ^b	-
	24-hour	200	-	-	-
	Annual	-	34 ^a	24 ^b	-
CO	1-hour	36,200	-	-	-
	8-hour	15,700	-	-	-
SO ₂	10-minute	180			
	1-hour	100	193 ^e	179 ^f	-
	Annual	10	14 ^e	11 f	-
TSP	24hour	120	-	-	-
	Annual	60	-	-	-
PM ₁₀	15-minute	-	-	-	150 °
	24-hour	50	-	-	-
PM _{2.5}	15-minute	-	-	-	81 ^c
	24-hour	27	27 ^d	-	-
	Annual	-	8.8 ^e	-	-
Crystalline Silica	15-minute	-	-	-	25 °
	24-hour	5	-	-	-
Benzene	24-hour	2.3	-	-	-
	Annual	0.45	-	-	-

Table 2.1: Applicable Air Quality Objectives and Mitigation Thresholds

Contaminants of Interest and Regulatory Overview August 24, 2023

Air Contaminant	Averaging Time	AAQC (µg/m³)	2020 CAAQS (μg/m³)	2025 CAAQS (μg/m³)	Metrolinx Mitigation Threshold (μg/m³)
1, 3 Butadiene	24-hour	10	-	-	-
	Annual	2	-	-	-
B(a)P	24-hour	0.00005	-	-	-
	Annual	0.00001	-	-	-
Acetaldehyde	1/2 hour	500	-	-	-
	24-hour	500	-	-	-
Acrolein	1-hour	4.5	-	-	-
	24-hour	0.4	-	-	-
Formaldehyde	24-hour	65	-	-	-

Notes:

^a 1 Hour and Annual CAAQS for NO₂, effective by 2020 (CCME 2021). The 1-hour CAAQS is referenced to the 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations. The annual CAAQS is the average over a single calendar year of all 1-hour average concentrations. The criteria were converted from ppb to μg/m³ based on standard temperature of 10°C and pressure of 1 atm as per MTO Guide (MTO 2020).

^b 1 hour and annual CAAQS for NO₂, effective by 2025 (CCME 2021). The 1-hour CAAQS is referenced to the 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations. The annual CAAQS is the average over a single calendar year of all 1-hour average concentrations. The criteria were converted from ppb to µg/m³, based on a standard temperature of 10°C and pressure of 1 atm as per MTO Guide (MTO 2020).

- Metrolinx 15-minute mitigation threshold for managing temporary but high concentrations of particulate matter from construction projects, based on the Draft Metrolinx Guide (Metrolinx 2019a).
- ^d 24 hour and annual CAAQS for respirable particulate matter, effective by 2020 (CCME 2021). The 24-hour CAAQS is referenced to the 98th percentile daily average concentration averaged over 3 consecutive years. The annual CAAQS is referenced to the 3-year average of the annual average concentrations.
- 1 Hour and Annual CAAQS for SO₂, effective by 2020 (CCME 2021). The 1-hour CAAQS is the 3-year average of the annual 99th percentile of the SO₂ daily maximum 1-hour average concentrations. The annual CAAQS is referenced to the average over a single calendar year of all 1-hour average concentrations. The criteria were converted from ppb to µg/m³ based on a standard temperature of 10°C and pressure of 1 atm as per MTO Guide (MTO 2020).
- ^f 1 hour and annual CAAQS for SO₂, effective by 2025 (CCME 2021). The 1 Hour CAAQS is the 3-year average of the annual 99th percentile of the SO₂ daily maximum 1-hour average concentrations. The annual CAAQS is the average over a single calendar year of all 1-hour average concentrations. The criteria were converted from ppb to μg/m³, based on a standard temperature of 10°C and pressure of 1 atm as per MTO Guide (MTO 2020).

Contaminants of Interest and Regulatory Overview August 24, 2023

2.4 Regulatory Framework - Greenhouse Gases

Direct Project construction and operation GHG emission totals are compared to the emission totals from:

- Canada in 2020 (ECCC 2022)
- Ontario in 2020 (ECCC 2022)
- Canadian and Ontario transportation sectors in 2020 (ECCC 2022)
- Federal 2030 and 2050 GHG emissions targets (*Canadian Net-Zero Emissions Accountability Act*)
- Ontario 2030 GHG emission target (MECP 2018c)

There are no provincial or federal GHG emission limits for specific equipment or facilities.

Existing Conditions August 24, 2023

3.0 Existing Conditions

Ambient air quality in the Study Area is influenced by emissions from residential, commercial and industrial sources as well as vehicular traffic. Meteorology and climatology play an important role in contaminant formation, dispersion and transport. The local meteorology and ambient air quality data are discussed in this section.

3.1 Climate

The following sections describe the general climatology of the Study Area. The climatology is based on 30-year (1981 to 2010) Canadian Climate Normal data obtained from ECCC for the Oshawa Water Pollution Control Plant (WPCP) and Toronto Buttonville Airport meteorological stations which are the closest stations to the Study Area with complete climate normal data.

3.1.1 Temperature

A summary of the daily average, daily maximum and daily minimum temperatures on a monthly basis over the period 1981 to 2010 is presented in Table 3.1. The daily average temperature for the area varies from -4.8°C to 20.6°C with an annual average temperature of 8.1°C.

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Daily Average (°C)	-4.8	-3.6	0.4	6.6	12.3	17.6	20.6	20	15.9	9.5	4.2	-1.2	8.1
Daily Maximum (°C)	-1.1	0.1	4.2	10.8	16.9	22.3	25.1	24.3	20.2	13.3	7.4	2.1	12.1
Daily Minimum (°C)	-8.5	-7.3	-3.5	2.5	7.7	12.9	15.9	15.6	11.7	5.6	1	-4.4	4.1

	Table 3.1:	Summary of Average Temperature Data
--	------------	-------------------------------------

SOURCE: Environment and Climate Change Canada Canadian Climate Normal - Oshawa WPCP meteorological station

Existing Conditions August 24, 2023

3.1.2 Precipitation

A summary of the monthly average rainfall, snowfall, total precipitation (as equivalent rainfall based on a conversion factor for snowfall to equivalent rainfall of 0.1) and average snow depth on a monthly basis over the period 1981 to 2010 is presented in Table 3.2. The annual average total precipitation for the area is about 871.9 millimetres (mm).

 Table 3.2:
 Summary of Average Precipitation Data

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Rainfall (mm)	30	31.7	40.7	70.6	78.9	73.9	73.1	77.4	94	70	80	45.8	766.1
Snowfall (cm)	35.6	24.9	13.5	2	0	0	0	0	0	0.1	4.7	24.9	105.8
Precipitation (mm)	65.6	56.6	54.2	72.7	78.9	73.9	73.1	77.4	94	70.1	84.8	70.7	871.9

SOURCE: Environment and Climate Change Canada Canadian Climate Normal - Oshawa WPCP meteorological station

3.1.3 Humidity

A summary of the average morning and afternoon relative humidity on a monthly basis over the period 1981 to 2010 is presented in Table 3.3. The annual average relative humidity in the morning is 81.8% and in the afternoon is 60.1%.

 Table 3.3:
 Summary of Average Relative Humidity Data

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Relative Humidity - 0600LST (%)	79.6	77.6	77.2	76.1	77.9	79.3	82.5	87.4	89.6	87.6	85.1	82.1	81.8
Average Relative Humidity - 1500 LST ^(a) (%)	69.6	64	57.8	52.9	52.3	53.9	53.4	55.9	59.2	62.4	68.9	71.1	60.1

SOURCE: Environment and Climate Change Canada Canadian Climate Normal - Toronto Buttonville Airport meteorological station

Note:

a) Average relative humidity for 3:00 PM local standard time.

Existing Conditions August 24, 2023

3.1.4 Wind Speed and Direction

The climate normal data with respect to wind speed and directionality over the period of 1981 to 2010 are presented in Table 3.4. The annual average wind speed for the area is 12.4 km/h and the most frequent wind direction, on an annual basis, is wind blowing from the northwest.

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Speed (km/h)	14	13.9	13.8	13.9	12.3	11.4	10.7	10	10.6	11.6	12.9	13.4	12.4
Most Frequent Direction	SW	W	NW	NW	NW	NW	NW	Ν	Ν	W	W	W	NW
Max Hourly Speed (km/h)	65	65	67	56	57	50	65	56	52	56	80	54	80
Max Gust Speed (km/h)	111	100	111	89	87	111	135	102	83	104	111	93	135
Direction of Max Gust ^(a)	W	Ν	W	NW	NW	NW	NW	NW	NW	W	SW	W	SW

Table 3.4: Summary of Wind Data

SOURCE: Environment and Climate Change Canada Canadian Climate Normal - Toronto Buttonville Airport meteorological station

Note:

a) denotes the direction *from which* the wind is blowing most frequently.

Existing Conditions August 24, 2023

3.2 Ambient Air Quality Background Levels

Background concentrations are used in dispersion modelling to represent the cumulative effect of other emissions sources (i.e., both anthropogenic and biogenic) in addition to the sources being included in the dispersion modelling. The Draft Metrolinx Guide (Metrolinx 2019a) and MTO Guide (MTO 2020) recommend that the background pollutant concentration levels to be used in this analysis are the 90th percentile of the most recently measured and complete concentration data from the nearest MECP or ECCC monitoring stations. The use of 90th percentile levels is to account for spatial and temporal variations between the monitoring location(s) and the Study Area, while still providing a conservative assessment. The background levels used in this study were therefore the 90th percentile values for short-term averages. For annual averages, an annual average value was used as the background level.

The background air quality concentrations were based on review and analyses of the most recent five years (2016-2020) of data currently available from the NAPS monitoring stations located closest to or most representative of the Project locations. Ambient monitoring data from the NAPS program provides accurate and long-term air quality data of a uniform standard across Canada. The stations reviewed are listed in Table 3.5 below.

Monitoring data for PM_{2.5}, crystalline silica, NO₂, SO₂, CO, PAHs (benzo(a)pyrene), VOCs (benzene and 1,3-butadiene), and Carbonyls (acrolein, acetaldehyde and formaldehyde) were obtained and reviewed from the identified NAPS stations. Background ozone (O₃) concentrations, which are used in the dispersion model predictions of NO to NO₂ conversion, were obtained from the Toronto West station.

Background concentrations for TSP and PM_{10} were estimated by assuming a ratio of $PM_{2.5}/PM_{10} = 0.54$ and $PM_{2.5}/TSP = 0.30$ (Lall et al. 2004). Data sets that were not included in the assessment as they were considered invalid per MECP guidelines (MECP, 2018a) are also noted in Table 3.5.

Existing Conditions August 24, 2023

NAPS ID	Location	Station Name	COI ^{a, b}	Availability of Data
060430	125 Resources Road	Toronto West	СО	2016-2020
			NO ₂ , PM _{2.5} , O ₃	2016-2020
			SO ₂	2016-2020
			B(a)P	2016-2018 °
060438	401W - 125 Resources	Roadside 401W	B(a)P	2017-2019 ^d
	Road	Toronto	1,3-butadiene, benzene	2017-2019 ^e
			formaldehyde, acetaldehyde	2017-2019 ^d
			acrolein	2017-2018 ^f
			crystalline silica ^g	2017-2019 ^d
061703	Britannia Ave West, U of Ontario Property	Oshawa	NO ₂ , PM _{2.5} , O ₃	2016-2020

Table 3.5: NAPS Locations and Data Considered in the Assessment

Notes:

- a) Only air contaminants pertinent to this study are listed.
- b) Grey shaded data were selected for the study. Non-shaded data were not selected.
- c) No data available for 2019 and 2020. Data availability is less than 75% for 2018.
- d) No data available for 2016 and 2020.
- e) No data available for 2016. Data availability is less than 75% for 2018 and 2020.
- f) No data available for 2016, 2019 and 2020.
- g) Background concentration of crystalline silica is conservatively based on ambient monitoring data for silicon converted to SiO₂ based on their molecular weights. Crystalline silica (SiO₂) molecular weight 60 g/mol, Silicon (Si) molecular weight 28 g/mol. This approach is expected to be conservative as it assumes all measured silicon is in the form of crystalline silica.

Background ambient air quality concentrations at the Toronto West and Roadside 401W Toronto stations are expected to be representative of ambient concentrations in the Study Area since the Project is located in close proximity to Highway 401.

The background ambient air quality concentrations are compared with applicable AQ Objectives in Table 3.6. Background levels for the COIs are below their applicable objectives with the noted exceptions of NO₂, benzene and B(a)P. The annual background concentration of NO₂ exceeds the 2025 CAAQS by 18% and the annual background concentration of benzene exceeds the AAQC by 19%. Background concentrations of B(a)P for both 24-hour and annual averaging periods are almost twice and seven and a half times the applicable criteria, respectively. Exceedances of the AAQC for B(a)P are commonly measured in Ontario.

Existing Conditions August 24, 2023

COI	Averaging Period (hours)	Background Concentration (µg/m ³)	Air Quality Objectives (μg/m ³)	Source of Objective	% of Criteria ⁱ
NO ₂ ^a			400	AAQC	14%
	1	55	119	2020 CAAQS	_c
			83	2025 CAAQS	_c
	24	45	200	AAQC	23%
			34	2020 CAAQS	84%
	Annual	28	24	2025 CAAQS	118%
CO ^a	1	422	36,200	AAQC	1%
	8	402	15,700	AAQC	3%
SO ₂ ^a	10-minute	4.6 ^g	180	AAQC	2%
			100	AAQC	3%
	1	2.8	193	2020 CAAQS	_d
			179	2025 CAAQS	_d
			10	AAQC	10%
	Annual	1	14	2020 CAAQS	8%
			11	2025 CAAQS	10%
TSP ^e	24	41	120	AAQC	34%
	Annual	24	60	AAQC	40%
PM ₁₀ ^e	15-minute	38 ^g	150	Metrolinx	25%
	24	23	50	AAQC	45%
PM _{2.5}	15-minute	21 ^g	81	Metrolinx	25%
	24	12	27	2020 CAAQS	_f
	Annual	7.2	8.8	2020 CAAQS	_f
Crystalline	15-minute	7.4 ^g	25	Metrolinx	29%
silica ^h	24	2	5	AAQC	41%
Benzene	24	0.77	2.3	AAQC	34%
	Annual	0.53	0.45	AAQC	119%
1,3-butadiene	24	0.08	10	AAQC	1%
	Annual	0.06	2	AAQC	3%
B(a)P	24	0.000139	0.00005	AAQC	278%
	Annual	0.000086	0.00001	AAQC	858%

Table 3.6: Summary of Background Ambient Air Quality Concentrations

Existing Conditions August 24, 2023

COI	Averaging Period (hours)	Background Concentration (µg/m³)	Air Quality Objectives (μg/m ³)	Source of Objective	% of Criteria ⁱ
Formaldehyde	24	3	65	AAQC	5%
Acetaldehyde	0.5 ^g	9	500	AAQC	2%
	24	3	500	AAQC	1%
Acrolein	1 g	0.2	4.5	AAQC	4%
	24	0.08	0.4	AAQC	21%

Notes:

 a) The background concentration and CAAQS were converted to μg/m³ based on a standard temperature of 10 °C and pressure of 1 atm.

- b) The background 8-hour O₃ concentration is not explicitly compared with the CAAQS as the 8-hour CAAQS for O₃ is referenced to the 3-year average of the annual 4th highest of the daily maximum 8-hour average ozone concentrations while the background concentration is the 90th percentile of the 8-hour values, and therefore the calculation basis for these two parameters is inconsistent.
- c) The background hourly NO₂ concentration is not explicitly compared with the CAAQS as the 1-hour CAAQS for NO₂ is referenced to the three-year average of the annual 98th percentile of the daily maximum one-hour average concentrations while the background concentration is the 90th percentile of hourly values, and therefore the calculation basis for these two parameters is inconsistent.
- d) The background hourly SO₂ concentration is not explicitly compared with the CAAQS as the 1-hour CAAQS for SO₂ is referenced to the three-year average of the annual 99th percentile of the SO₂ daily maximum 1-hour average concentrations while the background concentration is the 90th percentile of hourly values, and therefore the calculation basis for these two parameters is inconsistent.
- e) Background concentrations of PM_{10} are estimated based on a ratio of $PM_{2.5}/PM_{10} = 0.54$ (Lall et al 2004) and TSP are estimated based on a ratio of $PM_{2.5}/TSP = 0.30$ (Lall et al 2004).
- f) Background concentrations of PM_{2.5} are not explicitly compared with the CAAQS as the 24-hour and annual standards are referenced to the 98th percentile daily average concentration averaged over 3 consecutive years, and 3-year average of the annual average concentrations, respectively. The background concentrations are 90th percentile of hourly values and single year annual averages and therefore the calculation basis for these parameters is inconsistent.
- g) Background concentration is converted to the appropriate averaging period following guidance in the Air Dispersion Modelling Guideline of Ontario (ADMGO) (MECP 2017b).
- h) Background concentration of crystalline silica is conservatively based on ambient monitoring data for silicon converted to SiO₂ based on their molecular weights. Crystalline silica (SiO₂) molecular weight -60, Silicon (Si) molecular weight - 28. This approach is expected to be conservative as it assumes all measured silicon is in the form of crystalline silica.
- i) Bolded values represent exceedances of an air quality objective.

Existing Conditions August 24, 2023

3.3 Greenhouse Gas Baseline Levels

The provincial and national GHG emissions from reportable activities in Ontario and Canada for the most recently available year (2020) are provided in Table 3.7, along with national and Ontario transportation sector emissions. Canadian GHG emissions were estimated to be 672,000 kt CO₂e in 2020. Ontario's contribution to national GHG emissions is 22%. The Ontario and Canadian transportation sector GHG emissions constitute 8% and 28% of the national total, respectively.

Table 3.7: Ontario, Canada and Sector GHG Emissions and Government of Canada Reduction Target

Region	GHG Emissions (kt CO ₂ e)
Canada	672,000
Ontario	150,000
Canadian Transportation Sector	190,000
Ontario Transportation Sector	52,200
Government of Canada 2030 GHG Target	401,000
Government of Ontario 2030 GHG Target	143,000

3.4 Zoning and Land Use Information

In general, the land use categories surrounding the Project consists of a mix of land uses including industrial, commercial, agricultural, residential, and environmental protection zones. Zoning maps covering the Project footprint up to a 500 m buffer zone are included in Appendix B.

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

4.0 Sources of Air Contaminants and Greenhouse Gases

Air contaminants may be released to the atmosphere from the Project due to:

- Construction related sources/activities including:
 - tailpipe emissions from construction equipment and heavy vehicles
 - fugitive emissions from construction activities such as earth moving and material handling
 - on-road tailpipe and road dust emissions from vehicles travelling on detour roads
- Operation related sources/activities including:
 - locomotive emissions
 - tailpipe and road dust emissions from buses and on-road traffic
 - stationary combustion sources (i.e., generators and comfort heaters)

Descriptions of air contaminant emissions and emission estimation methods for the modelling assessment locations are provided in the sections below and in Appendix C.

4.1 Construction Phase

As described in Section 1.6, maximum construction emissions scenarios were developed for four Project components/locations.

The modelling assessment locations were selected based on available information from Metrolinx on the construction zones, laydown and staging areas, construction schedule and construction vehicles/equipment to be used. The following information and assumptions were used for all assessment locations:

- Construction activities will occur from 8:00 a.m. to 5:00 p.m., Monday to Friday with 1 hour assumed for breaks.
- The total number of each type of construction equipment that may be used on-site is estimated by the Project design team.
- Not all equipment will be used on the same day nor for the entire day. The estimated worst-case number of equipment used on the same day and their operating time percentages were estimated by the Project design team.

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

- Specifics of the construction equipment are not currently available from the project design team. The make/model of each equipment type is selected from commonly used equipment to represent the units that may be used during Project construction.
- The types of construction equipment used and their horsepower ratings are assumed to be similar at each construction site.
- Not all the equipment will continuously operate at full engine load due to periods of idling, operating when not loaded or partially loaded, and while loading/unloading. The average operating load of each type of construction equipment was based on equipment load factors provided in the reference document Federal Highway Administration Roadway Construction Noise Model User's Guide (FHWA 2006). The modelled worst-case emission rates from each source were therefore based on the total emissions estimated from the maximum number of equipment (with assumed horsepower rating and U.S. EPA emissions standards) at their average operating load and considering maximum daily operating times. Detailed assumptions on operating loads, power ratings and operating times of each equipment type are provided in Appendix C.
- Active construction areas for the worst-case emissions scenarios are estimated either based on design drawings or assumptions provided by the Project design team.
- Dust control in the construction zone using water / chemical dust suppression and limiting on-site vehicle speed to less than 20 km/hour was assumed to have a control efficiency of 50% (WRAP 2006, and ECCC 2017).

4.1.1 Construction Equipment Tailpipe Emission Estimation

Tailpipe emissions from non-road equipment used for construction were estimated based on the U.S. EPA reference document "Nonroad Compression-Ignition Engines - Exhaust Emission Standards" (U.S. EPA, 2016) for NOx, TSP, CO and HC, and U.S. EPA AP-42 reference document "Speciation Profiles and Toxic Emission Factors for Nonroad Engines" (U.S. EPA, 2015a) for the key speciated VOCs and B(a)P. The SO₂ emission factor is based on the maximum sulphur content in diesel fuel and assuming all of the sulphur will be oxidized to SO₂. Detailed tailpipe emission calculations are provided in Appendix C.

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

4.1.2 Construction Dust Emissions

The Project construction activities for each selected Project component/location that would generate dust emissions will include:

Track and Grading - Farewell Street Multi-use Bridge to west of Harmony Road Bridge

- Grading including excavation and backfill
- Laying tracks

GO Station - B4 Bowmanville

- Land Clearing
- Parking lot construction
- Building/platform construction

Simcoe Street Bridge Replacement

- Utility relocation and road closure
- Demolition of existing bridge
- Abutment construction
- Span construction
- Road reinstatement
- Site clean up

At Grade Track Widening - Rundle Road Crossing

- Removals⁶ and reconstruction
- Grading work at the tracks near the crossing. This is part of the construction activities for the Project component Tracking, Supporting Track Infrastructure, and Grading. However, as it may occur at the same time as construction for Widening of Crossings, emissions associated with grading work at the tracks near the crossing were conservatively included in the modelling assessment for Widening of Crossings.

⁶ Removal of asphalt, the existing rail crossing surface, and if applicable curb, gutter and sidewalk. The new track(s) are built through the crossing, the crossing surface installed (usually rubber), the road approaches are regraded and paved. If there is a curb, gutter and sidewalk, they are replaced.

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

The methodology and emission factor for PM₁₀ used to estimate the overall area-wide construction dust emissions were based on the Western Regional Air Partnership (WRAP) Fugitive Dust Handbook (WRAP 2006), Chapter 3: Construction and Demolition. Dust control using water suppression was assumed with a 50% control efficiency. Due to the preliminary nature of the construction information and schedules available at the time of the assessment a control efficiency of 50% was assumed to be a reasonable minimum control level, with additional mitigation measures being recommended where required in Section 8.0. TSP and PM_{2.5} emission rates were estimated based on scaling factors from the WRAP Fugitive Dust Handbook (WRAP, 2006) and the California Environmental Protection Agency Air Resources Board's Miscellaneous Processes Methodologies - Construction and Demolition, Section 7.7: Building Construction Dust (CARB 2002).

The emission rates of respirable crystalline silica are estimated by speciating the estimated PM₁₀ emissions from construction activities by a typical percentage of crystalline silica in ambient particulate (5.22%) provided in the ECCC/Health Canada (HC) document "Screening Assessment for the Challenge, Quartz Chemical Abstracts Service Registry Number 14808-60-7, Cristobalite Chemical Abstracts Service Registry Number 14464-46-1" (ECCC/HC, 2013). Detailed construction dust emission calculations are provided in Appendix C.

4.1.3 Road Detour Vehicle Emissions

During the construction phase, local traffic may be diverted onto detour routes in the event of a road closure. Direct on-road vehicle emissions (exhaust, brake wear and tire wear) during vehicle travel were estimated using the U.S. EPA Motor Vehicle Emission Simulator (MOVES) estimation tool for year 2023. MOVES3 is the U.S. EPA's tool for estimating vehicle emissions due to the combustion of fuel, brake and tire wear, fuel evaporation, and permeation and refueling leaks. MOVES3 was used to estimate vehicle emissions based on vehicle type, road type, model year, and vehicle speed. Traffic data were provided by the project design team (Stantec 2022).

Emission rates for on-road traffic were estimated based on the projected traffic volumes for the major roads affected by the Simcoe Street Bridge Road closure. Vehicle distribution/vehicle mix assumptions for these roads were provided by the Project traffic engineering group. The U.S. EPA's default distributions for vehicle age were used in the estimates. A summary of the MOVES inputs is provided in Appendix C.

To predict maximum one-hour average concentrations, emissions were conservatively based on peak hourly traffic data, while average daily traffic (ADT) was used to estimate 24-hour average concentrations. Full vehicle tailpipe emissions calculations are provided in Appendix C.

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

4.1.4 Road Detour Dust Emissions

In addition to exhaust, tire wear, brake and evaporative emissions, the re-entrainment of road dust is considered as a particulate matter emission source from vehicles travelling over paved roads. Emissions resulting from travel on paved roads were quantified following U.S. EPA AP-42, Chapter 13.2.1 Paved Roads (U.S. EPA 2011).

The assumptions and parameters used for the emission estimation, including the number of vehicles and distances travelled are provided in Appendix C.

Crystalline silica emissions rates due to road traffic were estimated based on 5.22% of the PM₁₀ emissions from paved roads being crystalline silica (ECCC/HC, 2013). The particulate resuspension emissions calculated with the above equation were aggregated with the tailpipe emissions generated from MOVES for PM_{2.5}, PM₁₀, and TSP. Detailed emissions calculations are presented in Appendix C.

4.2 **Operation Phase**

Air contaminant emissions from Project operation are due to vehicular traffic in parking lots, bus traffic and diesel locomotives travelling the length of the Study Area corridor. The air quality assessment considered incremental changes of the Project, with the increase in train and bus services and parking at the proposed GO stations. Three scenarios were assessed for the entire length of the proposed tracks including:

- Baseline (2021) existing conditions
- Future (2031) No Build future conditions without the Project
- Future (2031) Build future conditions with the Project

Descriptions of air emissions sources and emission estimation methods for the entire length of the proposed tracks are provided in the sections below and in Appendix C.

4.2.1 Baseline/Future No Build Operation Sources

Baseline and Future No Build operations sources consist of CP and GM train locomotives, GO buses, and Metrolinx parking lots in Courtice (Courtice Road/Baseline Road) and in Bowmanville (Clarington Blvd./Durham Hwy 2).

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

Train locomotive emissions in the Study Area were estimated using time spent in the Study Area and an emission factor approach. Information used to estimate the locomotive emissions includes the following:

- Each CP train was assumed to consist of 3 locomotives and 85 cars with the locomotives conservatively assumed to be all Tier 2 engines, as provided by Metrolinx (Metrolinx, 2021b, 2021c).
- Each GM train was assumed to consist of 1 locomotive and 6 cars as provided by Metrolinx (Metrolinx, 2021b, 2021c). Stantec assumed that the locomotives are also all Tier 2 engines.
- For the CP and GM locomotives, Tier 2 emission factors were used for NOx, CO, TSP, and VOCs. For train auxiliary engines, load factors supplied by Metrolinx (Metrolinx, 2021a, 2021b) at the assumed load (notch 6) for trains travelling at steady state were used.
- Emissions of SO₂ were estimated using an emission factor based on the maximum sulphur content in diesel fuel (ECCC, 2020), assuming all the sulphur will be oxidized to SO₂.
- Key VOCs emissions were assessed based on the fraction of the individual species over total VOC per U.S. EPA "Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015), including the following:
 - Benzene 0.0541 x VOC emission factor
 - 1,3 Butadiene 0.00186 x VOC emission factor
 - Acrolein 0.0187 x VOC emission factor
 - Acetaldehyde 0.104 x VOC emission factor
 - Formaldehyde 0.292 x VOC emission factor
- The PM_{2.5} and PM₁₀ emissions were estimated based on the TSP emission factor and applying the ratios of PM_{2.5}/TSP = 0.90, and PM₁₀/TSP = 0.96 provided in U.S. EPA AP-42, Appendix B.2 Generalized Particle Size Distributions for gasoline and diesel fuel combustion engines (U.S. EPA, 1995).
- B(a)P emissions were estimated by speciating the TSP emissions using a factor of 6.67x10⁻⁶ x TSP, as provided in U.S. EPA Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015).

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

Tailpipe emissions from GO buses travelling within existing bus loops and private vehicles travelling within the existing Metrolinx parking lots in Courtice (Courtice Road/Baseline Road) and Bowmanville (Clarington Blvd./Durham Hwy 2) were estimated using MOVES3 emission factors from the U.S. EPA model (U.S. EPA 2020b). GO Bus volumes were derived from the weekday schedule for Route 88 Peterborough/Oshawa effective September 2020 while parking lot volumes were assumed based on the parking lot capacity. Emissions resulting from travel on paved roads were also quantified following U.S. EPA AP-42, Chapter 13.2.1 Paved Roads (U.S. EPA 2011).

4.2.2 Future Build Operations Sources

For the Future Build scenario, GO train locomotives will be operational in addition to the CP and GM train locomotives discussed in Section 4.2.1. Each GO train will consist of 12 cars and 2 locomotives, with each locomotive consisting of one engine for traction and one engine for head-end power (HEP) - electricity for heating, lighting and other electrical needs for the cars. The locomotive fleet is estimated to consist of 70% Tier 2, 10% Tier 3 and 20% Tier 4 engines (Metrolinx, 2021b). However, as Tier 4 emissions data for the GO locomotives were not available, the fleet was conservatively assumed to be 70% Tier 2 and 30% Tier 3 engines. HEP engines were conservatively assumed to consist of Tier 2 engines (Metrolinx 2021a). Emissions were estimated using the same methodology as the GM and CP train locomotives, with detailed calculations provided in Appendix C.

The GO bus traffic volumes are expected to increase at the Clarington Blvd/Durham Hwy 2 bus loop which is also the proposed location of the B4 Bowmanville GO Station. Tailpipe emissions from GO buses were estimated using future bus volumes provided by Metrolinx (Metrolinx 2021c) and MOVES3 emission factors. Road dust emissions were estimated for bus travel within the proposed bus loop following U.S. EPA AP-42, Chapter 13.2.1 Paved Roads (U.S. EPA 2011). The assumptions and parameters used for the emission estimation, including the number of vehicles, distances travelled, and MOVES3 inputs are provided in Appendix C.

4.3 Greenhouse Gas Emissions

Emissions sources from the Project during the construction and operation phases are summarized in Sections 4.1 and 4.2 and are provided in more detail in Appendix G. Emission sources associated with each phase of the Project are identified in the following sections, along with the assessment approach for GHG emissions.

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

4.3.1 Assessment Approach

The GHG emissions from the Project were estimated based on the following guidance documents:

- Strategic Assessment of Climate Change (ECCC 2020a)
- Draft Technical Guide Related to the Strategic Assessment of Climate Change (ECCC 2021)
- MECP's Considering Climate Change in the Environmental Assessment Process (MECP 2017a).

These guidance documents consider the following emission sources:

- direct GHG emissions, including:
 - point and areas sources such as combustion, flaring, incineration, venting and fugitive emissions
 - change in land use and burning of vegetation during land clearing
- third-party (indirect) GHG emissions arising from electrical or energy requirements to operate the Project. These emissions would occur outside the Project footprint but are attributed to the Project operation.
- avoided domestic GHG emissions as a result of the Project, such as the emissions avoided due to a decrease in private vehicle kilometres travelled as a result of the Project

In accordance with the Strategic Assessment of Climate Change (ECCC 2020a), direct and third-party (indirect) emissions from electricity that occur during both the construction and operation phases of the Project have been considered and are detailed in the following sections. Avoided private vehicle kilometres travelled were independently estimated and provided by Metrolinx (Metrolinx 2022c).

Early works activities are expected to begin in 2022 with the major construction commencing in late 2023. Construction will take approximately three years, finishing in 2026. A preliminary construction schedule was used to calculate the emissions during the construction phase. The three-year annual average GHG emissions were used for comparison to the provincial and national annual GHG emissions levels. A summary of the construction schedule is provided in Appendix G.

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

4.3.2 Direct Greenhouse Gas Emission Sources and Emission Estimates

Estimates of direct GHG emissions from the Project are included in Appendix G. During construction, these include emissions released due to construction vehicles and equipment used during land clearing activities and construction of the Project.

The loss of carbon sequestration sinks due to vegetation removal and the emissions due to decay of that vegetation after being cut were considered. Because the area of land expected to be cleared during construction does not contain significant quantities of mature tree growth, the loss of carbon sink and the associated emissions has been assessed to be negligible and is not included in the total emissions scenario during construction of the Project. Metrolinx also has a revegetation plan in place to replace the negligible loss of carbon sink expected during removal of vegetation during construction.

Furthermore, there is not expected to be any burning of vegetation during the construction of the Project and, therefore, no emissions from vegetation burning are included in this assessment.

Direct GHG emissions during the operation phase from GO trains, GO buses and testing of emergency equipment are expected to occur.

Table 4.1 provides a detailed list of the activities included in the assessment and the calculation methods used for construction and operation.

Project Activities	Emissions Calculation Method			
Direct Emissions - Construction				
Off-Road Equipment	Emissions were quantified using the ECCC national			
On-Road Equipment	inventory emission factors (ECCC 2022), an assumed list of representative off-road and on-road construction equipment, and the preliminary construction schedule provided by the project design team.			
Direct Emissions - Operation				
GO Trains	Emissions were quantified using the ECCC national inventory emission factors (ECCC 2022) for diesel trains and fuel usage rates for the proposed line haul and HEP engines provided by Metrolinx (Metrolinx, 2021b).			

Table 4.1: Calculation Methods for GHG Emission Estimates

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

Project Activities	Emissions Calculation Method
GO Buses	Emissions were quantified using the ECCC national inventory emission factors (ECCC 2022) for heavy- duty diesel vehicles (HDDVs) with moderate control and calculated fuel usage rates for the additional buses added to the future schedule.
Stationary fuel combustion equipment	Emissions were quantified using the ECCC national inventory emission factors (ECCC 2022) for off-road diesel equipment, the fuel usage rates for the proposed standby power units and assumed operating hours.

4.3.3 Indirect (Third-Party) GHG Emission Sources and Emission Estimates

Indirect (third-party) GHG emissions from electricity consumption by the Project operation were quantified using the ECCC national inventory emission factors (ECCC 2022) for electricity consumption intensity (Ontario) and are included in Appendix G. During operation, these include emissions released as a result of providing electrical power to each of the four stations and two wayside power cabinets at B4 Bowmanville station. Plugging the train in to the power cabinets allows the locomotive to be shut down overnight, while maintaining climate control on the train (prevents freezing during winter).

Sources of Air Contaminants and Greenhouse Gases August 24, 2023

4.3.4 Avoided GHG Emission Estimation

The implementation of the Project is expected to result in a decrease in the use of private vehicles by the public; therefore, there is expected to be a corresponding decrease in GHG emissions from the combustion of gasoline and diesel in private vehicles in and near the Project Study Area. A year-by-year breakdown of the avoided domestic private vehicle kilometers travelled was provided by Metrolinx (Metrolinx, 2022c). Metrolinx estimates the Project can reduce annual vehicle kilometers travelled by up to 31 million kilometers. This is equivalent to approximately 6.4 kt CO₂e per year. The reduction is estimated using a Canada specific average fuel consumption emission factor per kilometer travelled for light duty vehicles (IEA 2019). Over the 60-year lifecycle, the Project is expected to reduce private vehicle travel by 1.7 billion kilometers and is an equivalent reduction of GHG emissions in the amount of 353 kt of CO₂e, assuming consistent use of diesel and gasoline. It is expected that over time, more electric vehicles will be deployed in the area and further, the electricity GHG intensity is also expected to decline as power utilities shift to using less hydrocarbon fuels to generate power. These shifts are likely to lead to less GHG savings from the Project annually over time.

Air Dispersion Modelling Methodology August 24, 2023

5.0 Air Dispersion Modelling Methodology

This section presents an overview of the dispersion modelling methodologies used in the study to assess potential impacts on air quality.

5.1 Modelling Assessment Approach

The Project activities assessed using dispersion modelling are expected to represent maximum construction and operation emissions for each Project component/location. In this study, four dispersion modelling scenarios were assessed to represent different construction components of the Project.

For operation, the Project was segmented into three separate model runs to match the geographical extents of the site-specific meteorological data sets provided by the MECP. The site-specific meteorological data sets were prepared for Oshawa, Courtice and Bowmanville near where the proposed railway corridor will be extended/built. Source groups were used to reflect the Baseline, Future No Build and Future Build operating scenarios within each of the modelled segments. A summary of the dispersion modelling scenarios assessed in this study is presented in Table 5.1.

Phase	Project Component/ Location	Scenario	Emission Sources
Construction	At Grade Crossing Widening - Rundle Road Crossing	Baseline	 Construction equipment (tailpipe emissions) Construction dust It was assumed that during widening of the at-grade crossing, grading at the tracks may occur at the same time. Emissions associated with grading work at the tracks were included in the modelling assessment for Crossing Widening.
	GO Station - B4 Bowmanville	Baseline	 Construction equipment (tailpipe emissions) Construction dust

Table 5.1: Summary of Dispersion Modelling Scenarios Assessed

Air Dispersion Modelling Methodology August 24, 2023

Phase	Project Component/ Location	Scenario	Emission Sources
	Bridge Replacement - Simcoe Street Bridge	Baseline	 Construction equipment (tailpipe emissions) Construction dust On-road vehicles on detour roads (tailpipe emissions and road dust)
	Trackwork and Grading - west of Farewell St. Ped. Bridge to west of Harmony Rd Bridge	Baseline	 Construction equipment (tailpipe emissions) Construction dust
Operation	Entire length of the Project	Baseline (2021)	 Existing CP rail traffic Existing GM rail traffic Existing GO bus and private vehicle traffic (tailpipe and paved road dust emissions) within existing stations
		Future (2031) No Build ¹	 Existing CP rail traffic Existing GM rail traffic Existing GO bus and private vehicle traffic (tailpipe and paved road dust emissions) within existing stations
		Future (2031) Build	 Existing CP rail traffic Existing GM rail traffic Future GO rail traffic Future GO bus and private vehicle traffic (tailpipe and paved road dust emissions) within the proposed GO station locations

Note:

1. It is assumed that there are no differences in the GO bus counts and private vehicle traffic counts travelling within the existing GO parking lots in Courtice (Courtice Road/Baseline Road) and Bowmanville (Clarington Blvd./Durham Hwy 2) for the baseline (2021) and future (2031) no build scenarios. The basis for this assumption is that the GO bus system is already at capacity and that there is no room for passenger/bus/car increases without expansion of the station.

Air Dispersion Modelling Methodology August 24, 2023

Rationales for the location selections and assumptions used for the maximum construction emissions scenarios are provided in Section 1.6 and Section 4.0. The emissions sources described in Section 4.0 and the COIs listed in Section 2.1 were included in the assessment.

Summaries of the emission source parameters used in the AERMOD dispersion modelling are provided in Appendix C. The locations of the emission sources are also shown in Appendix C. Summaries of the air dispersion modelling inputs are provided in Appendix E.

Modelling results are compared with the AQ Objectives that are described in Section 2.3. For PM_{2.5}, the 24-hour CAAQS is referenced to the 98th percentile daily average concentration averaged over 3 consecutive years. The 1-hour NO₂ CAAQS is referenced to the 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations; and the 1-hour SO₂ CAAQS is the 3-year average of the annual 99th percentile of the SO₂ daily maximum 1-hour average concentrations. As construction activities are not anticipated to last longer than 24 months at any of the sites, comparing the maximum model predictions to CAAQS that are based on 3-year averages will be conservative as this assumes the activity occurs for three years.

Assumptions used in this air dispersion modelling assessment were based on information available at the time of the study and best estimates using that information. At the time of this study, the Project is still in the preliminary planning stages and details regarding Project construction activities, schedule, and operations are limited.

Air Dispersion Modelling Methodology August 24, 2023

5.2 Air Dispersion Modelling Methodology

5.2.1 Dispersion Model Used

The U.S. EPA atmospheric dispersion model AERMOD was used for the assessment as recommended in the Draft Metrolinx Guide (Metrolinx 2019a). The AERMOD Version 19191 was used in the assessment as this is the current MECP regulatory version adopted in April 2020.

AERMOD is a steady-state plume model that is applicable to rural and urban areas, flat and complex terrain, surface and elevated releases, and multiple sources (including, point, area and volume sources). In the Stable Boundary Layer, the concentration distribution is assumed to be Gaussian in both vertically and horizontally. Vertical profiles of wind speed wind direction, turbulence temperature, and temperature gradient are estimated using available meteorological observations. AERMOD accounts for the vertical inhomogeneity of the Planetary Boundary Layer (PBL). This is accomplished by "averaging" the parameters of the actual Stable Boundary Layer into "effective" parameters of an equivalent homogeneous PBL. With these effective parameters, AERMOD accounts for the inhomogeneity of the PBL, in an averaged sense.

Parameters that directly influence the dispersion of pollutants include wind speed and direction, atmospheric stability, and mixing layer depth. For example, high concentrations predicted from low elevated sources, from elevated sources with building or topography effects, or from volume sources are typically due to stable atmospheric stability conditions with light winds.

The dispersion model was used to predict maximum 1-hour, 8-hour, 24-hour and annual average ground level concentrations (GLCs) for each COI at the selected receptors for the assessed scenario. The predicted Project Alone concentrations were added to their corresponding background concentrations to estimate cumulative air quality levels at the special and gridded receptors. For COIs with other averaging periods (i.e., 15-minute or half-hour), the predicted 1-hour concentrations were converted to the appropriate averaging period using the MECP recommended conversion factor per Chapter 7 of the MECP's "Procedure for Preparing an Emission Summary and Dispersion Modelling Report" (MECP 2018b).

Air Dispersion Modelling Methodology August 24, 2023

5.2.2 Special Receptors and Receptor Grid

Special receptors are locations where human activity more regularly takes place. The Draft Metrolinx Guide (Metrolinx, 2019a) recommends a study area of 300 m to 500 m radius surrounding the Project footprint for transit projects depending on the type of project/emission sources. The MTO Guide recommends that the local air quality impacts be studied within a distance of 500 m from the transportation facility at both sensitive (residences) and critical receptors (hospitals, retirement homes, childcare centres). No specific guidance is provided for study areas for construction projects in either guide; therefore, a study area with a radius of up to 500 m was used.

Land uses that contain critical receptors such as schools, day cares, long-term care facilities or other institutional uses, if any, and representative sensitive receptors (residential dwellings), within the Study Area were selected as special receptors for the air quality study. A list of the special receptors identified for the Project (and their designation as either sensitive or critical) are provided in Appendix D. The locations of these receptors are also presented in Appendix D.

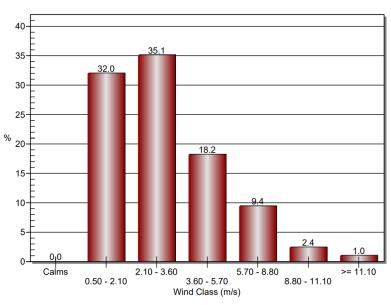
In addition to special receptors, gridded receptors were placed at the following spacings from a rectangle bounding the main construction activities (active construction zone and construction vehicles):

- 10 m spacing within 50 m of the rectangle bounding the main construction activities
- 25 m spacing from 50 200 m of the boundary
- 50 m spacing from 200 500 m of the boundary
- 75 m spacing from 500 700 m of the boundary

For the Operations Phase air dispersion modelling of the entire proposed rail corridor (18.6 km of track), the following grid extension and spacing were used:

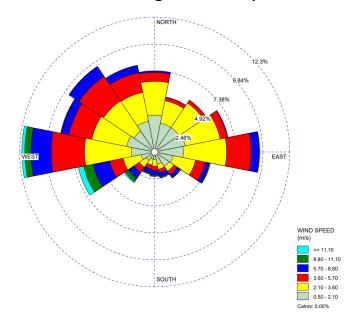
- a minimum 500 m distance from the Project footprint which includes the entire proposed corridor (per MTO guidance)
- 20 m spacing within 200 m of the Project footprint along the entire proposed corridor
- 50 m spacing from 200 500 m of the Project footprint

Air Dispersion Modelling Methodology August 24, 2023


5.2.3 Meteorological Data Sources

The local meteorology of the region must be characterized to evaluate the short-term atmospheric dispersion and transport of emissions released by the Project. Five-year (2016-2020) site-specific meteorological data sets pre-processed by the MECP (MECP 2021) were used as inputs to the dispersion model. The MECP provided a separate dataset for each of the four construction components listed in Table 5.1 and three datasets for the three operations phase model segments (Oshawa, Courtice and Bowmanville).

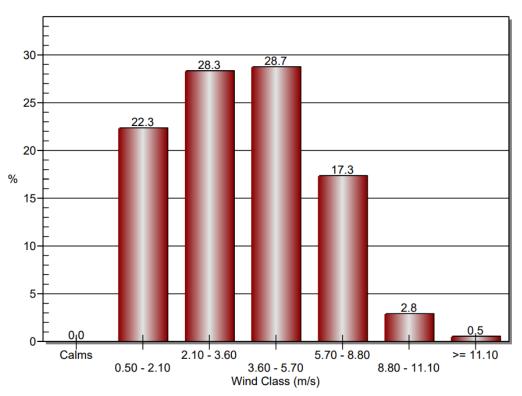
The Rundle Road Crossing and Courtice Segment site specific meteorological datasets use upper air data from Buffalo NY, surface data from the Cobourg Station, and cloud cover data from the Canadian Forces Base Trenton Airport and Toronto Pearson International Airport stations.


The frequency distribution of wind speeds from the site-specific meteorological data set for the Rundle Road Crossing and Courtice Segment is shown in Figure 5.1. High wind speeds greater than 8.8 m/s occur infrequently, while wind speeds between 2.1 -3.6 m/s occur the most frequently. A wind rose plot is presented in Figure 5.2. Wind roses are an efficient and convenient means of presenting wind data. The length of the radial barbs gives the total percent frequency of winds blowing from the indicated direction, while portions of the barbs of different widths indicate the frequency associated with each wind speed category. Winds blow most frequently from the west with northwesterly and easterly directions also being relatively frequent.

Air Dispersion Modelling Methodology August 24, 2023

Figure 5.1: Rundle Road/Courtice Segment Site-Specific Wind Class Frequency Distribution (2016-2020)

Figure 5.2: Rundle Road/Courtice Segment Site-Specific Wind Rose (2016-2020)



Air Dispersion Modelling Methodology August 24, 2023

The meteorological data sets used to model emissions from the construction of B4 Bowmanville GO Station, Simcoe Street Bridge, Track and Grading Railway Track (Farewell Street Multi-use Bridge to west of Harmony Road Bridge), and operation of the Oshawa and Bowmanville Segment all used upper air data from Buffalo NY, surface data from the Oshawa airport, and cloud cover data from the Toronto Pearson International Airport station.

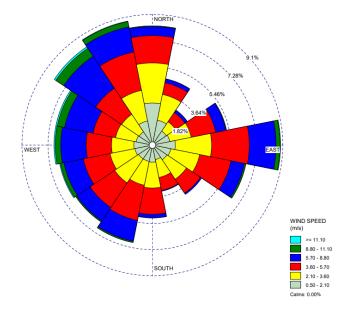

The frequency distribution of wind speeds from this site-specific meteorological data set is shown in Figure 5.3. Wind speeds greater than 8.8 m/s occur infrequently, while wind speeds between 3.6 - 5.7 m/s occur the most frequently. A wind rose plot is presented in Figure 5.4 and shows that winds blow most frequently from northwesterly and easterly directions and are relatively uniform in frequency from northwesterly to southwesterly directions.

Figure 5.3: Other Construction and Operations Site Specific Meteorology -Wind Class Frequency Distribution (2016-2020)

Air Dispersion Modelling Methodology August 24, 2023

Figure 5.4: Other Construction and Operations Phase Site Specific Wind Rose (2016-2020)

5.2.4 Building Downwash

Wind dependent building/obstacle dimensions are an input to AERMOD for use in the building wake and building downwash calculations for point source emissions. As all emissions sources were modelled as area, line or volume sources, building downwash data was not required.

5.2.5 Topographic Data

Terrain data used for the modelling domain is the Canadian digital elevation model mosaic (CDEM) data covering Ontario, suitable for use with AERMOD, and available at the MECP's website (MECP, 2020a).

5.2.6 Averaging Periods

AERMOD can predict concentrations for a variety of averaging times for 1-hour and greater. For this Project, the models were run for 1-hour, 8-hour, 24-hour, and annual averaging times to give results that can be directly compared to the relevant air quality objectives for each COI.

For other averaging periods, predicted concentrations from the nearest averaging period were converted using the conversion methodology recommended by MECP (MECP, 2018b).

Air Dispersion Modelling Methodology August 24, 2023

5.2.7 Conversion of Nitrogen Oxides to Nitrogen Dioxide

Nitrogen oxides (NOx) from fuel combustion processes are comprised mainly of nitrous oxide (NO) and nitrogen dioxide (NO₂). Only NO₂ has ambient air quality criteria. In combustion emissions, typically most of the NOx emissions are NO and only a small percentage are NO₂. Once in the ambient air, NO is irreversibly oxidized by ground level ozone (O₃) to produce nitrogen dioxide (NO₂) as follows:

$$NO + O_3 \rightarrow NO_2 + O_2$$

The Metrolinx Environmental Guide (Metrolinx, 2019a) specifies that the Ozone Limiting Method (OLM) method is to be used to predict ambient NO₂ concentrations. According to the OLM method, the conversion of NO to NO₂ is limited by the ambient concentration of ozone (O₃) in the atmosphere. If it is assumed that 10% (by volume) of the NO_x emissions released from each source is NO₂ then the remaining 90% may be converted to NO₂ (U.S. EPA 2015b) as follows:

- If 90% of the NO_X concentration is less than the ambient O₃ concentration, then [NO₂] = [NO_X] (complete conversion).
- If 90% of the NO_X concentration is greater than the ambient O₃ concentration, then [NO₂] = 10% [NO_X]+ [O₃] (limited conversion).

In the application of the OLM, the above relationships assume that all concentrations are expressed in parts per million (ppm).

The use of the OLM approach in AERMOD requires the specification of an in-stack ratio (ISR) of NO₂/NO_x. U.S. EPA guidance (U.S. EPA, 2014) notes that in-stack ratios used with the OLM option can be justified based on the specific application. As the NO_x emissions from the Project are associated with tailpipe emissions from diesel-fired equipment, a site specific ISR was determined from a review of data available from U.S. EPA (NO₂_ISR_database.xlsx, available from

https://www.epa.gov/scram/nitrogen-dioxidenitrogen-oxide-stack-ratio-isr-database). The ISR values for relevant listed diesel engines are low, with an average NO₂/NO_x ratio of 0.1. An in-stack NO₂/NO_x ratio of 0.2 was conservatively used in the assessment.

The OLM method was implemented in the AERMOD model to predict hourly average NO₂ concentrations using the predicted hourly average NO_X concentrations and seasonal hourly background ozone values (provided in Appendix E).

Air Dispersion Modelling Methodology August 24, 2023

5.2.8 Emission Source Data

The emissions sources were modelled following the protocols and procedures outlined in MECP Guideline A-11 (MECP 2017b). Construction tailpipe emissions were modelled as volume sources and construction dust emissions were modelled as area sources. Emissions from construction activities were assumed to occur 8 hours a day with a one-hour break (8AM to 5PM) on weekdays. Emissions from on-road vehicle traffic were modelled as line sources with parameters determined based on the recommended approach by the U.S. EPA Haul Road Workgroup Final Report (U.S. EPA 2012). Emissions from these sources were conservatively assumed to occur 24 hours a day. As a conservative modelling approach, and consistent with MECP guidance (MECP 2017b), deposition was not considered for predicting TSP, PM₁₀ and PM_{2.5} concentrations for the construction and operation scenarios. Given the close proximity of the nearest special receptors to the construction and operation emission sources, it is expected that the deposition from the exhaust plume would be minimal.

A summary of the emission source parameters used in the AERMOD dispersion modelling is provided in Appendix D. The locations of the emissions sources are shown in Appendix E.

Air Dispersion Modelling Impact Assessment August 24, 2023

6.0 Air Dispersion Modelling Impact Assessment

This section presents the results of the air dispersion modelling for the construction and operation of the Project components described in Section 4.0.

A summary of the maximum modelled predictions for the Project emissions only (Project Alone) and cumulatively with the addition of background concentrations (Project plus background) that are presented in Section 3.2 are compared to the applicable air quality objectives presented in Section 2.3.

A summary of the maximum modelled predictions at the special receptor locations as well as gridded receptors are discussed separately below. A tabular summary of the results at special receptor locations are presented in Table 6.1, Table 6.3, Table 6.5, Table 6.7, and Table 6.10. Predicted exceedance charts for special receptors are presented in Figure 6.1 to Figure 6.6.

Concentration contour plots are presented in Appendix F for each Project component.

6.1 Construction Phase

The modelling results presented in this section are based on a maximum construction emissions scenario for each Project component with standard mitigation measures applied. Standard mitigation measures include dust control such as watering and limiting on-site vehicle speed to less than 20 km/hr. Each modelled maximum emissions scenario is not expected to occur consistently throughout the entire construction period. The intent of these predictions is to help identify potential air quality impacts and whether additional mitigation measures (discussed in Section 8.0) may be required to reduce these impacts.

For each construction component assessed, the maximum distance from the construction area to where an air quality objective is predicted to be exceeded (concentration impact zone for that contaminant) is determined from the gridded receptor predictions. These impact zone distances, presented in Table 6.2, Table 6.4, Table 6.6, and Table 6.8, were used to assess the potential for adverse impacts at the other construction component locations by determining if there will be any sensitive/critical receptors falling within the impact zone(s).

Air Dispersion Modelling Impact Assessment August 24, 2023

6.1.1 At Grade Crossing Widening - Rundle Road

6.1.1.1 Special Receptor Predictions - Project Alone

The Project Alone and maximum cumulative concentrations of COIs at special receptor locations near the Rundle Road Crossing are presented in Table 6.1.

The Project Alone maximum predicted NO₂ concentration exceeds the 1-hour average 2025 CAAQS by 9% but is below the 2020 CAAQS and the AAQC. The AAQC is currently used by the MECP. The NO₂ CAAQS have not been adopted as an AAQC in Ontario and are intended for regional air quality planning rather than assessing the local impacts of individual projects. The maximum predicted Project Alone PM₁₀ concentration exceeds the 15-minute Metrolinx mitigation threshold by 64%. The frequency of exceedance of the Metrolinx mitigation threshold is predicted to be no more than 7 hours over a 5-year period or approximately 0.016% of the time. The main contributor to PM_{10} emissions is construction dust.

The maximum predicted concentrations for all other COIs and averaging periods for the Project Alone are below their AQ Objectives and mitigation thresholds.

6.1.1.2 Special Receptor Predictions - Cumulative Concentrations

Maximum predicted cumulative concentrations (i.e., Project plus background concentrations) of COIs are below their respective air quality objectives at special receptors except for the following:

- The maximum predicted 1-hour average 98th percentile cumulative NO₂ concentration is 176% of the 2025 CAAQS, while the maximum predicted cumulative annual average concentration is 122% of the 2025 CAAQS. However, the 1-hour and annual average background concentrations used are by themselves 67% and 118% of the 1-hour and annual CAAQS, respectively. The main contributor to NO₂ emissions is from construction vehicle/equipment tailpipe emissions. It is expected that the modelled maximum emissions scenario will not occur consistently throughout the entire construction period. Ambient NO₂ levels from construction will be lower during periods when fewer construction vehicles or equipment are being operated concurrently.
- The maximum predicted 15-minute average cumulative PM₁₀ concentration is 189% of the Metrolinx mitigation threshold and is mainly due to the Project.
- The maximum predicted annual average cumulative benzene concentration is 119% AAQC. However, the annual average background benzene concentration alone is above the AAQC, with the maximum annual Project Alone prediction being only 1% of the AAQC.

Air Dispersion Modelling Impact Assessment August 24, 2023

Maximum predicted cumulative 24-hour and annual average Benzo(a)pyrene concentrations are 293% and 863% of their respective criteria. However, background concentrations are almost two times higher than the 24-hour AAQC and over seven and a half times the annual AAQC. Project Alone concentrations are only 15% and 3% of the 24-hour and annual criteria respectively and therefore the Project is a minor contributor the cumulative concentrations.

The maximum cumulative concentrations of the other COIs and averaging periods are below their AQ objectives or mitigation thresholds.

Figure 6.1 graphically presents the relative contributions of Project Alone (blue portion of each bar) and Background concentrations (grey portion of each bar) to the maximum cumulative concentration of each COI that is predicted to be above an applicable air quality objective at a special receptor. As discussed above, benzene, benzo(a)pyrene and annual NO₂ cumulative concentrations can be seen to be dominated by the background concentrations.

Air Dispersion Modelling Impact Assessment August 24, 2023

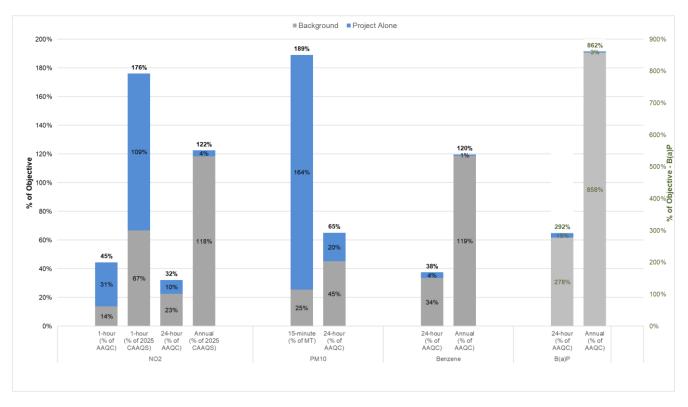
Contaminant	Averaging Period	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration ¹ (µg/m ³)	Background Concentration (µg/m³)	Maximum Cumulative Concentration (µg/m³)	Air Quality Objective	Source of Objective	Percentage of Objective (%) Project Alone	Percentage of Objective (%) Cumulative (Project Alone + Background)
		95_S	123		178	400	AAQC	31%	45%
	1-hour	95_S	91 ²	55	146	119	2020 CAAQS	76%	123%
NO ₂			91-		140	83	2025 CAAQS	109%	176%
	24-hour	95_S	19	45	64	200	AAQC	10%	32%
	Annual	95_S	0.96	28	29	34	2020 CAAQS	3%	86%
	Annual		0.96	20	29	24	2025 CAAQS	4%	122%
CO 1-hour	1-hour	95_S	562	422	984	36,200	AAQC	2%	3%
CO	8-hour	94_S	143	402	545	15,700	AAQC	1%	3%
	10-minute	95_S	1.1	4.6	6	180	AAQC	1%	3%
						100	AAQC	1%	3%
	1-hour	95_S	0.69	2.8	3.5	193	2020 CAAQS	0%	2%
SO ₂						179	2025 CAAQS	0%	2%
						10	AAQC	0%	10%
	Annual	95_S	0.003	1	1	14	2020 CAAQS	0%	8%
						11	2025 CAAQS	0%	10%
TOD	24-hour	95_S	14.8	41	55.8	120	AAQC	12%	46%
TSP	Annual	95_S	0.32	24	24.3	60	AAQC	1%	41%
PM ₁₀	15-minute	95_S	245	38	283	150	Metrolinx Mitigation Threshold	164%	189%
	24-hour	95_S	10	23	33	50	AAQC	20%	65%
	15-minute	95_S	42	21	63	81	Metrolinx Mitigation Threshold	52%	78%
PM _{2.5}	24-hour	95_S	2.2	12	14.2	27	CAAQS	8%	53%
	Annual	95_S	0.08	7.2	7.3	8.8	CAAQS	1%	83%
Crystalline Silica	15-minute	95_S	11.7	7.4	19.1	25	Metrolinx Mitigation Threshold	47%	76%
-	24-hour	95_S	0.44	2	2.4	5	AAQC	9%	50%
Panzana	24-hour	95_S	0.09	0.77	0.9	2.3	AAQC	4%	38%
Benzene	Annual	95_S	4.1E-03	0.53	0.5	0.45	AAQC	1%	120%

Table 6.1: Summary of Construction Phase Air Dispersion Modelling Results at Special Receptors - Rundle Road Crossing Widening

Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging Period	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration ¹ (µg/m ³)	Background Concentration (µg/m³)	Maximum Cumulative Concentration (µg/m³)	Air Quality Objective	Source of Objective	Percentage of Objective (%) Project Alone	Percentage of Objective (%) Cumulative (Project Alone + Background)
1. 2 Dutadiana	24-hour	95_S	3.7E-03	0.08	0.1	10	AAQC	0%	1%
1, 3 Butadiene	Annual	95_S	95_S 1.7E-04	0.06	0.1	2	AAQC	0%	3%
	24-hour	95_S	7.3E-06	1.4E-04	0.0	0.00005	AAQC	15%	292%
B(a)P	Annual	95_S	3.3E-07	8.6E-05	0.0	0.00001	AAQC	3%	862%
Formaldehyde	24-hour	95_S	0.71	3	3.7	65	AAQC	1%	6%
Acctoldation	½-hour	95_S	2.8	9	11.8	500	AAQC	1%	2%
Acetaldehyde	24-hour	95_S	0.24	3	3.2	500	AAQC	0%	1%
Acrelain	1-hour	95_S	0.38	0.20	0.6	4.5	AAQC	9%	13%
Acrolein	24-hour	95_S	0.04	0.08	0.1	0.4	AAQC	10%	31%

Notes:


 \bigcirc

1. The maximum predicted concentration (meteorological anomalies included) is conservatively used for comparison to all Air Quality Objectives unless otherwise noted.

2. Value is the 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations at a special receptor for comparison to the current (2020) and future (2025)CAAQS for 1-hour NO₂.

Air Dispersion Modelling Impact Assessment August 24, 2023

Figure 6.1: Comparison of Selected Construction Phase Cumulative COI Predictions to Air Quality Objectives - Rundle Road Crossing

Notes:

The maximum predicted concentrations (meteorological anomalies included) at special receptors are presented for comparison with Air Quality Objectives. Air Quality Objectives:

AAQC - Ontario Ambient Air Quality Criteria

CAAQS - Canadian Ambient Air Quality Standards

MT - Metrolinx mitigation threshold

 \bigcirc

Air Dispersion Modelling Impact Assessment August 24, 2023

6.1.1.3 Gridded Receptor Predictions

To predict air quality impact zones due to the maximum construction emissions scenario for this component, modelling was conducted using gridded receptors at the Rundle Road Crossing. The results of the gridded receptor modelling were used to develop recommendations for mitigation for the other crossing locations where required.

Table 6.2 presents the dispersion modelling results of the gridded receptors for the maximum construction emissions scenario with standard mitigation measures implemented. The table presents the distances from the Project footprint where exceedances of an AQ objective are predicted to occur. COIs included in the table are predicted to have maximum GLCs above the AQ objectives at gridded receptor locations. All other COIs and averaging periods are predicted to remain below their respective AQ objective.

COI	COI Averaging AQ Obje Period (µg/m		Source of Objective	Distance from Project footprint (m)
NO ₂	1-hour	83	2025 CAAQS	60
TSP	24-hour 120		AAQC	5
DM	15-minute 150		Metrolinx Mitigation Threshold	150
PM10	24-hour	50	AAQC	20
PM _{2.5}	15-minute	81	Metrolinx Mitigation Threshold	5
Crystalline silica	Crystalline		Metrolinx Mitigation Threshold	25

Table 6.2:	Rundle Road Crossing Construction Scenario - Predicted Impact
	Zones

It is noted that the intent of the15-minute Metrolinx mitigation thresholds is to manage periods of temporarily high particulate crystalline silica concentrations due to construction projects. Mitigation measures should be implemented, and/or the construction activity should be reduced or stopped when the threshold is exceeded by more than 20% during two consecutive 15-minute periods (Metrolinx, 2019a).

During the course of the Project, if mitigation measures are implemented to meet the Metrolinx mitigation thresholds for PM₁₀ and PM_{2.5}, it is expected that construction emissions will not cause exceedances of the AAQCs.

6.1.2 GO Station - B4 Bowmanville

The Project Alone and maximum cumulative concentrations of COIs at special receptor locations near the B4 Bowmanville GO Station are presented in Table 6.3.

Air Dispersion Modelling Impact Assessment August 24, 2023

6.1.2.1 Special Receptor Predictions - Project Alone

The Project Alone maximum predicted 15-minute average PM₁₀, PM_{2.5} and crystalline silica concentrations exceed their respective Metrolinx mitigation thresholds. PM₁₀ is also predicted to exceed the 24-hour average AAQC. The main contributor to these exceedances is dust that is generated from construction activities - emissions from which are estimated based on the active construction area. The maximum predicted ambient particulate concentrations from station construction are higher compared to other Project components due to its much larger active construction area.

The maximum predicted Project Alone 15-minute average PM₁₀ concentration is 696% of the Metrolinx mitigation threshold. However, the frequency of exceedance is predicted to be no more than 40 hours over a 5-year period or approximately 0.09% of the time. The maximum predicted 24-hour average PM₁₀ concentration is 112% of the AAQC, with an exceedance occurring only 1 day over a 5-year period or approximately 0.05% of the time.

The maximum predicted Project Alone 15-minute average $PM_{2.5}$ concentration is 133% of the Metrolinx mitigation threshold. The mitigation threshold is predicted to be exceeded no more than 3 hours over a 5-year period or approximately 0.007% of the time.

Crystalline silica is predicted to exceed its 15-minute Metrolinx mitigation threshold by 117%, but for no more than 11 hours over a 5-year period or approximately 0.03% of the time.

The maximum predicted concentrations for all other COIs and averaging periods for the Project Alone are below their AQ Objectives and mitigation thresholds.

6.1.2.2 Special Receptor Predictions - Cumulative Concentrations

The maximum cumulative concentrations of COIs are below their respective air quality objectives except for the following:

The maximum predicted 1-hour average cumulative 98th percentile NO₂ concentration is 112% of the 2025 CAAQS and the maximum predicted annual concentration is 121% of the 2025 CAAQS. The main contributor to NO₂ emissions is from construction vehicle/equipment tailpipe emissions. It is expected that the modelled maximum emissions scenario will not occur consistently throughout the entire construction period. Ambient NO₂ levels from construction will be lower during periods when fewer construction vehicles or equipment are being operated concurrently. As land clearing construction activities are not anticipated to last longer

Air Dispersion Modelling Impact Assessment August 24, 2023

than 1 month at this site, comparing the 98th percentile model predictions to the CAAQS that are based on 3-year averages is conservative.

- The maximum predicted 24-hour average cumulative TSP concentration is 107% of the AAQC.
- Maximum predicted cumulative PM₁₀, PM_{2.5} and crystalline silica concentrations exceed their Metrolinx Mitigation thresholds, as did their Project Alone predictions.
- The maximum predicted annual average cumulative benzene concentration is 118% AAQC, but is dominated by the background concentrations, as the maximum annual Project Alone prediction is only 1% of the AAQC.
- Maximum predicted 24-hour and annual cumulative benzo(a)pyrene concentrations are above the AAQCs, but the predictions are dominated by background levels, with the Project Alone predicted concentrations being only 8% and 2% of the 24-hour and annual AAQCs, respectively.

Figure 6.2 graphically presents the relative contributions of Project Alone and Background concentrations to the maximum cumulative concentration of each COI that is predicted to be above an applicable air quality objective at a special receptor. As discussed above, benzene, benzo(a)pyrene and annual NO₂ cumulative concentrations can be seen to be dominated by the background concentrations. Predicted cumulative exceedances of TSP, PM₁₀, PM_{2.5} and silica concentrations are mainly due to the Project.

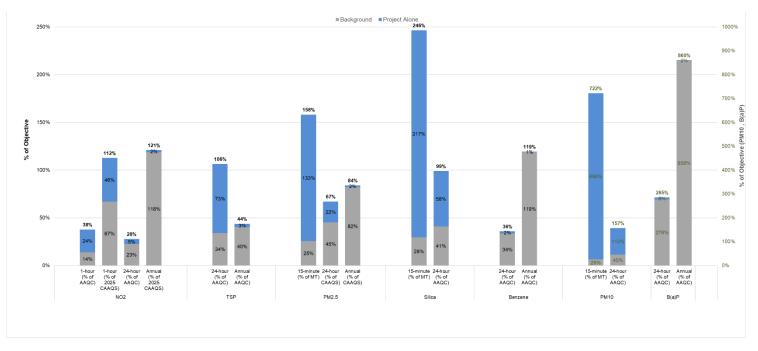
Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging Period	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (μg/m ³)	Background Concentration (µg/m³)	Maximum Cumulative Concentration at Special Receptors (µg/m ³)	Air Quality Objective (μg/m³)	Source of Objective	Percentage of Objective (%) Project Alone	Percentage of Objective (%) Cumulative (Project + Background)
			95		151	400	AAQC	24%	38%
	1-hour ²	127_S	20	55	00	119	2020 CAAQS	32%	78%
NO			38		93	83	2025 CAAQS	46%	112%
NO ₂	24-hour	116_S	10	45	55	200	AAQC	5%	28%
	Annual	110 0	0.52	20	20	34	2020 CAAQS	2%	85%
	Annual	116_S	0.53	28	29	24	2025 CAAQS	2%	121%
00	1-hour	127_S	217	422	639	36,200	AAQC	1%	2%
СО	8-hour	116_S	64	402 466	15,700	AAQC	0%	3%	
	10-minute	127_S	0.6	4.6	5	180	AAQC	0%	3%
						100	AAQC	0%	3%
	1-hour	127_S	0.339	2.8	3	193	2020 CAAQS	0%	2%
SO ₂						179	2025 CAAQS	0%	2%
						10	AAQC	0%	10%
	Annual	116_S	0.002	1	1	14	2020 CAAQS	0%	8%
						11	2025 CAAQS	0%	10%
TOD	24-hour	117_S	87.0	41	128	120	AAQC	73%	106%
TSP	Annual	117_S	2.03	24	26	60	AAQC	3%	44%
DM	15-minute	116_S	1044.3	38	1082	150	Metrolinx Mitigation Threshold	696%	722%
PM ₁₀	24-hour	117_S	55.8	23	78.5	50	AAQC	112%	157%
	15-minute	116_S	107.4	21	128	81	Metrolinx Mitigation Threshold	133%	158%
PM _{2.5}	24-hour	117_S	5.9	12	18	27	CAAQS	22%	67%
	Annual	117_S	0.15	7.2	7	8.8	CAAQS	2%	84%
	15-minute	116_S	54.2	7.4	62	25	Metrolinx Mitigation Threshold	217%	246%
Crystalline Silica	24-hour	117_S	2.89	2	5	5	AAQC	58%	99%
Destance	24-hour	116_S	0.05	0.77	0.8	2.3	AAQC	2%	36%
Benzene	Annual	116_S	2.3E-03	0.53	0.5	0.45	AAQC	1%	119%
4. O Dute d'ann	24-hour	116_S	1.9E-03	0.08	0.08	10	AAQC	0%	1%
1, 3 Butadiene	Annual	116_S	9.2E-05	0.05	0.06	2	AAQC	0%	3%

Table 6.3: Summary of Construction Phase Air Dispersion Modelling Results at Special Receptors - B4 Bowmanville GO Station

Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging Period	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (μg/m ³)	Background Concentration (µg/m³)	Maximum Cumulative Concentration at Special Receptors (µg/m ³)	Air Quality Objective (μg/m³)	Source of Objective	Percentage of Objective (%) Project Alone	Percentage of Objective (%) Cumulative (Project + Background)
	24-hour	116_S	3.8E-06	0.000139	0.000143	0.00005	AAQC	8%	285%
B(a)P	Annual	116_S	1.8E-07	0.000086	0.000086	0.00001	AAQC	2%	860%
Formaldehyde	24-hour	116_S	0.37	3	3.5	65	AAQC	1%	5%
	½-hour	127_S	1.4	9	10.6	500	AAQC	0%	2%
Acetaldehyde	24-hour	116_S	0.13	3	3.3	500	AAQC	0%	1%
A	1-hour	127_S	0.19	0.2	0.39	4.5	AAQC	4%	9%
Acrolein	24-hour	116_S	0.02	0.08	0.10	0.4	AAQC	5%	26%


Notes:

1. The maximum predicted concentration (meteorological anomalies included) is conservatively used for comparison to all Air Quality Objectives unless otherwise noted.

2. The 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations at a special receptor for comparison to the current (2020) and future (2025) CAAQS for 1-hour NO₂.

Air Dispersion Modelling Impact Assessment August 24, 2023

Figure 6.2: Comparison of Selected Construction Phase Cumulative COI Predictions to Air Quality Objectives - B4 Bowmanville GO Station

Notes:

The maximum predicted concentrations (meteorological anomalies included) at special receptors are presented for comparison with Air Quality Objectives.

Air Quality Objectives:

AAQC - Ontario Ambient Air Quality Criteria

CAAQS - Canadian Ambient Air Quality Standards

MT - Metrolinx mitigation threshold

Air Dispersion Modelling Impact Assessment August 24, 2023

6.1.2.3 Gridded Receptor Predictions

Table 6.4 presents the dispersion modelling predictions using gridded receptors for the B4 Bowmanville GO Station construction scenario. The table presents the distances from the Project footprint where exceedances of an AQ objective are predicted to occur. COIs included in the table are predicted to have maximum GLC above the AQ objectives at gridded receptor locations. All other contaminants and averaging periods are predicted to remain below their respective AQ objective. The main contributor to these exceedances is dust that is generated from construction activities whose emission rate is estimated based on the size of the active construction area. The predicted impacts from the station construction are higher compared to other Project components as it has a much larger active construction area.

COI	Averaging AQ Objective Source of Objective Period (µg/m ³)		Source of Objective	Distance from Project footprint (m)
TSP	24-hour	120 AAQC		30
	15-minute	150	Metrolinx Mitigation Threshold	680
PM ₁₀	24-hour	50	AAQC	100
PM _{2.5}	15-minute	81	Metrolinx Mitigation Threshold	110
Crystalline silica	Crystalline		Metrolinx Mitigation Threshold	220

Table 6.4:B4 Bowmanville GO Station Construction Scenario -
Predicted Impact Zones

6.1.3 Trackwork and Grading - Farewell Street Multi-use Bridge to West of Harmony Road Bridge

The maximum Project Alone and cumulative concentrations of COIs for the trackwork and grading construction scenario are presented in Table 6.5. The following subsections discuss the results of the dispersion modelling.

6.1.3.1 Special Receptor Predictions - Project Alone

For the Project Alone, the maximum predicted concentrations of COIs are below their respective air quality objectives at special receptor locations except for PM_{10} . The maximum predicted Project Alone 15-minute average PM_{10} concentration is 126% of the Metrolinx mitigation threshold with a frequency of exceedance of no more than 39 hours over a 5-year period or approximately 0.09% of the time. The main contributor to PM_{10} emissions is construction dust.

Air Dispersion Modelling Impact Assessment August 24, 2023

6.1.3.2 Special Receptor Predictions - Cumulative Concentrations

The maximum cumulative concentrations of COIs are below their respective air quality objectives except for NO₂, PM₁₀, benzene and benzo(a)pyrene. As previously discussed, background annual benzene and 24-hour and annual benzo(a)pyrene concentrations are above their respective criteria with the Project having only a minor contribution to the cumulative levels.

The maximum predicted 1-hour average 98th percentile cumulative NO₂ concentration is 121% of the 2025 CAAQS and the maximum annual average cumulative concentration is 128% of the 2025 CAAQS. As construction activities are not anticipated to last longer than 18 months for the entire Project footprint, comparing the maximum model predictions to CAAQS that are based on 3-year averages is conservative. Ambient NO₂ levels from construction will be lower during periods when fewer construction vehicles or equipment are being operated concurrently than conservatively assumed in this assessment.

The maximum predicted 15-minute average cumulative PM_{10} concentration is 151% of the Metrolinx mitigation threshold, which is 25% higher than the Project Alone prediction that also exceeded the mitigation threshold.

Figure 6.3 graphically presents the relative contributions of Project Alone and Background concentrations to the maximum cumulative concentration of each COI that is predicted to be above an applicable air quality objective at a special receptor. Benzene, benzo(a)pyrene and annual NO₂ cumulative concentrations can be seen to be dominated by the background concentrations whereas 1-hour NO₂ and 15-minute PM_{2.5} cumulative concentrations are mainly due to the Project.

Air Dispersion Modelling Impact Assessment August 24, 2023

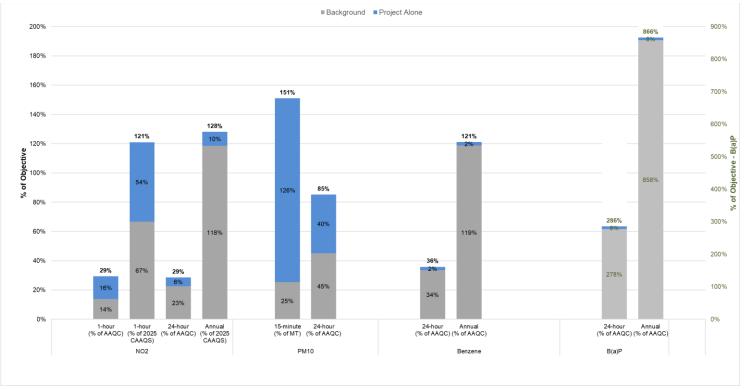
Contaminant	Averaging Period	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (μg/m ³)	Background Concentration (µg/m³)	Maximum Cumulative Concentration at Special Receptors (µg/m ³)	Air Quality Objective (μg/m³)	Source of Objective	Percentage of Objective (%) Project Alone	Percentage of Objective (%) Cumulative (Project + Background)
		140_S	62		118	400	AAQC	16%	29%
	1-hour ²	140 0	45	55	100	119	2020 CAAQS	38%	84%
NO		140_S	45		100	83	2025 CAAQS	54%	121%
NO ₂	24-hour	140_S	12	45	57	200	AAQC	6%	29%
	Appuol	E4 C	2.2	20	20	34	2020 CAAQS	7%	90%
	Annual	54_C	2.3	28	30	24	2025 CAAQS	10%	128%
00	1-hour	140_S	135	422	557	36,200	AAQC	0%	2%
CO	8-hour	140_S	69	402	472	15,700	AAQC	0%	3%
	10-minute	140_S	0.3	4.6	5	180	AAQC	0%	3%
						100	AAQC	0%	3%
SO ₂	1-hour	140_S	0.210	2.8	3	193	2020 CAAQS	0%	2%
						179	2025 CAAQS	0%	2%
						10	AAQC	0%	10%
	Annual	54_C	0.008	1	1	14	2020 CAAQS	0%	8%
						11	2025 CAAQS	0%	10%
TOD	24-hour	140_S	31.0	41	72.0	120	AAQC	26%	60%
TSP	Annual	54_C	4.67	24	28.8	60	AAQC	8%	48%
DM	15-minute	52_S	188.3	38	227	150	Metrolinx Mitigation Threshold	126%	151%
PM ₁₀	24-hour	140_S	20.0	23	43.0	50	AAQC	40%	85%
	15-minute	52_S	21.7	21	43	81	Metrolinx Mitigation Threshold	27%	52%
PM _{2.5}	24-hour	140_S	2.4	12	15	27	CAAQS	9%	54%
	Annual	54_C	0.41	7.2	8	8.8	CAAQS	5%	87%
	15-minute	52_S	9.6	7.4	17	25	Metrolinx Mitigation Threshold	39%	68%
Crystalline Silica	24-hour	140_S	1.02	2	3	5	AAQC	20%	61%
Design	24-hour	140_S	0.05	0.77	0.8	2.3	AAQC	2%	36%
Benzene	Annual	54_C	1.0E-02	0.53	0.5	0.45	AAQC	2%	121%
	24-hour	140_S	2.1E-03	0.08	0.08	10	AAQC	0%	1%
1, 3 Butadiene	Annual	140_S	4.1E-04	0.05	0.06	2	AAQC	0%	3%

Table 6.5: Summary of Construction Phase Air Dispersion Modelling Results at Special Receptors - Track and Grading Construction (west of Far

arewell Street to west of Harr	nony Road)
--------------------------------	------------

Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging Period	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (µg/m ³)	Background Concentration (µg/m³)	Maximum Cumulative Concentration at Special Receptors (µg/m ³)	Air Quality Objective (µg/m³)	Source of Objective	Percentage of Objective (%) Project Alone	Percentage of Objective (%) Cumulative (Project + Background)
	24-hour	140_S	4.2E-06	0.000139	0.000143	0.00005	AAQC	8%	286%
B(a)P	Annual	54_C	8.1E-07	0.000086	0.000087	0.00001	AAQC	8%	868%
Formaldehyde	24-hour	140_S	0.41	3	3.4	65	AAQC	1%	5%
	½-hour	140_S	0.9	9	9.9	500	AAQC	0%	2%
Acetaldehyde	24-hour	140_S	0.14	3	3.1	500	AAQC	0%	1%
A 1 .	1-hour	140_S	0.12	0.2	0.32	4.5	AAQC	3%	7%
Acrolein	24-hour	140_S	0.02	0.08	0.10	0.4	AAQC	6%	26%


Notes:

1. The maximum predicted concentration (meteorological anomalies included) is conservatively used for comparison to all Air Quality Objectives unless otherwise noted.

2. The 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations at a special receptor for comparison to the current (2020) and future (2025) CAAQS for 1-hour NO₂.

Air Dispersion Modelling Impact Assessment August 24, 2023

Figure 6.3: Comparison of Selected Construction Phase Cumulative COI Predictions to Air Quality Objectives - Track and Grading Construction (west of Farewell Street to west of Harmony Road)

Notes:

The maximum predicted concentrations (meteorological anomalies included) at special receptors are presented for comparison with Air Quality Objectives.

Air Quality Objectives:

AAQC - Ontario Ambient Air Quality Criteria

CAAQS - Canadian Ambient Air Quality Standards

MT - Metrolinx mitigation threshold

 \bigcirc

Air Dispersion Modelling Impact Assessment August 24, 2023

6.1.3.3 Gridded Receptor Predictions

Table 6.6 presents the dispersion modelling predictions for the trackwork and grading scenario with gridded receptors. The table presents the distances from the Project footprint where exceedances of an AQ objective are predicted to occur. The two COIs included in the table are predicted to have maximum GLCs above their AQ objectives at gridded receptor locations. All other contaminants and averaging periods are predicted to remain below their respective AQ objective.

Table 6.6:	Track and Grading Construction Scenario - Predicted Impact Zones
------------	--

COI	Averaging AQ Objective Period (μg/m ³)		Source of Objective	Distance from Project footprint (m)
NO ₂	1-hour	83	2025 CAAQS	10
DM	15-minute	150	Metrolinx Mitigation Threshold	30
PM ₁₀	24-hour	50	AAQC	5

6.1.4 Bridge Reconstruction - Simcoe Street Bridge

The maximum predicted Project Alone and cumulative COI concentrations for the Simcoe Street Bridge Reconstruction scenario are presented in Table 6.7. For this sub-Project location, modelling was conducted for the following two cases:

- 1. Bridge Reconstruction including Simcoe Street traffic being re-routed onto detour roads
- 2. Bridge Reconstruction without considering emissions from re-routed traffic detour roads

The results of the construction impact for Case 1 represents the worst-case construction scenario for the Simcoe Street Bridge Construction, whereas the construction impacts without detour roads (Case 2) predicts the impact of the bridge reconstruction equipment/activities alone. The results of Case 2 are used to predict the impacts of bridge reconstruction activities for the other bridge sub-Project locations.

6.1.4.1 Special Receptors Predictions - Project Alone

Maximum Project Alone 1-hour 98th percentile and annual average NO₂ concentrations are predicted to exceed the 1-hour and annual 2025 CAAQS by 46% and 11% respectively for Case 1. For Case 2, the predicted 1-hour 98th percentile concentration is 100% of the 1-hour CAAQS. It is expected that the maximum emissions scenario modelled for each Case will not occur consistently throughout the entire construction period. Ambient NO₂ levels from construction will be lower during periods when fewer

Air Dispersion Modelling Impact Assessment August 24, 2023

construction vehicles or equipment are being operated concurrently than that modelled. Additionally, as road reinstatement construction activities are not anticipated to last longer than 2 months at this site, comparing the 98th percentile model predictions to the CAAQS that are based on a 3-year average will be conservative.

The maximum predicted Project Alone 15-minute average PM₁₀ concentration is 144% of the Metrolinx mitigation threshold for Case 1 (including re-routed vehicle traffic) and 143% of the objective for Case 2 (construction activities without re-routed traffic emissions). The frequency of exceedance for either case is no more than 44 hours over a 5-year period or approximately 0.1% of the time. The main contributor to the maximum Project Alone PM₁₀ concentration is construction dust generated at the Simcoe Street Bridge reconstruction.

The maximum predicted 24-hour and annual average Project Alone benzo(a)pyrene concentrations for Case 1 (with traffic on detour roads) are 197% and 329% of their respective AAQC. For Case 2, which does not include emissions from detoured vehicle traffic the maximum predicted Project Alone concentrations are only 19% and 21% of the 24-hour and annual AAQCs. The main contributor to the Project Alone exceedances is from vehicles travelling on detour roads during the bridge closure. Construction vehicles operating at the Simcoe Street bridge are not predicted to cause benzo(a)pyrene exceedances at the special receptors for the Project Alone.

The maximum predicted concentrations for all other COIs and averaging periods for the Project Alone are below their AQ Objectives and mitigation thresholds.

6.1.4.2 Special Receptor Predictions - Cumulative Concentrations

As Project Alone NO₂ and PM₁₀ concentrations at some special receptors were predicted to exceed some AQ objectives, cumulative concentrations for these COIs also exceeded their objectives. For NO₂ the maximum predicted cumulative 1-hour and annual concentrations are 213% and 230% of the 2025 CAAQS for Case 1 (including detoured vehicle traffic) and 166% and 143% for Case 2 (excluding detoured vehicle traffic). For PM₁₀, the maximum cumulative 15-minute concentrations exceeded the Metrolinx mitigation threshold by about 70%.

Background annual benzene and 24-hour and annual benzo(a)pyrene cumulative concentrations are above their respective criteria, with the bridge reconstruction activities (not including detoured traffic) having only a minor contribution to the cumulative levels.

The maximum cumulative concentrations of the other COIs and averaging periods are below their AQ objectives or mitigation thresholds.

Air Dispersion Modelling Impact Assessment August 24, 2023

Figure 6.4 and Figure 6.5 graphically presents the relative contributions of Project Alone and Background concentrations to the maximum cumulative concentration of each COI that is predicted to be above an applicable air quality objective at a special receptor. For Case 1 (including re-routed vehicle traffic) and Case 2 (without re-routed vehicle traffic), benzene, benzo(a)pyrene and annual NO₂ cumulative concentrations can be seen to be dominated by the background concentrations whereas 1-hour NO₂ cumulative concentrations are mainly due to the operation of construction vehicles and equipment. 15-minute cumulative concentrations of PM₁₀ are similar for Case 1 and Case 2 and the predicted Project Alone exceedance is due to construction dust generation rather than re-routed vehicle traffic. Project Alone concentrations of benzene are identical for Case 1 and Case 2 since the main emissions source is the operation of construction vehicles and equipment.

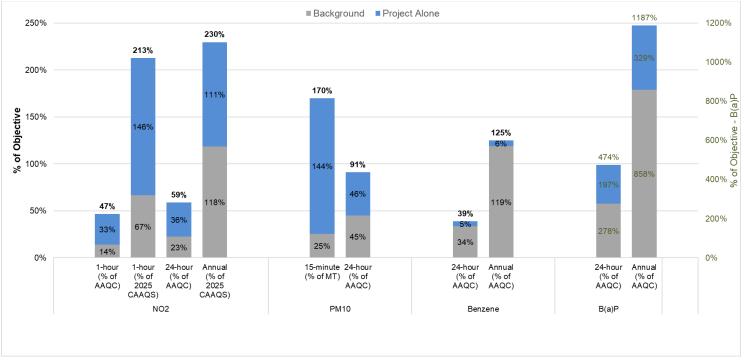
Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging Period	Location of Maximum Concentration Case 1	Location of Maximum Concentration Case 2	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (µg/m ³) Case 1	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (μg/m ³) Case 2	Background Concentration (µg/m ³)	Maximum Cumulative Concentration at Special Receptors (µg/m3) Case 1	Maximum Cumulative Concentration at Special Receptors (µg/m ³) Case 2	Air Quality Objective (µg/m³)	Source of Objective	Percentage of Objective (%) Case 1 Project Alone	Percentage of Objective (%) Case 1 Cumulative (Project + Background)	Percentage of Objective (%) Case 2 Project Alone	Percentage of Objective (%) Case 2 Cumulative (Project + Background)
		41_S	145_C	131	104		187	160	400	AAQC	33%	47%	26%	40%
	1-hour ²	41_S	145_C	121	83	55	177	138	119	2020 CAAQS	102%	148%	69%	116%
NO ₂		41_0	145_0	121	65			150	83	2025 CAAQS	146%	213%	100%	166%
1002	24-hour	180_S	145_C	72	27	45	117	72	200	AAQC	36%	59%	13%	36%
	Annual	44 6	145 0	00.7	5.0	20	55	24	34	2020 CAAQS	79%	162%	17%	101%
	Annual	41_S	145_C	26.7	5.9	28	55	34	24	2025 CAAQS	111%	230%	25%	143%
	1-hour	181_C	145_C	1262	301	422	1684	723	36,200	AAQC	3%	5%	1%	2%
СО	8-hour	181_C	145_C	1009	143	402	1411	545	15,700	AAQC	6%	9%	1%	3%
	10-minute	181_C	145_C	1.5	0.8	4.6	6	5	180	AAQC	1%	3%	0%	3%
									100	AAQC	1%	4%	0%	3%
	1-hour	181_C	145_C	0.894	0.479	2.8	4	3	193	2020 CAAQS	0%	2%	0%	2%
SO ₂									179	2025 CAAQS	0%	2%	0%	2%
									10	AAQC	2%	11%	0%	10%
	Annual	190_S	145_C	0.179	0.020	1	1	1	14	2020 CAAQS	1%	9%	0%	8%
									11	2025 CAAQS	2%	11%	0%	10%
TOD	24-hour	194_S	145_C	47.3	35.0	41	88.3	76.0	120	AAQC	39%	73%	29%	63%
TSP	Annual	194_S	145_C	15.08	5.19	24	39.1	29.2	60	AAQC	25%	65%	9%	49%
PM10	15-minute	145_C	145_C	216.7	214.9	38	255	253	150	Metrolinx Mitigation Threshold	144%	170%	143%	169%
	24-hour	145_C	145_C	23.0	22.8	23	46.0	45.8	50	AAQC	46%	91%	46%	91%

Table 6.7: Summary of Construction Phase Air Dispersion Modelling Results at Special Receptors - Simcoe Street - Bridge Replacement

Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging Period	Location of Maximum Concentration Case 1	Location of Maximum Concentration Case 2	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (μg/m ³) Case 1	Project Alone Maximum Predicted Concentration at Special Receptors ¹ (μg/m ³) Case 2	Background Concentration (µg/m³)	Maximum Cumulative Concentration at Special Receptors (µg/m3) Case 1	Maximum Cumulative Concentration at Special Receptors (µg/m ³) Case 2	Air Quality Objective (µg/m³)	Source of Objective	Percentage of Objective (%) Case 1 Project Alone	Percentage of Objective (%) Case 1 Cumulative (Project + Background)	Percentage of Objective (%) Case 2 Project Alone	Percentage of Objective (%) Case 2 Cumulative (Project + Background)
PM _{2.5}	15-minute	145_C	145_C	28.7	28.2	21	50	49	81	Metrolinx Mitigation Threshold	35%	61%	35%	60%
1 1112.5	24-hour	145_C	145_C	3.5	3.3	12	16	15	27	CAAQS	13%	58%	12%	57%
	Annual	145_C	145_C	1.17	0.61	7.2	8	8	8.8	CAAQS	13%	96%	7%	89%
Crystalline Silica	15-minute	145_C	145_C	10.8	10.8	7.4	18	18	25	Metrolinx Mitigation Threshold	43%	73%	43%	73%
	24-hour	145_C	145_C	1.14	1.13	2	3	3	5	AAQC	23%	64%	23%	64%
Deverse	24-hour	145_C	145_C	0.12	0.12	0.77	0.9	0.9	2.3	AAQC	5%	39%	5%	39%
Benzene	Annual	145_C	145_C	2.8E-02	2.6E-02	0.53	0.6	0.6	0.45	AAQC	6%	125%	6%	125%
1, 3	24-hour	180_S	145_C	7.1E-03	4.8E-03	0.08	0.09	0.08	10	AAQC	0%	1%	0%	1%
Butadiene	Annual	190_S	145_C	2.4E-03	1.0E-03	0.05	0.05	0.05	2	AAQC	0%	3%	0%	3%
	24-hour	185_S	145_C	9.8E-05	9.6E-06	0.000139	0.000237	0.000149	0.00005	AAQC	197%	474%	19%	297%
B(a)P	Annual	190_S	145_C	3.3E-05	2.1E-06	0.000086	0.000119	0.000088	0.00001	AAQC	329%	1189%	21%	879%
Formaldehyde	24-hour	145_C	145_C	0.94	0.93	3	3.9	3.9	65	AAQC	1%	6%	1%	6%
Apotoldobyda	½-hour	145_C	145_C	2.0	2.0	9	11.0	11.0	500	AAQC	0%	2%	0%	2%
Acetaldehyde	24-hour	145_C	145_C	0.32	0.32	3	3.3	3.3	500	AAQC	0%	1%	0%	1%
Acroloin	1-hour	145_C	145_C	0.27	0.27	0.2	0.47	0.47	4.5	AAQC	6%	10%	6%	10%
Acrolein	24-hour	145_C	145_C	0.05	0.05	0.08	0.13	0.13	0.4	AAQC	13%	33%	13%	34%


Notes:

1. The maximum predicted concentration (meteorological anomalies included) is conservatively used for comparison to all Air Quality Objectives unless otherwise noted.

2. The 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations at a special receptor for comparison to the current (2020) and future (2025) CAAQS for 1-hour NO₂.

Air Dispersion Modelling Impact Assessment August 24, 2023

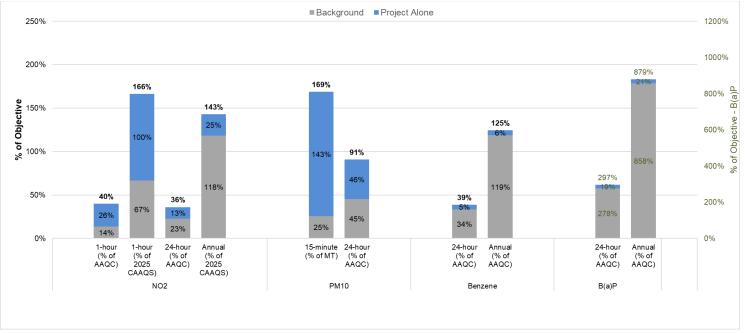
Figure 6.4: Comparison of Selected Construction Phase Cumulative COI Predictions to Air Quality Objectives - Simcoe Street Bridge Construction (Case 1)

Notes:

The maximum predicted concentrations (meteorological anomalies included) at special receptors are presented for comparison with Air Quality Objectives.

Air Quality Objectives:

AAQC - Ontario Ambient Air Quality Criteria


CAAQS - Canadian Ambient Air Quality Standards

MT - Metrolinx mitigation threshold

Air Dispersion Modelling Impact Assessment August 24, 2023

Figure 6.5: Comparison of Selected Construction Phase Cumulative COI Predictions to Air Quality Objectives - Simcoe Street Bridge Construction (Case 2)

Notes:

The maximum predicted concentrations (meteorological anomalies included) at special receptors are presented for comparison with Air Quality Objectives.

Air Quality Objectives:

AAQC - Ontario Ambient Air Quality Criteria

CAAQS - Canadian Ambient Air Quality Standards

MT - Metrolinx mitigation threshold

Air Dispersion Modelling Impact Assessment August 24, 2023

6.1.4.3 Gridded Receptor Predictions

Table 6.8 presents the dispersion modelling results of the gridded receptors for the Simcoe Street Bridge re-construction maximum emissions scenario (with standard mitigation measures). The table presents the distances from the Project footprint where exceedances of an AQ objective are predicted to occur for Case 2 (i.e., construction impacts without assessing vehicle emissions on detour roads). COIs included in the table are predicted to have maximum GLCs above their AQ objectives at gridded receptor locations. All other contaminants and averaging periods are predicted to remain below their respective AQ objective.

COI	Averaging Period	AQ Objective (µg/m³)	Source of Objective	Distance from Project footprint (m)
NO ₂	1-hour	83	2025 CAAQS	25
PM ₁₀	15-minute	150	Metrolinx Mitigation Threshold	20

 Table 6.8:
 Simcoe Street Bridge Construction Case 2 - Predicted Impact Zones

6.2 **Operations Phase**

Dispersion modelling analyses were conducted for emissions from the three scenarios for the operation phase: Baseline (2021), Future No Build (2031) and Future Build (2031). This section presents the results of those analyses. Dispersion model predictions at the identified special receptors for each COI were compared to the applicable Air Quality Objectives. Dispersion modelling of selected COIs over gridded receptors was also conducted to generate concentration contour plots.

The maximum Project Alone and cumulative concentrations of COIs for the Operations Phase are presented in Table 6.10 for the Baseline, Future No Build and Future Build Scenarios. The following sub-sections discuss the results of the dispersion modelling.

6.2.1 Project Alone Predictions - Special Receptors

The maximum predicted concentrations for all COIs and averaging periods for the Project Alone Baseline and Future No Build scenarios are below their AQ Objectives. The maximum Project Alone 1-hour average 98th percentile and annual NO₂ concentrations for both the Baseline and Future No Build scenarios are predicted to be 90% and 12% of the 2025 CAAQS, respectively.

Air Dispersion Modelling Impact Assessment August 24, 2023

For the Future Build scenario, the maximum Project Alone concentrations of all COIs and averaging periods other than NO₂ are predicted to increase relative to the Baseline and Future No Build scenarios, but remain below their AQ Objectives. The maximum predicted 1-hour average 98th percentile and annual NO₂ concentrations are predicted to exceed the 2025 CAAQS by 145% and 6%, respectively.

6.2.2 Cumulative Concentration Predictions - Special Receptors

When background concentrations are added to the Project Alone predictions, the following observations can be made:

- Cumulative NO₂ concentrations at 127 of 171 special receptors located in Oshawa segment are predicted to exceed the 1-hour and annual 2025 CAAQS by a maximum of 96% and 122%, respectively, but remain below the Ontario NO₂ AAQC.
- Cumulative annual average benzene and 24-hour and annual average benzo(a)pyrene concentrations in Oshawa segment are above their respective criteria by 30%, 248% and 844%, respectively, with the Project having only a minor contribution (<20%) to the cumulative levels.
- Cumulative NO₂ concentrations at 39 of 39 special receptors located in Courtice segment are predicted to exceed the 1-hour and annual 2025 CAAQS by a maximum of 150% and 83%, respectively, but remain below the Ontario NO₂ AAQC.
- Cumulative annual average benzene and 24-hour and annual average benzo(a)pyrene concentrations in Courtice segment are above their respective criteria by 24%, 193% and 777%, respectively, with the Project having only a minor contribution (<5%) to the cumulative levels.
- Cumulative NO₂ concentrations at 56 of 56 special receptors located in Bowmanville are predicted to exceed the 1-hour and annual 2025 CAAQS by a maximum of 212% and 125%, respectively, but remain below the Ontario NO₂ AAQC.
- Cumulative annual average benzene and 24-hour and annual average benzo(a)pyrene concentrations in Bowmanville segment are above their respective criteria by 32%, 252% and 818%, respectively, with the Project having only a minor contribution (<21%) to the cumulative levels.
- The maximum predicted cumulative concentrations of the other COIs at all three segments are below their AQ objectives for the Existing, Future No Build and Future Build scenarios.

Air Dispersion Modelling Impact Assessment August 24, 2023

Figure 6.6 graphically presents the relative contributions of Project Alone (blue portion of each bar) and Background concentrations (grey portion of each bar) to the maximum Future No Build and Future Build cumulative concentrations of each COI that is predicted to be above an applicable air quality objective at a special receptor. As discussed above, benzene, benzo(a) pyrene and annual NO₂ cumulative concentrations can be seen to be dominated by the background concentrations.

6.2.3 Gridded Receptor Predictions

Table 6.9 presents the dispersion modelling results of the gridded receptors for the operation scenario. The table presents the location of the maximum concentrations and distances from the Project footprint where exceedances of the 1-hour NO₂ CAAQS are predicted to occur based on the 1-hour 98th percentile NO₂ concentration contour plots for the Oshawa, Courtice and Bowmanville segments presented in Appendix F. COIs included in the table are predicted to have Project Alone maximum GLCs above their AQ objectives at gridded receptor locations. All other contaminants and averaging periods are predicted to remain below their respective AQ objective.

It should be noted that the 1-hour and 24-hour Project Alone and cumulative NO₂ concentrations for the Baseline, Future No Build and Future Build scenarios are predicted to be below the AAQC which are currently used by the MECP. The NO₂ CAAQS have not been adopted as an AAQC in Ontario and are intended for regional air quality planning rather than assessing the local impacts of individual projects.

COI	Averaging Period	AQ Objective (µg/m³)	Operation Model Segment	Predicted Maximum Location	Distance from Project footprint (m)
NO ₂	1-hour	83	Oshawa	B2 GO Station	43
		(2025 CAAQS)	Courtice	B3 GO Station	>500
			Bowmanville	B4 GO Station	250

Table 6.9:	Operation - Predicted Impact Zones
------------	---

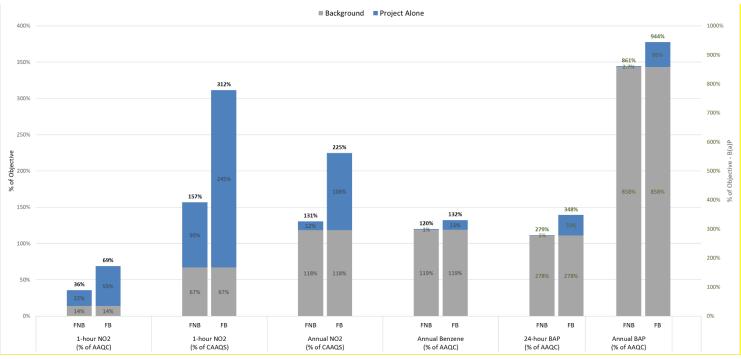
Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging	Background	Air	Source of		Baseline/Fut	ure No Build Sce	nario			Future	Build Scenario		
	Period	Concentration	Quality Objective	Objective	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration	Maximum Cumulative Concentration		centage of jective (%)	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration	Maximum Cumulative Concentration		centage of ective (%)
		(µg/m³)	(µg/m³)			(µg/m³)	(µg/m³)	Project Alone	Cumulative (Project + Background)	-	(µg/m³)	(µg/m³)	Project Alone	Cumulative (Project + Background)
			400	AAQC	100_S	88	143	22%	36%		220	275	55%	69%
	1-hour ²	55	119	2020 CAAQS	80_S	75	130	74%	109%	POR079	203	259	171%	217%
			83	2025 CAAQS	00_5	75	130	90%	157%	POR079	203	259	245%	312%
NO ₂	24-hour	45	200	AAQC	93_S	11	56	5%	28%	POR079	91	136	45%	68%
	Annual	28	34	2020 CAAQS	POR062	3	31	9%	92%	POR079	25	54	75%	159%
	Annual	20	24	2025 CAAQS	POR002	5	51	12%	131%	POR079	25	54	106%	225%
СО	1-hour	422	36,200	AAQC	POR080A	180	602	0.5%	2%	35_S	362	784	1.0%	2%
0	8-hour	402	15,700	AAQC	POR080A	101	503	0.6%	3%	35_S	226	629	1.4%	4%
	10-minute	4.6	180	AAQC	78_S	0.63	5	0.3%	3%	POR079	1.50	6	0.8%	3%
			100	AAQC				0.3%	3%				0.9%	4%
	1-hour	2.8	193	2020 CAAQS	78_S	0.38	3	0.2%	2%	POR079	0.91	4	0.5%	2%
SO ₂			179	2025 CAAQS				0.2%	2%				0.5%	2%
			10	AAQC				<0.1%	10%				0.5%	10%
	Annual	1.0	14	2020 CAAQS	POR062	0.0078	1	<0.1%	8%	35_S	0.057	1	0.4%	8%
			11	2025 CAAQS				<0.1%	10%				0.5%	10%
700	24-hour	41	120	AAQC	POR080A	3	43.4	2.2%	36%	POR079	6.9	47.6	5.8%	40%
TSP	Annual	24	60	AAQC	POR080A	0.48	24.6	0.8%	41%	POR079	1.41	25.5	2.3%	43%
PM ₁₀	24-hour	23	50	AAQC	POR080A	0.63	23.2	1.3%	46%	POR079	4.83	27.4	9.7%	55%
	24-hour	12	27	CAAQS	POR080A	0.23	12	0.8%	46%	POR079	4.26	16	15.8%	61%
PM _{2.5}	Annual	7.2	8.8	CAAQS	POR080A	0.055	7	0.6%	83%	POR079	0.732	8	8.3%	91%
Benzene	24-hour	0.77	2.3	AAQC	POR080A	0.020	0.8	0.9%	34%	POR079	0.345	1.1	15.0%	49%

Table 6.10: Summary of Operations Phase Air Dispersion Modelling Results at Special Receptors – DC Oshawa GO to Bowmanville

Air Dispersion Modelling Impact Assessment August 24, 2023

Contaminant	Averaging	Background	Air	Source of		Baseline/Fut	ure No Build Sce	nario			Future	Build Scenario		
	Period	Concentration	Quality Objective	Objective	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration	Maximum Cumulative Concentration		centage of ective (%)	Location of Maximum Concentration	Project Alone Maximum Predicted Concentration	Maximum Cumulative Concentration		centage of jective (%)
		(µg/m³)	(µg/m³)			(µg/m³)	(µg/m³)	Project Alone	Cumulative (Project + Background)	•	(µg/m³)	(µg/m³)	Project Alone	Cumulative (Project + Background)
	Annual	0.53	0.45	AAQC	POR080A	0.0048	0.5	1.1%	120%	POR079	0.060	0.6	13.4%	132%
1, 3	24-hour	0.082	10	AAQC	POR080A	0.0029	0.08	<0.1%	1%	POR079	0.012	0.09	0.1%	1%
Butadiene	Annual	0.055	2	AAQC	POR080A	0.00047	0.06	<0.1%	3%	POR079	0.0021	0.06	0.1%	3%
	24-hour	0.000139	0.00005	AAQC	POR080A	1.51E-05	1.54E-04	30.2%	308%	POR079	3.70E-05	1.76E-04	74.0%	352%
B(a)P	Annual	0.000086	0.00001	AAQC	POR080A	2.25E-06	8.81E-05	22.5%	881%	35_S	8.55E-06	9.44E-05	85.5%	944%
Formaldehyde	24-hour	3	65	AAQC	100_S	0.091	3.2	0.1%	5%	POR079	1.83	4.9	2.8%	8%
A s s t s l s l s h s s s l s	½-hour	9	500	AAQC	78_S	0.67	9.9	0.1%	2%	POR079	3.52	12.8	0.7%	3%
Acetaldehyde	24-hour	3	500	AAQC	100_S	0.032	3.2	<0.1%	1%	POR079	0.65	3.8	0.1%	1%
Aeroloin	1-hour	0.20	4.5	AAQC	78_S	0.10	0.30	2.2%	7%	POR079	0.52	0.72	11.6%	16%
Acrolein	24-hour	0.082	0.4	AAQC	100_S	0.0058	0.09	1.4%	22%	POR079	0.12	0.20	29.3%	50%


Notes:

1. The maximum predicted concentration (meteorological anomalies included) is conservatively used for comparison to all Air Quality Objectives unless otherwise noted.

2. The 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations at a special receptor for comparison to the current (2020) and future (2025) CAAQS for 1-hour NO₂.

Air Dispersion Modelling Impact Assessment August 24, 2023

Figure 6.6: Comparison of Selected Operation Phase Cumulative COI Predictions to Air Quality Objectives – DC Oshawa GO to Bowmanville

Notes:

The maximum predicted concentrations (meteorological anomalies included) at special receptors are presented for comparison with Air Quality Objectives.

Air Quality Objectives:

AAQC - Ontario Ambient Air Quality Criteria

CAAQS - Canadian Ambient Air Quality Standards

FNB - Future No Build

FB - Future Build

Greenhouse Gas Impact Assessment August 24, 2023

7.0 Greenhouse Gas Impact Assessment

Emissions of GHGs act cumulatively in the atmosphere on a global scale to affect climate change. Because the effect on climate change from the contribution of a single project cannot be accurately measured or attributed, it is not reasonable to determine the significance of residual impacts on atmospheric GHG concentrations or climate change from a single project's GHG emissions. Instead, evaluation of Project impacts focuses on estimation of GHG releases, mitigation, and evaluation of Project GHG releases in relation to provincial, national and sector-based GHG totals and the Government of Canada's and Ontario's GHG reduction targets, following the guidance in ECCC's Strategic Assessment of Climate Change (ECCC 2020a) and guidance from the MECP's Considering Climate Change in the Environmental Assessment Process (MECP 2017a).

7.1 Direct GHG Emissions During Construction

Direct GHG emission sources during construction include combustion of fossil fuels in vehicles and equipment used in Project construction. GHG emissions for Project construction were estimated for each year of construction, based on typical on-road and off-road equipment, assumed equipment operating loads (FHWA 2006), equipment percent operating time and a preliminary construction schedule (Stantec 2021). ECCC emission factors for CO₂, CH₄, and N₂O due to diesel combustion were applied (ECCC 2022).

The estimated annual direct GHG emissions from Project construction are 4.1 kt CO₂e and is presented in Table 7.1. Detailed emissions calculations for each year of construction are presented in Appendix G.

The 2020 Canada, Ontario and sector (ECCC - Transportation) GHG emission totals are used as a comparison to the predicted Project construction GHG emissions and are presented in Table 7.2 and Table 7.3. Annual direct Project construction GHG emissions represent 0.003% of Ontario's total annual emissions, 0.001% of Canada's total annual emissions, 0.002% of the Canadian annual transportation sector emissions, and 0.008% of the Ontario annual transportation sector emissions.

Greenhouse Gas Impact Assessment August 24, 2023

Table 7.1: Estimated Direct GHG Emissions from Project (Construction)

Source		Emissions (kt/y)								
	CO ₂	CH₄	N ₂ O	CO ₂ e						
On-road and off-road construction equipment	2.83	1.48E-04	8.67E-05	4.1						

Table 7.2:Comparison of Estimated Direct GHG Emissions from Project
(Construction) to National Baseline and Target Levels

Ca	nada		idian Sector Transportation)	Canada's 2030 GHG Reduction Target			
CO₂e kt/y)	-		Project Contribution (%)	CO₂e kt/y)	Project Contribution (%)		
672,000	0.001%	190,000	0.002%	401,000	0.001%		

Table 7.3:Comparison of Estimated Direct GHG Emissions from Project
(Construction) to Provincial Baseline and Target Levels

On	itario		rio Sector ansportation)	Ontario's 2030 GHG Reduction Target			
CO₂e kt/y)	Project Contribution (%)	CO₂e kt/y)	Project Contribution (%)	CO₂e kt/y)	Project Contribution (%)		
150,000	50,000 0.003%		0.008%	143,000	0.003%		

7.2 Direct GHG Emissions During Operation

Sources of direct GHG emissions during operation include trains, buses and stationary fuel combustion equipment burning hydrocarbon fuel.

The estimated Project GHG emissions during operation are 14.7 kt CO₂e per year (Table 7.4).

The 2020 Canada, Ontario and sector (ECCC - Transportation) GHG emission totals are used as a comparison to the predicted Project GHG emissions during operation and are presented in Table 7.5 and Table 7.6. Direct Project GHG emissions from operation represent 0.009% of Ontario's total annual emissions, 0.002% of Canada's total annual emissions, 0.008% of the Canadian annual transportation sector emissions and 0.03% of the Ontario annual transportation sector emissions.

Greenhouse Gas Impact Assessment August 24, 2023

Source		Emissio	ons (kt/y)	
	CO ₂	CH₄	N ₂ O	CO ₂ e
Diesel Trains	12.14	6.75E-04	4.66E-03	13.55
Diesel Bus	1.14	5.96E-05	3.49E-05	1.15
Stationary combustion	5.08E-03	1.38E-07	4.17E-08	5.10E-03
Total	13.29	7.35E-04	4.70E-03	14.71

Table 7.4: Estimated Direct GHG Emissions from Project (Operation)

Table 7.5:Comparison of Estimated Direct GHG Emissions from Project
(Operation) to National Baseline and Target Levels

Ca	inada		n Sector (ECCC sportation)	Canada's 2030 GHG Reduction Target			
CO₂e kt/y)	Project Contribution (%)	CO₂e kt/y)	Project Contribution (%)	CO₂e kt/y)	Project Contribution (%)		
672,000	0.002%	190,000	0.008%	401,000	0.004%		

Table 7.6:Comparison of Estimated Direct GHG Emissions from Project
(Operation) to Provincial Baseline and Target Levels

Ontario		Ontario Sector (ECCC Transportation)		Ontario's 2030 GHG Reduction Target	
CO₂e kt/y)	Project Contribution (%)	CO₂e kt/y)	Project Contribution (%)	CO₂e kt/y)	Project Contribution (%)
150,000	0.0098%	52,200	0.03%	143,000	0.01%

7.3 Third Party (Indirect) Emissions During Operations

Sources of indirect GHG emissions are from the additional electricity consumption required to operate the stations and the two wayside power cabinets. The estimated third-party GHG emissions from electricity consumption is 0.4 kt CO₂e per year (Table 7.7). This is based on grid GHG intensity from 2020 in Ontario. As the intensity of electricity is expected to decline over time, these indirect emissions would also decline.

Greenhouse Gas Impact Assessment August 24, 2023

Annual Electricity Consumption (kWh)	Electricity Consumption Emission Factor (g CO2e/kWh)	Indirect Emissions (kt CO2e/y)
13,866,496	28	0.4

Table 7.7: Estimated Project Indirect GHG Emissions (Operation)

7.4 Assessment of Cumulative Impacts

Cumulative impacts associated with the releases of GHGs are a global issue and are not limited to provincial or national borders. The GHG sources, sinks, and reservoirs around the world contribute to the cumulative effect. The Intergovernmental Panel on Climate Change (IPCC) forecasts global GHG emissions in various scenarios and determines the impacts of the forecasts. The detailed assessment of cumulative impacts to climate change is beyond the scope of this Project; however, based on the small magnitude of GHG emissions from the Project as compared to Ontario and Canadian totals, the contribution is considered negligible.

7.5 Determination of Significance and Prediction Confidence

Because the effect on climate change from the contribution of any single project cannot be accurately measured or attributed, it is not reasonable to determine the significance of residual impacts on climate change from a single project's GHG emissions. Instead, evaluation of Project residual impacts focuses on estimation of GHG releases, mitigation, and evaluation of Project GHG releases in relation to provincial, national and sector based GHG totals and the federal and provincial GHG reduction targets. The quantitative assessment has been conducted with the latest information available at the time of the study using conservative approaches and assumptions where detailed information was not available and is therefore expected to provide conservative estimates of GHG emissions.

At the time of this study, the construction project is still in the preliminary planning stages and details regarding construction activities, schedule, and operations are limited. Assumptions used in the GHG assessment were based on information available at the time of the study and best estimates. If the actual construction and operations differ significantly from the emissions scenario parameters and assumptions used in this study, the GHG impacts of the Project should be re-assessed.

Greenhouse Gas Impact Assessment August 24, 2023

7.6 The Project and Canada's Efforts to Reduce GHG Emissions

The Project will release GHG emissions during the construction and operation phases. The GHG emissions from Project operation will be accounted for in annual provincial and federal GHG totals.

Direct and indirect GHGs released by the Project during operation are estimated to be 14.7 and 0.4 kt CO₂e/year, respectively, which is 0.004% of the Government of Canada's emission target in 2030. The preliminary GHG emissions are estimated assuming that diesel locomotives will be used for the 60-year lifecycle of the Project and is conservative as electric vehicles will be considered as technologies improve.

Metrolinx (2022c) predicts that during operation, the Project could reduce private automobile vehicle kilometers travelled by up to 31 million km per year, corresponding to a reduction in GHG emissions of 6.4 kt CO₂e per year. The reduction is estimated using a Canada specific average fuel consumption emission factor per kilometer travelled for light duty vehicles (IEA 2019). It is expected that over time, more electric vehicles will be deployed in the area and the electricity GHG intensity will decline, leading to less GHG savings from the project annually over time.

There is therefore expected to be a small net increase in GHG emissions as a result of the operation of the Project. The operation of the Project is therefore not expected to help the Government of Canada to meet it's 2030 GHG emissions target.

Effects Assessment August 24, 2023

8.0 Effects Assessment

The following sections provide an indication of the anticipated potential effects associated with construction and operation of the Project. Section 8.1 presents potential effects, recommended mitigation and monitoring measures for each phase of the construction and operations for the overall Project, while Section 8.2 provides additional considerations for mitigation and monitoring for each specific Project location.

8.1 Potential Effects, Mitigation and Monitoring

Based on the results of the dispersion modelling assessment, potential air quality exceedances were identified if the maximum construction and operations emissions scenario assumed for the modelling was to occur and coincide with worst-case meteorology.

Scheduling construction activities to avoid the maximum emissions scenario occurring (i.e., reducing the number of activities/equipment operating concurrently as much as possible) will aid in reducing the potential for adverse effects. Additionally, mitigation measures have been identified in this section to avoid or reduce potential adverse effects. The suggested monitoring activities are to confirm that the Project is executed as proposed and that mitigation measures are effectively implemented. The mitigation and dust control measures will conform to recognized standard specifications such as Best Practices for the Reduction of Air Emissions from Construction and Demolition Activities (Cheminfo Services Inc. 2005), and the Draft Metrolinx Guide (Metrolinx 2019a).

Recommended mitigation measures for each potential effect for construction and operation are discussed in Table 8.1 below.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Mitigation Measures	
Construction		•	
Construction Construction - Planning	Construction-related air pollution may pose risks to human health and wellbeing	 Prior to commencement of construction, develop and submit a detailed Construction Air Quality Management Plan (AQMP) to Metrolinx. Implement the AQMP after receipt of approval from Metrolinx. The AQMP will: Identify specific air quality objectives relevant to the Project identified in this Air Quality Study and as outlined in the Metrolinx <i>Environmental Guide for Air Quality and Greenhouse Gas Emissions Assessment</i> (2019). Define the Project's air quality impact zone and identify all sensitive/critical receptors within this area. 	 Develop and su Air Quality Mon after receipt of WAQMR will do conducted and unacceptable ra considerations: The constr are in the
		 Include requirements for assessing baseline air quality by continuous measurement of local ambient concentrations of PM_{2.5} and PM₁₀ over a minimum period of one week, for locations where large local sources of pollution (such as highways), directly affect air quality in the zone of influence of the Project. 	construction matter of I Other con oxides of I
		 Estimate and document the predictable worst-case air quality impacts of the Project on sensitive/critical receptors within the air quality impact zone, develop appropriate mitigation measures for each relevant construction activity, describe how to record and demonstrate their effectiveness, and commit to their timely implementation. 	with any a of the wor – Criteria for Metrolinx's
		 Include requirements for continuously monitoring PM_{2.5} and PM₁₀ and for monitoring any other contaminant that is predicted to exceed its relevant air quality objective during any phase of the Project and at any receptor (utilizing continuous monitoring where available or non- continuous monitoring otherwise). 	Greenhou applicable AAQC and The WAQMR – planned co – daily docu Health Ind
		 Establish specific protocols for action items when relevant air quality objectives are exceeded, including an investigation procedure when exceedances are identified, determining mitigation measures and timeframes for their implementation. 	
		 Specify reporting requirements and timeframes, including reporting any exceedance of a continuously monitored ambient air quality objective at any location to Metrolinx within a one hour (or a timeframe established in AQMP) of the occurrence; reporting an exceedance of a non-continuously monitored contaminant within 24-hours of receipt of the data. 	Health Ad – measured and
		 Establish specific protocols for documenting, reporting and addressing public complaints. Establish a communication protocol with nearby sensitive/critical receptors to provide alerts when monitoring indicates that air contaminant concentrations may be elevated for a prolonged period of time (e.g., over 8 hours), and also provide guidance on methods to minimize exposure (e.g., remaining indoors with windows closed during periods of adverse air quality, ensure heating, ventilation and air conditioning (HVAC) systems are maintained following manufacturer's recommendations, etc.) 	 documenta conditions air quality actions/mi implement
		• Include an explicit commitment to the implementation of the applicable best practices identified in the Environment Canada document, <i>Best Practices for the Reduction of Air Emissions from Construction and Demolition Activities</i> (2005).	Siting of the all guidelines pro Conservation
		care facilities, schools, residences) that may be impacted by construction-related air emissions.	Monitoring in construction, c baseline air qu
		• Prior to construction, select methods, operations, materials and equipment to minimize air pollution. Plan the layout of construction sites, including access roads, site entrances/exits, staging and laydown areas to minimize air quality impacts at adjacent sensitive/critical receptors.	two monitoring assess backgr the active cons

Table 8.1: Summary of Potential Effects, Mitigation and Monitoring for All Project Locations

Monitoring Activities

submit to Metrolinx for approval a template for Weekly onitoring Reports (WAQMR). Implement the WAQMR of approval from Metrolinx and start of construction. The document how air quality monitoring has been and compliance assessed to effectively prevent e rates of air emissions in accordance with the following as:

struction related air contaminants of primary concern e form of particulate matter, with the principal tion related fractions of PM_{2.5} and PM₁₀ - particulate f less than 2.5 and 10 micron in diameter, respectively. Intaminants of concern include crystalline silica and f nitrogen. The list of contaminants will be expanded and all air pollutants that may be produced as a result ork.

for PM_{2.5}, PM₁₀ and crystalline silica are provided in x's *Environmental Guide for Air Quality and* buse Gas Emissions Assessment (2019). The other le objectives for air contaminants of interest include the nd CAAQS.

R shall include:

construction activities;

cumentation of weather forecasts, and any Air Quality ndex/Special Air Quality Statements/Smog and Air dvisory issued by ECCC or MECP;

ed wind conditions by an on-site meteorological station;

ntation of observations of on-site activities and ns, monitoring activities, any exceedances of applicable ty objectives and mitigation thresholds, remedial mitigation measures as well as observations after entation of mitigation measures.

air quality monitors should generally follow the rovided in the Ministry of the Environment, in and Parks (MECP) *Operations Manual for Air Quality o Ontario* (2018) as much as practicable. For pre-, only one location needs to be monitored to establish quality levels. During construction, ideally a minimum of ing locations should be used, one located upwind to ground concentrations and one located downwind of instruction zone.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Mitigation Measures				
Construction - Site Preparation	 Grade preparation (such as earth moving activities, excavation, soil stripping, clearing and grubbing, backfilling, landscaping) related dust 	Grade construction site in phases to maintain vegetation and cover intact until just prior to construction.	For Project lo (i.e., less than construction z recommended			
	emissions may pose risks to human health and wellbeing	Use temporary wind fencing (windbreaks and/or fabric fences) for projects with a fixed geographical location and duration of over one year. Fencing should be 1-2 metres high, have a 50% or less porosity, should be maintained in an upright and functional condition, and should be periodically washed to maintain effectiveness.	Continuous m locations upw modelling res AAQC at a cri (refer to Table considered at Monitoring sh start of any co continue throu active constru monitoring eq			
		Apply water (or approved chemical dust suppressant) in sufficient quantity to prevent generation of dust plumes. Frequency of water/dust suppressant application will depend on ambient conditions (wind/humidity), effectiveness of the suppressant, and the construction activities. If using water, it should be applied more than twice a day during dry/windy conditions.	 In addition to mitigation thre monitoring. The Objectives to in AQMP) of reveedance of contractor sha If the cause is required. If it activities, miti When the 15- 20% during tw stop the opera- mitigation, an 			
		• When using chemical suppressants, MECP recommends use of non-chloride dust suppressants.	All monitoring times.			
				Compact and stabilize disturbed soil throughout the constru	Compact and stabilize disturbed soil throughout the construction site.	• As part of the the calibration
		Maintain stability of soil through pre-watering prior to clearing and grubbing as well as cut and fill activities and stabilize soil during and immediately after.	 Real-time por as DustTrak^{TT} Monitor or eq average read should include and direction) power/battery mitigation three 			
		Stabilize surface soils where trencher, excavator or support equipment will operate and at the completion of trenching operations.	Preparation a air quality mo effectiveness			
		Maintain soil moisture content at a minimum of 12% for all earthmoving activities, as measured by the ASTM D-2216 method or equivalent.	Document an reports to Me			

Monitoring Activities

ocations that are considered short-duration projects an 30 days), periodic opacity monitoring at the active zone boundary and at closest sensitive receptor is ed where there is a predicted exceedance of an AAQC.

monitoring of PM_{10} and $PM_{2.5}$ is recommended at wind and downwind of the active construction zone. If sults predict PM_{10} and/or $PM_{2.5}$ may exceed the 24-hour ritical receptor that is located within the impact zone le 8.2), an additional monitoring station should be at the closest critical receptor to the construction zone. hould commence for more than one week prior to the construction activities to establish pre-Project levels and bugh the active phase of the construction project. As the ruction zone moves or changes, the locations of the quipment will follow to maintain relevance.

the AAQC and CAAQS, the 15-minute Metrolinx reshold should be applied to PM₁₀ and PM_{2.5} The contractor shall report any exceedance of AQ o Metrolinx within one hour (or a timeframe established reported exceedance. If monitoring results indicate of the 15-minute Metrolinx mitigation threshold, the nall investigate the potential cause for the exceedance. is known to be unrelated to the Project, no action is a suspected that the exceedance is due to Project tigation actions (per AQMP) shall be implemented. 5-minute mitigation threshold is exceeded by more than two consecutive 15-minute periods, the contractor shall ration that is likely causing the exceedance, implement nd resume only after Metrolinx approval.

ng results shall be made available to Metrolinx at all

e monitoring program, the Contractor shall arrange for on of the instruments

ortable, continuous ambient particulate monitors (such [™] DRX Aerosol Monitor 8533 or E-Sampler Particulate quivalent) configured to record 15-minute and hourly dings for PM₁₀ and PM_{2.5} are recommended. Contractor de meteorological station (for measuring wind speed h) and datalogger/modem for downloading data, ry source, and capability to send alarm notifications at resholds.

and submission of WAQMRs to Metrolinx to document onitoring activities, assessment of compliance and s of mitigation activities.

nd monitor public complaints and provide monthly etrolinx for review.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Mitigation Measures	
		• Apply non-toxic chemical stabilizers within 5 working days of grading or apply water to at least 80% of all inactive disturbed surfaces on a daily basis when there is evidence of wind driven fugitive dust.	
		• Stabilize surfaces of completed earthworks with stone/soil/geotextiles within 10 days or vegetation within 21 days after active operations have ceased.	
		• On the last day of active operations prior to an inactive period of 4 or more days, disturbed surface areas should be stabilized with stabilizer diluted with water to not less than 1/20 of the concentration needed to maintain a stabilized surface for a period of 6 months or apply stabilizer prior to a wind event or apply water to all unstabilized surfaces 3 times per day or any combination of the above that will ensure compliance with the 20% maximum opacity criterion at all times (Metrolinx, 2019a).	
		 Based on available information, construction activities in this assessment were assumed to occur from 8 a.m. to 5 p.m. Monday to Friday. Construction during nighttime or weekends should be limited as much as possible and should occur only for essential high priority activities. If the construction schedule is different from that assumed in this report, the Contractor should provide/present that schedule and specific mitigation measures to Metrolinx well in advance for consideration. The Contractor will review air quality monitoring results continuously to ensure that air contaminant concentrations are below the applicable AQ Objectives and mitigation thresholds. If monitoring results indicate exceedance of AQ Objectives and mitigation thresholds, the Contractor should re-assess the construction activities and schedule, and plan to reduce these activities to the point where measured concentrations do not exceed the AQ Objectives and thresholds. 	
Construction - Demolition and	Demolition and deconstruction related dust emissions may pose risks to	Stabilize wind erodible surfaces, surfaces where equipment and vehicles will operate, and loose soil and demolition debris	See Construction recommendation
Deconstruction	human health and wellbeing	Deconstruct rather than demolish	
		Minimize drop heights for debris during demolition and loading	
		Enclose chutes and cover bins	
		Use fogging systems	
		Avoid blasting	
		Vacuum debris	
Construction -	• Dust emissions related to screening	Pre-water material before screening and immediately after screening	See Construction
Screening	activities may pose risks to human health and wellbeing	• Limit fugitive dust to the opacity standard of 20% over 3 minutes in any 60-minute period	recommendatio
Construction -	Dust emissions from storage piles	Conduct storage pile activities on the downwind side of the storage pile	See Construction
Storage Piles	may pose risks to human health and wellbeing	Use enclosures/coverings or wind fences/screens/vegetation as wind breaks or apply chemical stabilizers/water to at least 80% of the surface area of the pile on a daily basis when there is evidence of wind driven fugitive dust	recommendatic
		• Stockpiles within 30 m of offsite occupied buildings must not be greater than 3 m in height or must have a road bladed to the top to allow water truck access or must have an operational water irrigation system that is capable of complete stockpile coverage	
Construction -		Apply water to soil not more than 15 minutes prior to moving	See Construction
Material		Stabilize material while loading, transporting, and unloading	recommendatio

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Mitigation Measures	
Handling and	• Material handling and transfer related	Maintain at least 15 cm of freeboard on haul vehicles	
Transfer	dust emissions may pose risks to human health and wellbeing	Limit material drop heights to 2 metres at transfer points and use enclosures wherever practical	-
	numan neath and weibeing	Secure and cover loads on haul trucks	-
		Minimize material handling operations, particularly under windy conditions	-
		When instantaneous wind gusts exceed 50 km/h, the frequency of watering will be increased, or other additional fugitive dust mitigation measures will be implemented	
		• When instantaneous wind gusts exceed 50 km/h and fugitive dust cannot be curtailed to achieve the 20% maximum opacity criterion, even with additional dust mitigation, construction activities on unpaved surfaces shall be discontinued	
		During sustained winds (3 minutes over a 60-minute period) exceeding 30km/h, earth moving activities will be ceased	
Construction -	Dust emissions related to	Establish on-site vehicle restrictions	See Construct
Road Surfaces within and	resuspension of dust on paved or unpaved road surfaces may pose	Apply and maintain surface improvements to unpaved road surfaces	recommenda
around Construction Sites	risks to human health and wellbeing • Minimize fugitive dust from de-icing operations by minimizing use of de-icers through carefu	planning, minimizing silt content and silt formation, plowing instead of sanding, and sweeping up	
		Stabilize all off-road traffic and parking areas as well as haul routes	
		Direct construction traffic over established haul routes	
		• Water all unpaved roads under active use by vehicle traffic 3 times per 8-hour work period or restrict vehicle speeds to 20 km/h or apply chemical stabilizer in sufficient quantity and frequency to maintain a stabilized surface	
		Place gravel on access road approaches and track-out control devices such as shaker plates at the intersection of unpaved access roads and paved roads	
		• Conduct a visual inspection of vehicle wheels and wheels of the equipment loaded upon each vehicle to assess the presence of dirt. If caked dirt or mud is present, it shall be removed to the extent feasible	
		• Track-out onto adjacent public roads shall be removed at the conclusion of the workday or evening shift with water sweepers if visible soil material from the construction site or unpaved access road is observed	
		Track-out onto paved roads that exceeds 10 metres in length shall be removed immediately]
Construction - Staging and Laydown Sites	• Dust emissions related to dust emissions in staging and laydown sites may pose risks to human health and wellbeing	Stabilize staging areas during use and at project completion	See Construct recommendation
Construction - On-site	Dust emissions from fabrication processes may pose risks to human headth and wellbains	Minimize dust from cutting, grinding and drilling by applying water sprays/dust extraction and using prefabricated materials	See Construct recommendation
Fabrication Processes	health and wellbeing	Perform cutting and grinding with appropriate tolerances/interfaces, optimum concrete pour volumes, using bonding agents, and using wet grit blasting	
		Use curtains or shrouds to surround the work area	

Monitoring A	Activities
--------------	------------

ruction - Site Preparation section above for dations on monitoring activities for dust emissions

ruction - Site Preparation section above for dations on monitoring activities for dust emissions

ruction - Site Preparation section above for dations on monitoring activities for dust emissions

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Mitigation Measures	
		Use pre-mixed, pre-cast and prefabricated materials and components where possible	
		Clean fabrication site frequently	-
Construction Vehicles and		Use electricity powered equipment, and minimize the use of diesel and gasoline powered equipment.	
Equipment	used for site preparation activities may pose risks to human health and wellbeing	Maintain diesel and electric equipment and their emissions control systems to manufacturers' specifications.	Continuous mo on a weekly ba available to Me
		• All off-road diesel-powered equipment used during the Project must meet the Canadian Non-Road (Off-Road) Compression Ignition Engine Exhaust Emission Standards or Canadian Non-Road (Off-Road) Spark Ignition Engine Exhaust Emission Standards. These standards are aligned with corresponding U.S. EPA standards.	As part of the r the regular per manufacturer s (MECP, 2018).
		All on-road vehicles will meet applicable Canadian road vehicle exhaust and evaporative emission standards.	
		The Contractor must certify that all equipment meets applicable emissions standards and are maintained to manufacturers' specifications.	Preparation an air quality mon effectiveness c previous week
		• Where feasible, and where sensitive receptors are identified in close proximity (within 50 m) to the construction area, minimize the number, or limit the usage time, of construction vehicles and equipment or schedule their use at different times.	Document and reports to Metry
		All heavy-duty diesel equipment shall pass an annual emissions test demonstrating compliance with original equipment emission standards within a tolerance of 10%.	For combustion recommended modelled scena respective AQ
		Limit equipment and vehicle idling time to less than 10 minutes.	operations are modelled scena
		• Deploy less polluting alternatives to vehicle main engine idling for heating and air conditioning. These alternatives include cab heaters and HVAC units powered by auxiliary electricity generators.	
		• Based on available information, construction activities in this assessment were assumed to occur from 8 a.m. to 5 p.m. Monday to Friday. Construction during nighttime or weekends should be limited as much as possible and should occur only for essential high priority activities. If the construction schedule is different from that assumed in this report, the Contractor should provide/present that schedule and specific mitigation measures to Metrolinx well in advance for consideration. The Contractor will review air quality monitoring results continuously to ensure that air contaminant concentrations are below the applicable AQ Objectives and mitigation thresholds. If monitoring results indicate exceedance of AQ Objectives and mitigation thresholds, the Contractor should re-assess the construction activities and schedule, and plan to reduce these activities to the point where measured concentrations do not exceed the AQ Objectives and thresholds.	

Monitoring Activities

monitoring results shall be made available to Metrolinx basis. Non-continuous monitoring results shall be made Metrolinx within 7 days after lab results are received.

e monitoring program, the Contractor shall arrange for periodic calibration of the instruments following er specifications or the MECP Operation Manual 8).

and submission of WAQMR to Metrolinx to document onitoring activities, assessment of compliance and s of mitigation activities within 3 to 4 days after end of ek or timeline approved by Metrolinx.

nd monitor public complaints and provide monthly etrolinx for review.

tion emissions of COIs other than NO₂, monitoring is not ed if predicted concentrations based on maximum enario from construction only sources are below their Q Objectives. However, if actual construction re significantly different from the assumed maximum enario, this should be reassessed.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Mitigation Measures	
Construction - contaminated soils/materials	Construction activities could expose contaminated soils/materials and/or result in the spreading of contaminated materials. Emissions from the contaminated materials may pose risks to human health and wellbeing.	 Visual and olfactory inspections should be conducted during excavation or for incoming loads to screen for odour, visible staining or debris per the MECP's Management of Excess Soils: A Guide for Best Management Practices (MECP 2019). If contaminated soil or materials are suspected, the contractor shall conduct further investigation and soil analysis to confirm if contamination is present and what contaminants are present. The contractor will take appropriate preventive actions or suspend activities to minimize potential adverse effects, including odour or air emissions, from contaminated materials. As indicated in the EPR, prior to commencement of construction, the contractor shall develop a Soil and Excavated Materials Management Plan (SEMMP) for the handling, management and disposal of all excavated material (i.e., soil, rock and waste). The SEMMP will describe how to address the management of the excavated or imported materials, including contaminated materials. The contractor shall follow appropriate best management practices to manage, transport, or dispose of the contaminated materials. 	Additional amb soils are encou contaminants a at that time bas analysis.
Operation	Air quality impacts from operations may pose risks to human health and wellbeing. Potential air quality impacts could include effects from fuel combustion equipment at GO stations, train operations and maintenance activities.	 Air approvals should be obtained for the GO station operations and air emission sources as applicable. Significant emissions from the GO station should be assessed and modelled following MECP guidance and must comply with applicable Ontario Regulation 419/05 standards. A detailed Operations Air Quality Management Plan should be developed to document the controls and methods that Metrolinx will implement during project operations to limit the generation and dispersion of airborne particulate matter and air contaminants associated with the project operations. Where practicable, the following mitigation measures should be implemented to reduce air contaminant emissions from train and GO station operations: Selecting a less polluting form of energy or fuel (i.e., electricity or hydrogen rather than diesel fuel) for equipment used at the GO station Selecting equipment (such as backup generators and locomotives) with engines and propulsion systems that meet higher emission standards, meaning lower emissions (i.e., Tier 4 rather than a lower tier) When selecting new train fleet, consider designs that reduce/limit non-exhaust particulate emissions, such as automatic train control/braking systems, wheel and track materials and design, optimizing the wheel profile and applying friction modifiers on wheels or rails to decrease wear particles, choice of brake pad materials Maintaining engines and emission control equipment to manufacturers' specifications. Preventive maintenance programs to ensure materials and equipment remain in a state of good repair Procedures to respond to employee or passenger concerns Explore planting of trees/vegetation in areas where highest dust impacts are expected 	 On-site inspect implementation actions if required The expected i mitigated provin Quality Manage monitoring is not

Monitoring Activities

mbient air monitoring may be required if contaminated countered during construction activities. The list of is and monitoring requirements should be re-assessed based on the results of investigation and soil/material

ections should be undertaken to confirm the ion of the mitigation measures and identify corrective quired.

ed impacts from operations should be effectively ovided that mitigation measures established in the Air agement Plan are followed. Ambient air quality s not expected to be required.

Effects Assessment August 24, 2023

8.2 Mitigation and Monitoring Considerations at Each Project Location

Based on the special receptors identified and the project design and duration at each location, additional considerations for mitigation and monitoring for each specific Project location are presented in Table 8.2 below for the construction phase.

The potential for adverse impacts is assessed at each Project location based on the model predictions discussed in Section 6.0. Adverse impacts are assigned a grade of A, B, or C which are defined as follows:

- A = One or more critical receptors are located within a COI impact zone for which AQ objective exceedances are predicted.
- B = One or more sensitive receptors are located within a COI impact zone for which AQ objective exceedances are predicted. Critical receptors are not identified within the impact zone.
- C = Critical/sensitive receptors are not identified within a COI impact zone for which AQ objective exceedances are predicted or the modelling does not predict any exceedances of the AQ objectives.

Note that the standard mitigation measures assumed for the modelling assessment at each sub-Project location includes dust control measures such as water suppression and limiting on-site vehicle speeds to less than 20 km/hr.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Widening of At-Grade Crossi	ngs			
Rundle Road Crossing Construction	 Sensitive receptors identified at this Project location include residences within 250 m northeast, 60 m northwest, 45 m southeast and 25 m west of the Project footprint. There are no critical receptors identified within 500 m of the crossing. Based on modelling results from construction activities for the Rundle Road Crossing, the maximum predicted PM₁₀ concentrations at the residence to the west and southeast may exceed the 15-minute mitigation threshold but will remain below the 24-hour AAQC. The 98th percentile predicted NO₂ concentrations at the sensitive receptor to the west may exceed the 1-hour CAAQS but will remain below the 1-hour and 24-hour AAQCs and annual CAAQS. 	 Potential for Adverse Impacts - B: Project Alone NO₂ is predicted to exceed the 1-hour 2025 CAAQS within60 m of the Project footprint and at a sensitive receptor. Project Alone PM₁₀ is predicted to exceed the 15-minute mitigation threshold 2% of the time within 150 m of the Project footprint and 0.016% of the time at a sensitive receptor over a five-year period. There are no critical receptors identified within 500 m of the Project footprint. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to the receptors. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	• Due the crecor
Bloor Street Crossing Construction	 Sensitive receptors identified at this Project location include residences within 140 m east, a hotel located 200 m southwest and residences within 150 - 160 m to the north and northeast of the Project footprint. Critical receptors identified at this Project location includes a senior's residence 330 m to the east of the Project footprint. Based on modelling results from construction activities for the Rundle Road Crossing, the maximum predicted TSP, PM₁₀, PM_{2.5} and crystalline silica concentrations are not expected to exceed the applicable AAQC or CAAQS at the identified sensitive and critical receptors. However, there may be exceedances of the 15-minute mitigation 	Inere are no critical receptors identified within the impact zero	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize air quality impacts to the area. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Due the c recor

Table 8.2: Construction Mitigation and Monitoring Considerations at each Project Location

⁷ Criteria for assessing potential adverse impacts

B = One or more sensitive receptors are located within a COI impact zone for which AQ objective exceedances are predicted. Critical receptors are not identified within the impact zone.

C = Critical /sensitive receptors are not identified within a COI impact zone for which AQ objective exceedances are predicted or the modelling does not predict any exceedances of the AQ objectives.

Monitoring Activities

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not ommended at this location.

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not ommended at this location.

A = One or more critical receptors are located within a COI impact zone for which AQ objective exceedances are predicted.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
	threshold for PM ₁₀ at the residences to the east.			
Prestonvale Road Crossing Construction	 Sensitive receptors identified at this Project location include residences 25 m west, 120 m east and 150 m north of the Project footprint. There are no critical receptors identified within 500 m of the crossing. Based on modelling results from construction activities for the Rundle Road Crossing, the maximum predicted TSP, PM₁₀, PM_{2.5} and crystalline silica concentrations are not expected to exceed the applicable AAQC at the identified sensitive receptors. The PM₁₀ concentrations may exceed the 15-minute mitigation threshold within 150 m of the Project footprint which may impact the closest residences to the east and west. The crystalline silica concentrations may also exceed the 15-minute mitigation thresholds within 25 m from the Project footprint and therefore may impact the residence to the west. Based on the model results from the construction activities for the Rundle Road Crossing, the 98th percentile predicted NO₂ concentrations may exceed the 1-hour CAAQS within 60 m of the active construction zone which may impact the residence to the west, but the maximum predicted concentrations are expected to remain below the 1-hour and 24-hour AAQCs and annual CAAQS. 	 the AQ objectives within 60 m and 150 m respectively, of the Project footprint at a crossing. Crystalline silica is predicted to exceed the 15-minute mitigation threshold 0.08% of the time within 25 m of the Project footprint over a five-year period. Sensitive receptors are identified within the impact zones identified above. There are no critical receptors identified within the impact zones identified above. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize air quality impacts to the area. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Due t the cr recon

Monitoring Activities

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not ommended at this location.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Private crossing for Dom's Auto	 Sensitive receptors identified at this Project location include residences 80 m and 140 m to the southeast. There are no critical receptors identified within 500 m of the crossing. Based on the model results from the construction activities for the Rundle Road Crossing, the maximum predicted PM₁₀ concentrations may exceed the 15-minute mitigation threshold within 150 m of the active construction zone which may impact the residence to the south but is expected to remain below the 24-hour AAQC. 	 Potential for Adverse Impacts - B: PM₁₀ is predicted to exceed the AQ objectives within 150 m of the Project footprint at a crossing. A sensitive receptor is identified within the impact zone identified above. There are no critical receptors identified within the impact zones identified above. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize air quality impacts to the area. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Due t the cr recon
Trulls Road Crossing Construction	 Sensitive receptors identified at this Project location include residences within 350 m north, 80 m south and 140 m southeast of the Project footprint. There are no critical receptors identified within 500 m of the crossing. Based on modelling results from construction activities for the Rundle Road Crossing, the maximum predicted PM₁₀ concentrations may exceed the 15-minute mitigation threshold within 150 m and may impact the residence to the south but is expected to remain below the 24-hour AAQC. 	 Potential for Adverse Impacts - B: PM₁₀ is predicted to exceed the AQ objectives within 150 m of the Project footprint at a crossing. Sensitive receptors are identified within the impact zone of 150 m. There are no critical receptors identified within the impact zone of 150 m. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize air quality impacts to the area. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Due t the cr recon
Baseline Road Crossing (Mile 168.22) Construction	 Sensitive receptors identified at this Project location include a residence within 50 m west of the Project footprint. There are no critical receptors identified within 500 m of the crossing. Based on modelling results from construction activities for the Rundle Road Crossing, the maximum predicted PM₁₀ concentration may exceed the 15-minute mitigation threshold within 150 m and may impact the residence to the west but is expected to remain below the 24-hour AAQC. 	 Potential for Adverse Impacts - B: NO₂ and PM₁₀ are predicted to exceed the AQ objectives within 60m and 150 m, respectively, of the Project footprint at a crossing. Sensitive receptors are identified within the impact zones identified above. There are no critical receptors identified within the impact zones identified above. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize air quality impacts to the area. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Due to the cr recom

Monitoring Activities

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not commended at this location.

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not commended at this location.

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not commended at this location.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
	 Based on the model results from the construction activities for the Rundle Road Crossing, the 1-hour 98th percentile predicted NO₂ concentrations may exceed the 1-hour CAAQS within 60 m of the active construction zone which may impact the residence to the west. The maximum NO₂ concentrations are expected to remain below the 1-hour and 24-hour AAQCs and annual CAAQS. 			
Baseline Road Crossing (Mile 166.92) Construction	 Sensitive receptors identified at this Project location include a residence within 65 m north and 120 m east of the Project footprint. There are no critical receptors identified within 500 m of the crossing. Based on modelling results from construction activities for the Rundle Road Crossing, the maximum predicted PM₁₀ concentration may exceed the 15-minute mitigation threshold within 150 m of the Project footprint and may impact the residence to the north and east but is expected to remain below the 24-hour AAQC. 	 Potential for Adverse Impacts - B: PM₁₀ is predicted to exceed the AQ objectives within 50 m of the Project footprint at a crossing. A sensitive receptor is identified within the impact zones identified above. There are no critical receptors identified within the impact zones identified above. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize air quality impacts to the area. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Due to the cros recomm
Holt Road Crossing Construction	 Sensitive receptors identified at this Project location include residences within 95 m west, 95 and 230 m south, and 210 m southeast of the Project footprint. There are no critical receptors identified within 500 m of the crossing. Based on the model results from the construction activities for the Rundle Road Crossing, the 15-minute mitigation threshold for PM₁₀ may be exceeded at the receptors to the west and south. PM₁₀ concentrations are expected to remain below the 24-hour AAQC. 	 Potential for Adverse Impacts - B: PM₁₀ is predicted to exceed the AQ objectives within 150 m of the Project footprint at a crossing. Sensitive receptors are identified within the impact zone of 150 m. There are no critical receptors identified within the impact zone of 150 m. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize air quality impacts to the area. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Due to the cros recomn

Monitoring Activities
to the short duration of construction activities at rossing (i.e., < 2 weeks), monitoring is not mmended at this location.

ue to the short duration of construction activities at e crossing (i.e., < 2 weeks), monitoring is not commended at this location.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Private farm crossing west of Maple Grove Road Construction	 A residence is located 340 m south of the Project footprint. There are no critical receptors identified within 500 m of the crossing. Based on the model results from the 	Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within impact zones based on model results.	• The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize air quality impacts to the area.	Due t the cr recon
	construction activities for the Rundle Road Crossing, there are no expected exceedances of mitigation thresholds, AAQCs or CAAQS.		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. 	
			Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	
Maple Grove Road Crossing Construction	 A residence is located within 200 m north of the Project footprint. There are no critical receptors identified within 500 m of the crossing. 	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within impact zones based on model results. 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize air quality impacts to the area.	Due t the cr recon
	Based on the model results from the construction activities for the Rundle Road Crossing, there are no expected exceedances of mitigation thresholds, AAQCs or CAAQS.		Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards.	
			• Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	
GO Stations		·		
B4 Bowmanville GO Station Construction	• Sensitive receptors identified at this Project location include residences 30 m and 220 m to the southwest, between 30 and 40 m to the south, and 40 m and 100 m to the east of the Project footprint. There is also a recreation complex located 300 m to the northwest.	 Potential for Adverse Impacts - A: Project Alone PM₁₀ is predicted to exceed the 15-minute mitigation threshold 0.8% of the time within 680 m of the Project footprint and 0.09% of the time at a sensitive receptor over a five year period. 	• The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per th a bes than 3 crysta down const should
	• The critical receptors identified at this Project location include a senior's residence located 20 and 80 m west, 295 m north, and a school located 400 m to the southeast of the Project footprint.	• Project Alone PM ₁₀ is also predicted to exceed the 24-hour AAQC 0.7% of the time within 100 m of the Project footprint and 0.05% of the time at a sensitive receptor over a five-year		to the mitiga meas conce thresl
	 Based on modelling results from construction activities for the B4 Bowmanville GO Station, the maximum predicted PM₁₀ concentrations may 	 period. Project Alone PM_{2.5} is predicted to exceed the 15-minute mitigation threshold 0.05% of the time within 110 	 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. 	 Since NO₂ A recon
	exceed the 15-minute mitigation threshold at both the sensitive and	m of the Project footprint and 0.007%	Minimize the number or limit the usage time of construction vehicles and	

Monitoring Activities

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not ommended at this location.

e to the short duration of construction activities at crossing (i.e., < 2 weeks), monitoring is not ommended at this location.

r the Draft Metrolinx Guide (Metrolinx, 2019a), as est practice for long duration projects (i.e., longer n 30 days), monitoring for PM₁₀, PM_{2.5} and stalline silica are recommended at upwind and wnwind monitoring locations of the active nstruction zone. An additional monitoring station buld be considered at the closest critical receptor the construction zone to ensure that standard igation is effective. Additional mitigation asures should be taken if measured data indicate ncentrations are approaching mitigation esholds or AQ Objectives.

ce there are no predicted exceedances of the p_2 AAQC, monitoring for NO₂ is not commended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
	critical receptors. The 24-hour AAQC may be exceeded at a residential receptor located to the south of the Project footprint. The maximum predicted concentrations of PM _{2.5} may exceed the 15-minute mitigation thresholds at the nearest residences to the south. The maximum predicted concentrations of crystalline silica may exceed the 15-minute mitigation thresholds at the nearest residences to the south, southwest and east, and the senior's residence to the west.	 of the time at a sensitive receptor over a five-year period. Project Alone crystalline silica is predicted to exceed the 15-minute mitigation threshold 0.08% of the time within 220 m of the Project footprint and 0.03% of the time at a sensitive receptor over a five-year period. Based on modelling results from construction activities for the B4 Bowmanville GO Station, maximum predicted PM₁₀, PM_{2.5}, and crystalline silica concentrations may exceed the AQ objectives at sensitive receptors. Based on modelling results from construction activities for the B4 Bowmanville GO Station, maximum predicted PM₁₀, PM_{2.5}, and crystalline silica concentrations may exceed the AQ objectives at sensitive receptors. 	equipment or schedule their use at different times.	
B1 Thornton's Corners East GO Station Construction	 Sensitive receptors identified at this Project location include residences 320 m to the west, 70 m to the north, 110 m to the northeast, and 300 m to the east of the Project footprint. Two hotels are also located just outside of the Study Area at 560 m to the southeast of the Project footprint. The critical receptors identified for this Project location includes a recreation complex 535 m to the northwest and a school located 685 m to the east. 	 Potential for Adverse Impacts - A: PM₁₀, PM_{2.5}, and crystalline silica are predicted to exceed the AQ objectives within 680 m, 110 m and 220 m, respectively, of the Project footprint for a GO station. Sensitive receptors are identified within the impact zones identified above. Critical receptors are identified within the impact zones identified above. 	The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per a be thar crys dow con sho to th miti mea con thre
	 Based on modelling results from construction activities for the B4 Bowmanville GO Station, the maximum predicted PM₁₀ concentrations may exceed the 15-minute mitigation threshold within 680 m of the Project footprint which may impact the identified sensitive and critical receptors. The 24-hour AAQC may be exceeded 100 m from the Project footprint and may impact the residence to the north. PM_{2.5} concentrations may exceed the 15-minute mitigation threshold within 110 m of the Project footprint and may impact the residences to the north and 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	• Sin NO rec

Monitoring Activities er the Draft Metrolinx Guide (Metrolinx, 2019a), as best practice for long duration projects (i.e., longer nan 30 days), monitoring for PM₁₀, PM_{2.5} and rystalline silica are recommended at upwind and ownwind monitoring locations of the active onstruction zone. An additional monitoring station hould be considered at the closest critical receptor the construction zone to ensure that standard nitigation is effective. Additional mitigation neasures should be taken if measured data indicate oncentrations are approaching mitigation resholds or AQ Objectives. ince there are no predicted exceedances of the

 IO_2 AAQC, monitoring for NO₂ is not ecommended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
	northeast but are expected to remain below the CAAQS for other averaging periods. Crystalline silica concentrations may exceed the 15-minute mitigation thresholds within 220 m of the Project footprint and may also impact the residences to the north and northeast but is expected to remain below the 24-hour AAQC.			
B2 Ritson GO Station Construction	 Sensitive receptors identified at this Project location include residences located 10 m and 90 m to the north, 15 m to the west, and 125 and 255 m to the south and 20 m to the east of the Project footprint. The are places of worship located 65 m and 180 m to the west, 145 m northwest, 260 m east and 320 m northeast of the Project footprint. There is also a school located 320 m to the northeast. Based on modelling results from construction activities for the B4 Bowmanville GO Station, the maximum predicted TSP concentrations may exceed the 24-hour AAQC within 30 m of the Project footprint and therefore may 	 Potential for Adverse Impacts - A: TSP, PM₁₀, PM_{2.5}, and crystalline silica are predicted to exceed the AQ objectives within 30 m, 680 m, 110 m and 220 m, respectively, of the Project footprint for a GO station. Sensitive receptors are identified within the impact zones identified above. Critical receptors are identified within the impact zones identified above. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage 	 Per t a be than cryst down cons shou to the mitig mea conc thres Since NO₂ reco
	 impact the nearest residences to the north, east and west. PM₁₀ concentrations may exceed the 15-minute mitigation threshold within 680 m of the Project footprint and therefore may impact all sensitive and critical receptors identified at this location. There may also be exceedances of the 24-hour AAQC within 100 m of the Project footprint which may impact the closest residences to the north, east and west. PM_{2.5} concentrations may exceed the 15-minute mitigation threshold within 110 m of the Project footprint and may impact the sensitive receptors to the north, east and west. 		time of construction vehicles and equipment or schedule their use at different times.	

Monitoring Activities

er the Draft Metrolinx Guide (Metrolinx, 2019a), as best practice for long duration projects (i.e., longer an 30 days), monitoring for PM₁₀, PM_{2.5} and ystalline silica are recommended at upwind and ownwind monitoring locations of the active onstruction zone. An additional monitoring station hould be considered at the closest critical receptor the construction zone to ensure that standard itigation is effective. Additional mitigation easures should be taken if measured data indicate oncentrations are approaching mitigation resholds or AQ Objectives.

nce there are no predicted exceedances of the D₂ AAQC, monitoring for NO₂ is not commended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
	Crystalline silica concentrations may exceed the 15-minute mitigation thresholds within 220 m of the Project footprint and may impact the residences to the north, east, west and south and the places of worship to the west, southwest and northeast but is expected to remain below the 24-hour AAQC.			
B3 Courtice GO Station Construction	 Sensitive receptors identified at this Project location include residences located within 20 m to the north, 230 m to the southeast 315 m and 360 m to the south of the Project footprint. The are no critical receptors identified for this Project location. Based on modelling results from construction activities for the B4 Bowmanville GO Station, the maximum predicted TSP concentrations may exceed the 24-hour AAQC at the residence to the north. PM₁₀ concentrations may exceed the 15-minute mitigation threshold all sensitive residences and may also exceed the 24-hour AAQC at the residence to the north. PM_{2.5} concentrations may exceed the 15-minute mitigation threshold within 110 m of the Project footprint and may impact the residence to the north but are expected to remain below the CAAQS for other averaging periods Crystalline silica concentrations may exceed the 15-minute mitigation thresholds within 220 m of the Project footprint and may also impact the residence to the north but are expected to remain below the 24-hour AAQC. 	 Potential for Adverse Impacts - B: TSP, PM₁₀, PM_{2.5}, and crystalline silica are predicted to exceed the AQ objectives within 30 m, 680 m, 110 m and 220 m, respectively, of the Project footprint for a GO station. Sensitive receptors are identified within the impact zones identified above. There are no critical receptors identified within the impact zones identified within the impact zones identified above. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	 Per t a bes than cryst dowr cons taker appro Since NO₂ record

Monitoring Activities

er the Draft Metrolinx Guide (Metrolinx, 2019a), as best practice for long duration projects (i.e., longer han 30 days), monitoring for PM_{10} , $PM_{2.5}$ and rystalline silica are recommended at upwind and ownwind monitoring locations of the active onstruction zone. Mitigation measures should be aken if measured data indicate concentrations are pproaching mitigation thresholds or AQ Objectives.

nce there are no predicted exceedances of the D_2 AAQC, monitoring for NO₂ is not commended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Trackwork and Grading			•	
West of Farewell Street to west of Harmony Road	 Sensitive receptors identified at this location include residences located within 20 m to the south and 40 m to the north of the Project footprint. The closest critical receptors include two places of worship located 30 m and 80 m north and a daycare located 140 m to the north of the Project footprint. Based on modelling results from construction activities on this segment of the Project, the maximum predicted 	 Potential for Adverse Impacts - A: Project Alone PM₁₀ is predicted to exceed the 15-minute mitigation threshold 2.2% of the time within 30 m of the Project footprint for Trackwork and Grading at Farewell Street/Harmony Road and 0.09% of the time at a special receptor. Based on modelling results from construction activities for the Trackwork and Grading at Farewell 	The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per tl a bes than recor locati additi at the zone Addit meas appro
	PM ₁₀ concentrations may exceed the 15-minute mitigation threshold within 30 m of the Project footprint and may impact the sensitive residences to the south and the place of worship 20 m to the north.	 Street/Harmony Road, maximum predicted PM₁₀ concentrations may exceed the AQ objectives at sensitive receptors. Based on modelling results from construction activities for the Trackwork and Grading at Farewell Street/Harmony Road, maximum predicted PM₁₀ concentrations may exceed the AQ objectives at a critical receptor. 	 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Since NO2 / recon
Track and grading along the length of the Project	 Representative sensitive receptors have been identified at varying distances from the Project footprint with the closest residences measuring 30 m to the north and 20 m to the south of the proposed tracks. Critical receptors have been identified within 500 m of the Project footprint with the closest (54C - a place of worship) measuring 30 m to the north and (28C - a place of worship) 80 m to the south of the proposed tracks. 	 Potential for Adverse Impacts - A: PM₁₀ is predicted to exceed the AQ objectives within 30 m of the Project footprint for Trackwork and Grading at Farewell Street/Harmony Road. Sensitive receptors are identified within the impact zone of 30 m. A critical receptor is identified within the impact zone of 30 m. 	The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per th a bes than 3 recon locati additi at the zone Additi meas appro
	 Based on the modelled results from construction activities on a 300 m segment of the Project footprint from west of Farewell St. to west of Harmony Rd., the 15-minute mitigation threshold for PM₁₀ may be exceeded at special receptor locations within 30 m of the Project footprint (i.e., generally, residences located nearest to the proposed tracks) including: 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Since NO ₂ / recon

Monitoring Activities

r the Draft Metrolinx Guide (Metrolinx, 2019a), as est practice for long duration projects (i.e., longer n 30 days), monitoring for PM₁₀, PM_{2.5} are commended at upwind and downwind monitoring ations of the active construction zone. An ditional monitoring station should be considered the closest critical receptor to the construction ne to ensure that standard mitigation is effective. ditional mitigation measures should be taken if asured data indicate concentrations are proaching mitigation thresholds or AQ Objectives.

ce there are no predicted exceedances of the P_2 AAQC, monitoring for NO₂ is not ommended.

r the Draft Metrolinx Guide (Metrolinx, 2019a), as est practice for long duration projects (i.e., longer n 30 days), monitoring for PM₁₀, PM_{2.5} are commended at upwind and downwind monitoring ations of the active construction zone. An ditional monitoring station should be considered the closest critical receptor to the construction ne to ensure that standard mitigation is effective. ditional mitigation measures should be taken if asured data indicate concentrations are proaching mitigation thresholds or AQ Objectives.

ce there are no predicted exceedances of the ² AAQC, monitoring for NO₂ is not ommended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	_
	 Residences north of B1 Thornton's Corners East GO Station and west of Stevenson Rd Bridge represented by receptors 1_S and 6_S 			
	 Residences south of the proposed tracks between Stevenson Rd Bridge and Park Rd S represented by receptors 10_S and 15_S 			
	 Residences north and south of the proposed tracks between Park Rd S and Simcoe St. Bridge represented by receptors 16_S to 19_S and 21_S to 24_S 			
	 Residences north of the proposed track between Ritson St. Bridge and Wilson St. Bridge represented by receptor 42_S 			
	 Residences south of the proposed tracks between Wilson St. Bridge and Farewell St. Bridge represented by receptors 49_S and 52_S 			
	 Residences north of the tracks east of Bloor St. Crossing and west of Townline Rd S represented by receptor 77_S 			
	• Exceedances of the 24-hour AAQC are not expected at these locations.			
Bridge Replacement				
Simcoe Street Bridge	• The closest sensitive receptors identified at this Project location include a hotel 5 m to the west, and residences 5 m to the west, 120 m to the east and 75 m to the south of the Project footprint.	 Potential for Adverse Impacts - A: NO₂, PM₁₀ and B(a)P concentrations are predicted to exceed the AQ objectives at sensitive and critical receptors. 	The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	 Peral a b tha rec loca
	• The closest critical receptor is a community services located 10 m to the east. Places of worship are located approximately 30 m and 150 m to the northeast, 180 m to the east, 180 m and 230 m to the southwest and southeast of			ado at t zor Ado me app
	 the proposed bridge footprint. There are also two schools approximately 360 m to the north and 460 m to the west. Sensitive and critical receptors along the 		Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards.	 Pre 1-h 24- ado
	 Sensitive and chical receptors along the detour roads were also included. Predicted PM₁₀ concentrations at the hotel to the west may exceed the 		 Minimize the number or limit the usage time of construction vehicles 	for ass Sin

Monitoring Activities

Per the Draft Metrolinx Guide (Metrolinx, 2019a), as a best practice for long duration projects (i.e., longer than 30 days), monitoring for PM₁₀, PM_{2.5} are recommended at upwind and downwind monitoring ocations of the active construction zone. An additional monitoring station should be considered at the closest critical receptor to the construction zone to ensure that standard mitigation is effective. Additional mitigation measures should be taken if measured data indicate concentrations are approaching mitigation thresholds or AQ Objectives.

Predicted NO₂ concentrations may exceed the 1-hour and annual CAAQS but will remain below the 24-hour AAQC. The NO₂ CAAQS have not been adopted as an AAQC in Ontario and are intended for regional air quality planning rather than assessing the local impacts of individual projects. Since there are no predicted exceedances of the

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
	 15-minute mitigation threshold but will remain below the 24-hour AAQC. Predicted NO₂ concentrations due to re-routing traffic may exceed the 1-hour CAAQS (but remain below the 1-hour and 24-hour AAQCs) at 14 sensitive .receptors and 3 critical receptors located near the Project footprint and along Ritson Road, Bloor Street and Albert Street. The annual CAAQS is predicted to be exceeded at 4 sensitive and 1 critical receptor located Ritson Road. Predicted B(a)P concentrations due to re-routed traffic may occasionally exceed the 24-hour AAQC and exceeds the annual AAQC at multiple critical and sensitive receptors along the detour roads. 		and equipment or schedule their use at different times.	NO ₂ reco
Ritson Road	 Sensitive receptors identified at this Project location include residential houses located 10 m to the east and west, 30 m to the southwest, and 20 to40 m to the northeast and northwest of the Project footprint. Critical receptors (places of worship) were identified to be located 8 m to the west/southwest. Critical receptors (place of worship and school) were also identified to be located 60 m and 110 m to the north. 	 Potential for Adverse Impacts - A: NO₂ is predicted to exceed the AQ objectives within 25 m of the Project footprint at a bridge. Sensitive receptors are identified within the impact zone of 25 m. There is a critical receptor identified within the impact zone of 25 m. 	 The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. 	 Per t a best than record locat meast conc thress Pred 1-ho 24-h CAA
 Based on modelling results from construction activities for the Simcoe Street Bridge (Case 2), the maximum predicted 1-hour 98th percentile NO₂ concentrations may exceed the 2025 CAAQS at the identified residences to the northwest. 		• Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	Onta planr indivi exce is no	

Monitoring Activities

P₂ AAQC, monitoring for NO₂ is not commended.

r the Draft Metrolinx Guide (Metrolinx, 2019a), as est practice for long duration projects (i.e., longer n 30 days), monitoring for PM_{10} , $PM_{2.5}$ are commended at upwind and downwind monitoring ations of the active construction zone. Mitigation asures should be taken if measured data indicate ncentrations are approaching mitigation esholds or AQ Objectives.

edicted NO₂ concentrations may exceed the our CAAQS but will remain below the 1-hour and hour AAQCs and annual CAAQS. The NO₂ AQS have not been adopted as an AAQC in tario and are intended for regional air quality nning rather than assessing the local impacts of ividual projects. Since there are no predicted ceedances of the NO₂ AAQC, monitoring for NO₂ not recommended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Farewell Street	 Sensitive receptors identified at this location include residential houses located 20 m to the northeast, 15 m to 20 m to the southeast and southwest of the Project footprint. Critical receptors include places of worship located 50 m to the northwest and 150 m to the east, and a daycare located 100 m to the northwest. Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), the maximum predicted 1-hour 98th percentile NO₂ concentrations may exceed the 2025 CAAQS at the identified residences. PM₁₀ concentrations may also exceed the 15-minute mitigation threshold at the identified residences. 	 Potential for Adverse Impacts - B: NO₂ and PM₁₀ are predicted to exceed the AQ objectives within 25 m and 20 m, respectively, of the Project footprint for a bride. Sensitive receptors are identified within the impact zones of 20 m and 25 m. There are no critical receptors identified within the impact zones. 	 The Contractor shall consider and use all applicable mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	 Per the a best than recording the second three second thr
Bridge Removal				1
Albert Street	 Sensitive receptors identified include residential houses located 10 m to 15 m to the northwest, northeast and southeast of the Project footprint. A critical receptor (place of worship and community centre) was identified to be located 10 m to the east. Based on modelling results from 	 Potential for Adverse Impacts - A: NO₂ and PM₁₀ is predicted to exceed the AQ objectives within 25 m and 20 m, respectively, of the Project footprint at a bridge. Sensitive receptors are identified within the impact zones of 20 m and 25 m. 	• The Contractor shall consider and use all applicable standard mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per t a bes than recor locat meas conc thres
	 Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), the maximum predicted 1-hour 98th percentile NO₂ concentrations may exceed the 2025 CAAQS within 25 m of the Project footprint and may impact the identified residences. PM₁₀ concentrations may also exceed the 15-minute mitigation threshold at the same residences. 	 A critical receptor identified within the impact zones of 20 m and 25 m. 	 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	 Pred 1-ho 24-h CAA Onta plani indiv exce is no

Monitoring Activities

r the Draft Metrolinx Guide (Metrolinx, 2019a), as est practice for long duration projects (i.e., longer n 30 days), monitoring for PM_{10} , $PM_{2.5}$ are commended at upwind and downwind monitoring ations of the active construction zone. Mitigation asures should be taken if measured data indicate ncentrations are approaching mitigation esholds or AQ Objectives.

edicted NO₂ concentrations may exceed the our CAAQS but will remain below the 1-hour and hour AAQCs and annual CAAQS. The NO₂ AQS have not been adopted as an AAQC in tario and are intended for regional air quality nning rather than assessing the local impacts of ividual projects. Since there are no predicted ceedances of the NO₂ AAQC, monitoring for NO₂ not recommended.

r the Draft Metrolinx Guide (Metrolinx, 2019a), as est practice for long duration projects (i.e., longer n 30 days), monitoring for PM₁₀, PM_{2.5} are ommended at upwind and downwind monitoring ations of the active construction zone. Mitigation asures should be taken if measured data indicate incentrations are approaching mitigation esholds or AQ Objectives.

edicted NO₂ concentrations may exceed the nour CAAQS but will remain below the 1-hour and -hour AAQCs and annual CAAQS. The NO₂ AQS have not been adopted as an AAQC in tario and are intended for regional air quality nning rather than assessing the local impacts of ividual projects. Since there are no predicted ceedances of the NO₂ AAQC, monitoring for NO₂ not recommended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
New Bridges				
Highway 401	 Sensitive receptors identified at this location include hotels located at 150 m and 230 m to the southeast of the Project footprint. Based on modelling results from 	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	• Moni
	construction activities for the Simcoe Street Bridge (Case2), there are no predicted exceedances of the 1-hour 98^{th} percentile NO ₂ or PM ₁₀ 15-minute mitigation threshold at this location.		• Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards.	
			Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	
GM Spur	 There are no special receptors identified within 500 m. Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), there are no 	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	• Moni
	predicted exceedances of the 1-hour 98th percentile NO2 or PM10 15-minute mitigation threshold at this location.		Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards.	
			• Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	
Oshawa Creek	 Sensitive receptors identified at this location include residential houses located over 100 m to the northeast, southeast, southwest and northwest of the Project footprint. 	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	• Moni
	 A critical receptor was identified at this location - a school located 200 m to the northwest with a sports field located 45 m to the northwest. 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. 	
	Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), there are no predicted exceedances of the 1-hour 98th percentile NO2 or PM10 15-minute mitigation threshold at this location.		• Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	

Monitoring Activities

onitoring is not recommended for this location.

onitoring is not recommended for this location.

onitoring is not recommended for this location.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Wilson Road	 Sensitive receptors identified at this location include residential houses located 6 m to the west and 20 m to the east of the Project footprint. A critical receptor (school) is located 50 m to the southwest. Based on modelling results from construction activities for the Simcoe 	 Potential for Adverse Impacts - B: NO₂ and PM₁₀ are predicted to exceed the AQ objectives within 25 m and 20 m, respectively, of the Project footprint for a bridge. Sensitive receptors are identified within the impact zones of 20 m and 25 m. There are no critical receptors 	The Contractor shall consider and use all applicable mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per t a bes than recor locat meas conc thres
	Street Bridge (Case2), the maximum predicted 1-hour 98 th percentile NO ₂ concentrations may exceed the 2025 CAAQS at the identified residences.	identified within the impact zones.	 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. 	 Pred 1-hot 24-hot NO₂
	PM ₁₀ concentrations may also exceed the 15-minute mitigation threshold at the identified residences.		Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	local no pr moni
Farewell Creek	• Sensitive receptors identified at this location include residential houses located 120 m to the northeast and 250 m to the northwest of the Project footprint.	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	• Monit
	 Critical receptors were not identified within 500 m. Based on modelling results from construction activities for the Simcoe 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. 	
	Street Bridge (Case2), the maximum predicted 1-hour 98 th percentile NO ₂ concentrations may exceed the 2025 CAAQS at the identified residences. PM ₁₀ concentrations may also exceed the 15-minute mitigation threshold at the identified residences.		 Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	les
Harmony Creek	• Sensitive receptors identified at this location include residential houses located 65 m to the northeast, southwest and northwest of the Project footprint.	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	• Moni
	 Critical receptor (place of worship) was identified 400 m to the northwest. Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), there are no 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. 	
	predicted exceedances of the 1-hour 98th percentile NO2 or PM10 15-minute mitigation threshold at this location.		 Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	

Monitoring Activities

er the Draft Metrolinx Guide (Metrolinx, 2019a), as best practice for long duration projects (i.e., longer an 30 days), monitoring for PM_{10} , $PM_{2.5}$ are commended at upwind and downwind monitoring cations of the active construction zone. Mitigation easures should be taken if measured data indicate ncentrations are approaching mitigation resholds or AQ Objectives.

edicted NO₂ concentrations may exceed the nour CAAQS but will remain below the 1-hour and -hour AAQCs and annual CAAQS. However, the D_2 CAAQS are not intended for assessing the cal impacts of individual projects. Since there are predicted exceedances of the NO₂ AAQC, onitoring for NO₂ is not recommended.

nitoring is not recommended for this location.

nitoring is not recommended for this location.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Green Road Bridge	• Sensitive receptors identified at this location include residential apartments located 30 m to the southeast and southwest, and residential houses located 100 m to the west and northwest of the Project footprint. Residential houses are located 70 m to the northeast.	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	 The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity. Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA 	• Moni
	Critical receptors were not identified within 500 m.		Tier 4 emission standards.	
	Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), there are no predicted exceedances of the 1-hour 98th percentile NO2 or PM10 15-minute mitigation threshold at this location.		Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	
New Multi-Use Crossing - (bridge	e or tunnel, to be determined)			•
Front Street (Michael Starr Trail)	 Sensitive receptors identified at this location include residential houses located 5 m to the northwest and 15 m to the south of the Project footprint. A critical receptor (place of worship and community centre) is located 75 m to the southwest of the Project footprint. Based on modelling results from 	 Potential for Adverse Impacts - B: NO₂ and PM₁₀ are predicted to exceed the AQ objectives within 25 m and 20 m, respectively, of the Project footprint for a bride. Sensitive receptors are identified within the impact zones of 20 m and 25 m. There are no critical receptors 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per the a best than record location measure concerning thread threa
	construction activities for the Simcoe Street Bridge (Case 2), there are no predicted exceedances of the 1-hour 98 th percentile NO ₂ or PM ₁₀ 15-minute mitigation thresholds at this location.	 identified within the impact zones. . 	 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	 Predi 1-hou 24-ho CAAQ Onta plann indivi excee is not
Bridge Expansions				
Stevenson Road	 Sensitive receptors identified at this location include residential houses located 35 m to the southeast and 80 m to the northwest of the Project footprint. Critical receptors were not identified 	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	• Monit
	 Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), there are no predicted exceedances of the 1-hour 		Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards.	

Monitoring Activities

nitoring is not recommended for this location.

r the Draft Metrolinx Guide (Metrolinx, 2019a), as best practice for long duration projects (i.e., longer an 30 days), monitoring for PM₁₀, PM_{2.5} are commended at upwind and downwind monitoring sations of the active construction zone. Mitigation easures should be taken if measured data indicate incentrations are approaching mitigation esholds or AQ Objectives.

edicted NO₂ concentrations may exceed the nour CAAQS but will remain below the 1-hour and -hour AAQCs and annual CAAQS. The NO₂ AQS have not been adopted as an AAQC in that is and are intended for regional air quality anning rather than assessing the local impacts of lividual projects. Since there are no predicted ceedances of the NO₂ AAQC, monitoring for NO₂ not recommended.

nitoring is not recommended for this location.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
	98th percentile NO2 or PM10 15-minute mitigation threshold at this location.		• Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times.	
Park Road	 Sensitive receptors identified at this location include residential houses located 25 m to 40 m to the northeast, northwest, southeast and southwest of the Project footprint. Critical receptors were not identified within 500 m. 	 Potential for Adverse Impacts - B: NO₂ is predicted to infrequently exceed the AQ objectives within 25 m of the Project footprint for a bridge. Sensitive receptors are identified within the impact zone of 25 m. There are no critical receptors identified within the impact zone. 	• The Contractor shall consider and use all applicable mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per t a bes than recon locat meas conc thres
	 Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), the maximum predicted 1-hour 98th percentile NO₂ concentrations may exceed the 2025 CAAQS at the identified residences. 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Pred 1-hot 24-hot CAAt Onta planr indivi exce is no
Harmony Road	 Sensitive receptors identified at this location include residential houses located 30 m to the northeast, 15 m to the southwest and 70 m to the southeast and northwest of the Project footprint. A critical receptor (place of worship and community centre) is located 110 m to the northwest of the Project footprint. 	 Potential for Adverse Impacts - B: NO₂ and PM₁₀ are predicted to exceed the AQ objectives within 25 m and 20 m, respectively, of the Project footprint for a bridge. Sensitive receptors are identified within the impact zones of 20 m and 25 m. There are no critical receptors identified within the impact zones. 	• The Contractor shall consider and use all applicable mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	Per t a bes than recor locat meas conc thres
	 Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), the maximum predicted 1-hour 98th percentile NO₂ concentrations may exceed the 2025 CAAQS at the residence to the southwest. PM₁₀ concentrations may also exceed the 15-minute mitigation threshold at the same residence. 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	Pred 1-hot 24-hot CAAt Onta planr indivi exce is no

Monitoring Activities

er the Draft Metrolinx Guide (Metrolinx, 2019a), as best practice for long duration projects (i.e., longer an 30 days), monitoring for PM₁₀, PM_{2.5} are commended at upwind and downwind monitoring cations of the active construction zone. Mitigation easures should be taken if measured data indicate ncentrations are approaching mitigation resholds or AQ Objectives.

edicted NO₂ concentrations may exceed the nour CAAQS but will remain below the 1-hour and -hour AAQCs and annual CAAQS. The NO₂ AAQS have not been adopted as an AAQC in natario and are intended for regional air quality anning rather than assessing the local impacts of dividual projects. Since there are no predicted ceedances of the NO₂ AAQC, monitoring for NO₂ not recommended.

er the Draft Metrolinx Guide (Metrolinx, 2019a), as best practice for long duration projects (i.e., longer an 30 days), monitoring for PM₁₀, PM_{2.5} are commended at upwind and downwind monitoring cations of the active construction zone. Mitigation easures should be taken if measured data indicate ncentrations are approaching mitigation resholds or AQ Objectives.

edicted NO₂ concentrations may exceed the nour CAAQS but will remain below the 1-hour and -hour AAQCs and annual CAAQS. The NO₂ AAQS have not been adopted as an AAQC in natario and are intended for regional air quality anning rather than assessing the local impacts of dividual projects. Since there are no predicted ceedances of the NO₂ AAQC, monitoring for NO₂ not recommended.

Effects Assessment August 24, 2023

Feature	Description of Potential Effects	Potential for Adverse Impacts (with Standard Mitigation Measures) ⁷	Mitigation Measures	
Courtice Road	• Sensitive receptors identified at this location include residential houses located 250 m to the northwest and southeast, and 300 m to the southwest of the Project footprint.	 Potential for Adverse Impacts - C: There are no sensitive or critical receptors identified within the predicted impact zones. 	• The Contractor shall consider and use a reasonable combination of mitigation measures listed in Table 7.1 to minimize impacts to receptors within close proximity.	• Monit
	 Critical receptors were not identified within 500 m. Based on modelling results from construction activities for the Simcoe Street Bridge (Case2), there are no predicted exceedances of the 1-hour 98th percentile NO2 or PM10 15-minute mitigation threshold at this location. 		 Where feasible, consider using construction vehicles and an equipment fleet that meets U.S. EPA 	
			 Tier 4 emission standards. Minimize the number or limit the usage time of construction vehicles and equipment or schedule their use at different times. 	

Monitoring Activities

nitoring is not recommended for this location.

Permits and Approvals August 24, 2023

9.0 Permits and Approvals

Environmental Compliance Approval(s) are required for equipment held by contractors, owners and operators of that equipment, and these Approvals would be obtained in advance of construction, as applicable.

Approvals (i.e., Environmental Compliance Approval or Environmental Sector Activity Registry) for the GO station air emission sources, with the exception of equipment or activities exempted by O. Reg. 524/98 Environmental Compliance Approvals - Exemptions from Section 9 of the Act, are required prior to their construction and operation. The application for approvals will be conducted when the designs are finalized and prior to installation/start of operations.

Conclusions August 24, 2023

10.0 Conclusions

10.1 Air Quality Assessment - Construction

A representative worst-case location for each of the four Project components was selected for the detailed quantitative assessment (including air dispersion modelling) based on a review of the available Project design, construction activity and duration, the expected construction equipment to be used, the expected Project footprint and the receptor types and their proximities to the construction area. Rationales for their selection are provided in Table 1.2. For all modelling assessment locations, maximum construction activity levels that result in maximum emissions were assessed. Ground level concentrations (GLCs) were predicted at sensitive (residential) and critical (schools, hospitals, retirement homes, childcare centres, and similar institutional buildings) receptors identified in the vicinity of the representative locations.

Additionally, GLCs were predicted over a receptor grid extending 500-m around each location to:

- develop concentration contour plots
- identify concentration impact zones⁸
- support recommendations for mitigation where required

The results of the detailed assessment for each worst-case Project component location were applied to the other Project component locations to develop site-specific recommendations.

Project Alone Predictions

The dispersion modelling of air contaminants generated during construction activities predicted that applicable provincial and national ambient air quality criteria and standards are met for 10 of the 12 COIs. For the two that exceeded the standard, NO₂ and PM₁₀ the maximum predicted concentrations at both sensitive and critical receptors are below their applicable criteria 99.9% of the time. These predictions assume a maximum construction emissions scenario in which no additional mitigation measures other than standard methods are applied. When a construction phase exceedance is

⁸ A concentration impact zone is the maximum distance from the Project footprint or construction activity to where an air quality objective is predicted to be exceeded.

Conclusions August 24, 2023

predicted to occur, the area of exceedance around the Project component is predicted to extend no greater than:

- 60 m for widening of at-grade crossings
- 100 m for GO station construction
- 10 m for tracking and grading construction
- 25 m for bridge construction

Cumulative Predictions

Maximum predicted cumulative concentrations (i.e., Project plus background concentrations) of COIs at sensitive and critical receptors are predicted to remain below the applicable provincial and national ambient air quality criteria and standards for 7 of the 12 COIs. For those that exceeded a standard, NO₂, TSP, PM₁₀, benzene and benzo(a)pyrene, it is noted that: i) the 1-hour and annual average background NO₂ concentrations used are by themselves 67% and 118% of the 1-hour and annual CAAQS respectively; ii) background annual benzene and 24-hour and annual benzo(a)pyrene concentrations are 119%, 278% and 858% of their respective criteria with the Project having only a minor contribution to the cumulative levels.

Construction Mitigation and Monitoring Recommendations

Based on the results of the air quality assessment, Stantec has recommended additional mitigation measures beyond those included in the modelling assessment. With the implementation of the additional mitigation measures recommended in Section 8.0 of this report, no significant adverse effects from the Project construction phase are expected. Additionally, scheduling construction activities to minimize activities that generate emissions from occurring concurrently will aid in reducing the potential for adverse effects.

Monitoring activities recommended in Section 8.0 of this report for Project construction will be implemented to verify that mitigation measures are effectively being implemented. The contractor will monitor the air quality and the weather in the vicinity of the construction activities and review the measurements on an on-going basis. When the ambient measurements indicate that concentrations are increasing and approaching an air quality action threshold, criteria or standard, remedial actions to reduce construction related emissions will be implemented by the contractor. For example, the contractor may need to apply additional dust suppressant (e.g., increasing watering amounts or frequency of application), and/or reduce the number of vehicles/equipment operating at the site.

Conclusions August 24, 2023

At the time of this study, the construction project is still in the preliminary planning stages and details regarding construction activities, schedule, and operations are limited. Assumptions used in the air dispersion modelling were based on information available at the time of the study and best estimates. If the actual construction operations differ significantly from the maximum emissions scenario parameters and assumptions used in this study, the air quality impacts of the Project should be re-assessed to guide the contractor's planning of mitigation measures.

10.2 Air Quality Assessment - Operation

The air quality assessment for the operation phase considered Project related incremental changes in air quality due to the addition of GO trains, GO bus service and parking at the proposed GO stations. Three scenarios were assessed for Project operations:

- Baseline (2021) (i.e., existing conditions)
- Future (2031) No Build (i.e., future conditions without the Project)
- Future (2031) Build (i.e., future conditions with the Project)

Project Alone Predictions

Project Alone concentrations at special/critical receptors for the COIs are predicted to be higher in the Future Build scenario compared to the Existing and Future No Build scenarios, but below their respective AQ objectives except for nitrogen dioxide (NO₂) concentrations for the Future Build scenario. There is a predicted exceedance of the 1-hour average 98th percentile and annual CAAQS by 145% and 6% respectively. No Project Alone exceedances were predicted to occur at special receptors for the Existing and Future No Build scenarios.

Cumulative Predictions

With the addition of background concentrations, the maximum cumulative concentrations of COIs remain below their AQ objectives at sensitive and critical receptor locations for the Existing, Future No Build and Future Build scenarios other than:

- NO₂ for the Future Build Scenario (exceeds the 1-hour and annual 2025 CAAQS by 212% and 125%, respectively)
- Benzene for the Existing/Future No Build (exceeds the annual AAQC by 20%) and Future Build scenarios (exceeds the annual AAQC by 32%)

Conclusions August 24, 2023

Benzo(a)pyrene for the Existing/Future No Build (exceeds the 24-hour and annual AAQC by 208% and 781%) and Future Build scenarios (exceeds the 24-hour and annual AAQC by 252% and 844%)

Background levels of benzene and benzo(a)pyrene are above their respective air quality objectives, with the Project only contributing a small amount (less than 21%) to the cumulative levels.

10.3 Greenhouse Gases Assessment - Construction and Operation

Direct and indirect (third-party) GHG emissions are estimated for the Project activities during construction and operation of the Project.

Direct GHG emissions are expected during construction and operation as a result of equipment and vehicles burning hydrocarbon fuel. Direct construction phase emissions are estimated to be 4.1 kilotonnes of carbon dioxide equivalent (kt CO₂e) per year. Direct operation phase emissions are estimated to be 14.7 kt CO₂e/year.

Following implementation of mitigation measures, direct Project contributions to GHG emissions from annual construction and operation are estimated to be:

- 0.001% (construction) and 0.002% (operation) of Canada's total GHG emissions
- 0.003% (construction) and 0.009% (operation) of Ontario's total GHG emissions
- 0.002% (construction) and 0.008% (operation) of the Canadian Transportation sector emission total
- 0.008% (construction) and 0.03% (operation) of the Ontario Transportation sector emission total

Indirect (third-party) GHG emissions from electricity may be released during operation as a result of additional electrical power required to operate the stations and for wayside power. Predicted annual indirect (third-party) electricity operation emissions are estimated to be 0.4 kt CO₂e/year.

The GHGs released by the Project are expected to comprise 0.004% and 0.01% of the Government of Canada's and Province of Ontario's 2030 emission target, respectively.

The implementation of the Project is predicted to reduce the use of private vehicles in and near the Project footprint. Over a 60-year lifecycle, Metrolinx estimates that the Project can result in a reduction of 1.7 billion vehicle kilometers travelled and is equivalent to a reduction of up to 353 kt CO₂e. The reduction is estimated using a Canada specific average fuel consumption emission factor per kilometer travelled for

Conclusions August 24, 2023

light duty vehicles (IEA, 2019). On an annual basis, the Project can reduce up to 31 million vehicle kilometers traveled which is equivalent to 6.4 kt CO₂e. It is expected that over time, more electric vehicles will be deployed in the area and the electricity GHG intensity will decline, leading to less GHG savings from the project annually over time.

The preliminary GHG emissions are estimated assuming that diesel locomotives will be used for the 60-year lifecycle of the Project. This is likely to change over time toward the use of some electrically driven locomotives. This assumption for GHG emissions from the Project is therefore conservative. Nevertheless, there is expected to be a small net overall increase in GHG emissions as a result of the operation of the Project. The operation of the Project is therefore not expected to help the Government of Canada to meet its future GHG emissions targets.

References August 24, 2023

11.0References

- AECOM. 2011. Rail Service Expansion from Oshawa to Bowmanville and New Rail Maintenance Facility in Whitby Air Quality Assessment Report. January 2011.
- Canadian Council of Ministers of the Environment (CCME). 2021. State of the Air Report. Available at http://airquality-qualitedelair.ccme.ca/en/. Accessed in March 2021
- California Environmental Protection Agency Air Resources Board (CARB), 2002. Miscellaneous Processes Methodologies - Construction and Demolition. Section 7.7: Building Construction Dust. Available at http://www.arb.ca.gov/ei/areasrc/fullpdf/full7-7.pdf. September 2002.
- Cheminfo Services Inc. 2005. Best Practices for the Reduction of Air Emissions from Construction and Demolition Activities. March 2005.
- Environment and Climate Change Canada (ECCC). 2022. National Inventory Report 1990 - 2020: Greenhouse Gas Sources and Sinks in Canada, Part 1, Part 2 and Part 3. April 2022.
- Environment and Climate Change Canada (ECCC). 2021a. Canada's Climate Actions for a Healthy Environment and a Healthy Economy. July 2021.
- Environment and Climate Change Canada (ECCC). 2020a. Strategic Assessment of Climate Change. Revised October 2020.

Environment and Climate Change Canada (ECCC). 2017. Road dust emissions from unpaved surfaces: guide to reporting. Available at https://www.canada.ca/en/environment-climate-change/services/nationalpollutant-release-inventory/report/sector-specific-tools-calculate-emissions/roaddust-unpaved-surfaces-guide.html. March 2017.

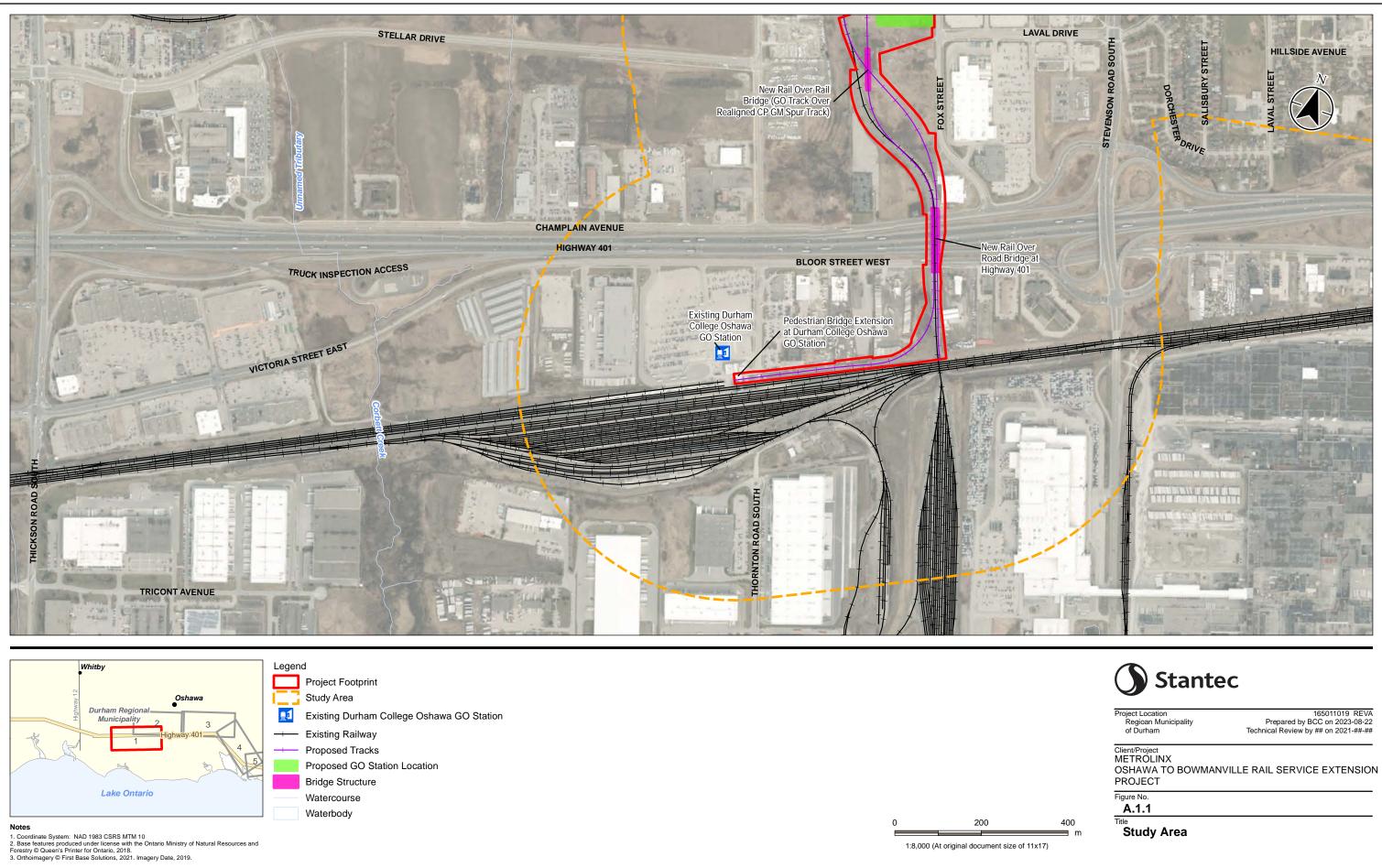
- Environment and Climate Change Canada (ECCC)/Health Canada (HC). 2013 Screening Assessment for the Challenge, Quartz Chemical Abstracts Service Registry Number 14808-60-7, Cristobalite Chemical Abstracts Service Registry Number 14464-46-1. June 2013
- Federal Highway Administration (FHWA), U.S. Department of Transportation, 2006. FHWA Roadway Construction Noise Model User's Guide. January 2006.

References August 24, 2023

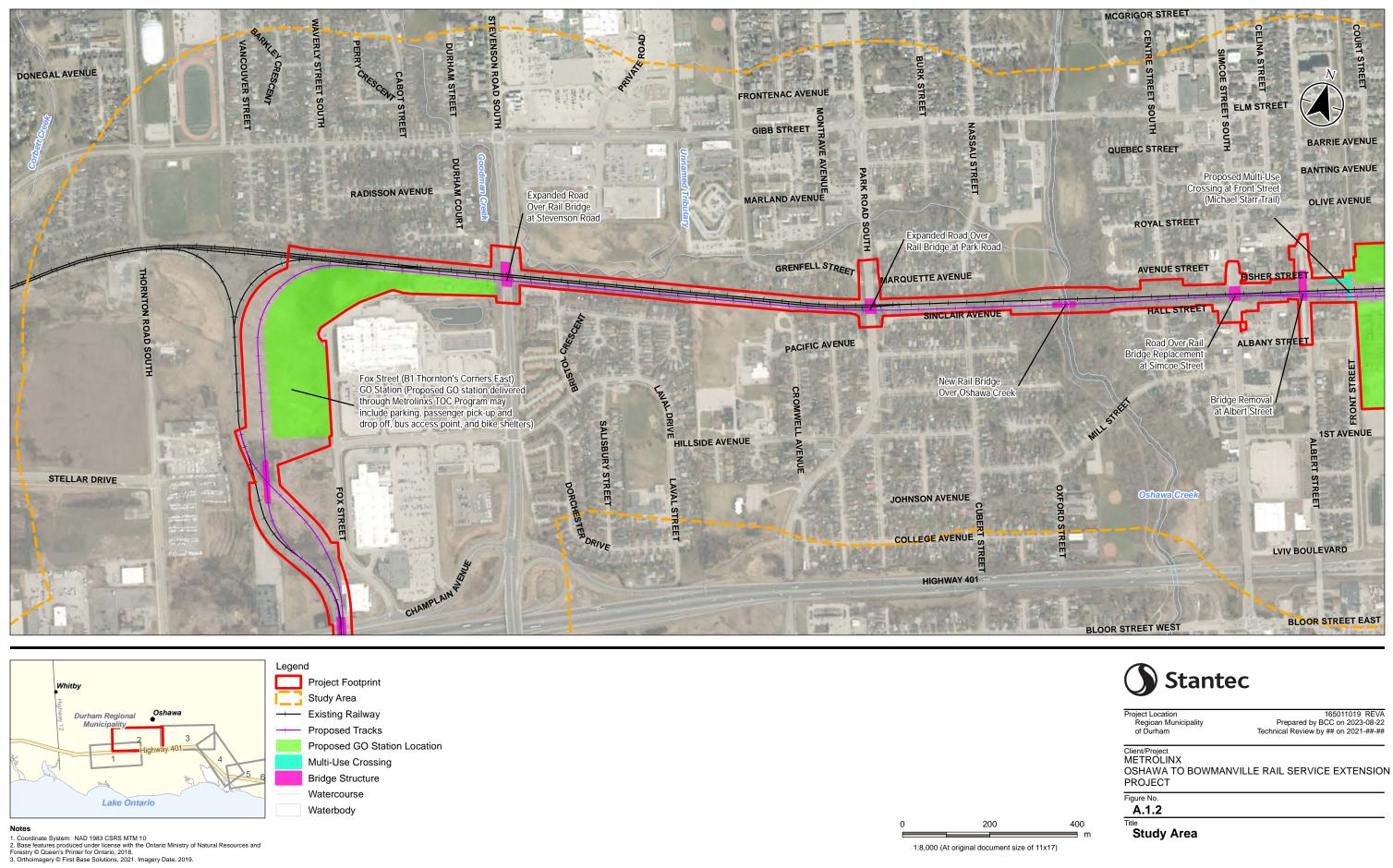
- Government of Ontario. 2007. McGuinty Government Action Plan for Rapid Transit Will Move the Economy Forward. June 15, 2007. Available at https://news.ontario.ca/en/release/4019/mcguinty-government-action-plan-forrapid-transit-will-move-the-economy-forward.
- International Energy Agency (IEA), 2019. Fuel Economy in Major Car Markets: Technology and Policy Drivers 2005 - 2017.
- Lall et. al. 2004. Estimation of historical annual PM2.5 exposures for health effects assessment. Atmospheric Environment 38 (2004) 5217-5226. Ramona Lall, Michaela Kendall, Kazuhiko Ito, George D. Thurston.
- Metrolinx, 2019a. Draft, Environmental Guide: Recommended Approach for Assessing and Mitigating Air Quality Impacts and Greenhouse Gas Emissions of Metrolinx Public Transit Projects. November 2019.
- Metrolinx. 2020. Bowmanville Rail Service Extension, Initial Business Case Update, February 2020. Available online at: http://www.metrolinx.com/en/regionalplanning/projectevaluation/benefitscases/20 20-02-20-Bowmanville-Rail-Service-Extension-IBC-Update-FINAL.pdf.
- Metrolinx. 2021a. Request for Information, Bowmanville Locomotive Information, 201075-STANTEC-GEN-RFI-00014, Date of Response August 30, 2021.
- Metrolinx. 2021b. Request for Information, Bowmanville Locomotive Information 201075-STANTEC-GEN-RFI-00017, Date of Response September 7, 2021.
- Metrolinx. 2021c. Request for Information, GO Station Transit Schedules, 201075-STANTEC-GEN-RFI-00019, Date of Response October 20, 2021.
- Metrolinx. 2022a. Request for Information, AQ-Operations-Inputs, 201075-STANTEC-GEN-RFI-00040, Date of Response February 22, 2022.
- Metrolinx. 2022b. Request for Information, Fuelling, 201075-STANTEC-GEN-RFI-00048, Date of Response April 5, 2022.
- Metrolinx. 2022c. Request for Information, Follow-up Questions to RFI00040, 201075-STANTEC-GEN-RFI-00043, Date of Response April 7, 2022.
- Ministry of Transportation (MTO), 2020. Environmental Guide for Assessing and Mitigating the Air Quality Impacts of Greenhouse Gas Emissions of Provincial Transportation Projects. May 2020.

References August 24, 2023

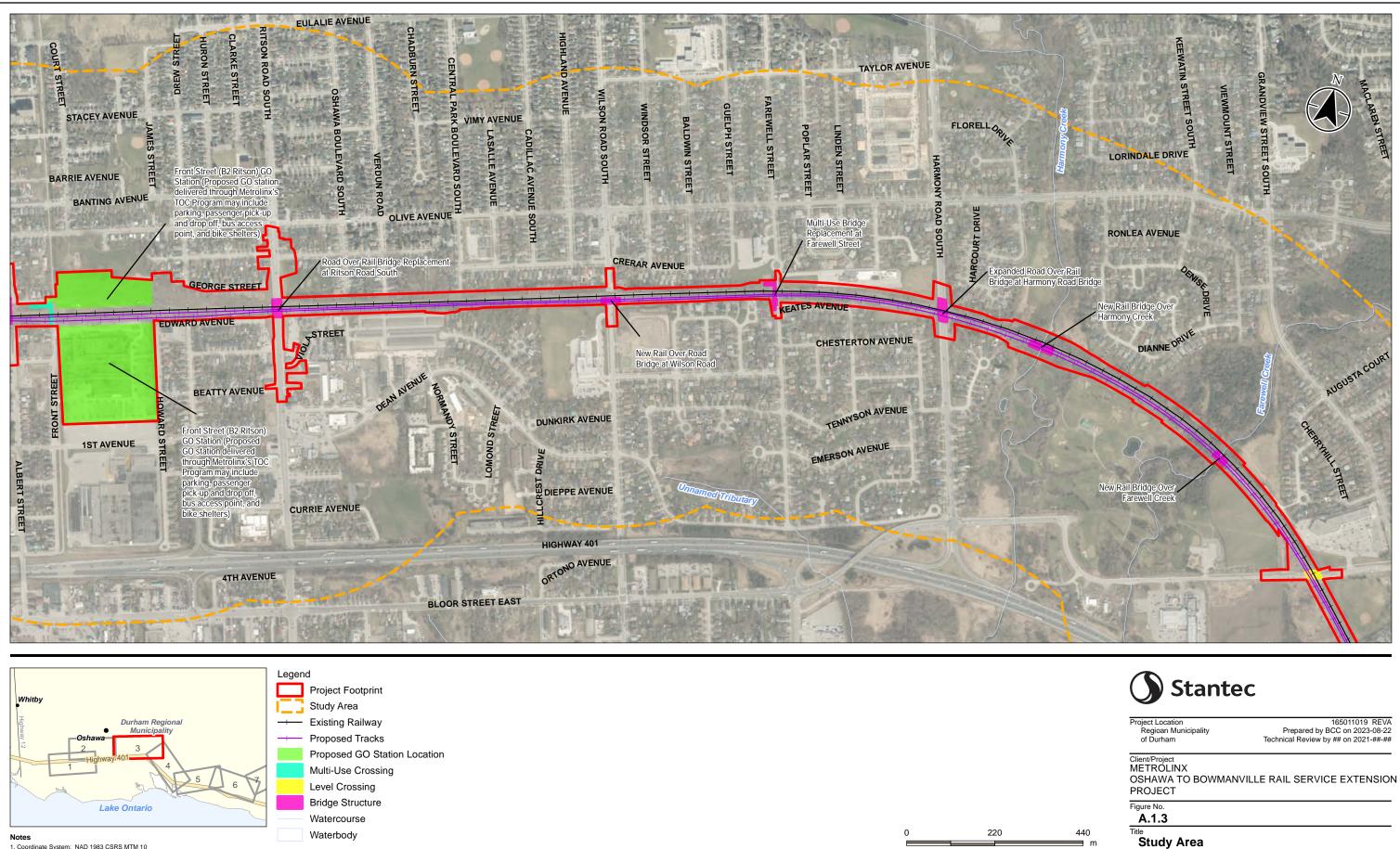
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2021. Personal communication by MECP to Connie Lim (Stantec Consulting Ltd.). August 20, 2021.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2020a. Regional Terrain Data. Available online: https://www.ontario.ca/environment-and-energy/map-regional-meteorological-and-terrain-data-air-dispersion-modelling.
- Ontario Ministry of the Environment, Conservation and Parks (MECP).2020b. Standards Development Branch. 2019a. Ontario's Ambient Air Quality Criteria. Updated May 2020.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2019. Air Contaminants Benchmarks List: standards, guidelines and screening levels for assessing point of impingement concentrations of air contaminants. Updated March 25, 2019.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2018a. Operations Manual for Air Quality Monitoring in Ontario. February 2018.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2018b. Procedure for Preparing an Emission Summary and Dispersion Modelling Report, Version 4.1, March 2018 (PIBs 3614e04.1).
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2018c. Preserving and Protecting our Environment for Future Generations, A Made in Ontario Environment Plan.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2018d. Ontario Air Standards for Sulphur Dioxide (SO₂). March 2018.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2017a. Considering climate change in the environmental assessment process. October 2017.
- Ontario Ministry of the Environment, Conservation and Parks (MECP). 2017b. Air Dispersion Modelling Guideline for Ontario, Version 3.0, February 2017 (PIBs 5165e03).
- Stantec 2021. Personal communications between Connie Lim (Stantec Consulting Ltd.) and Michael Wolczyk (Stantec Consulting Ltd.) via email July 8, 2021.
- Stantec 2022. Personal communications between Ashley Cruz (Stantec Consulting Ltd.) and Hassan Madhoun (Stantec Consulting Ltd.) via email January 12, 2022.



References August 24, 2023

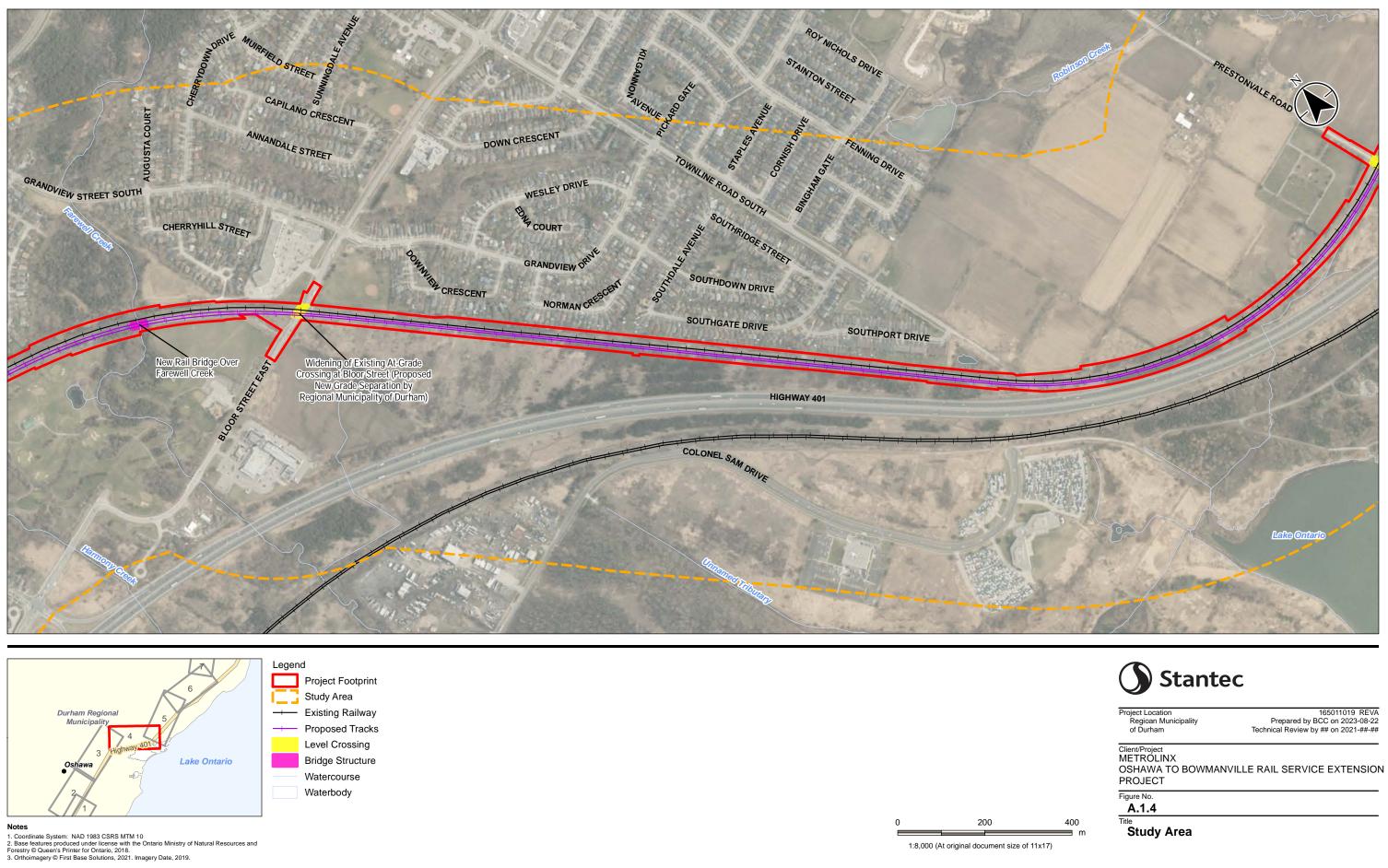

- Western Regional Air Partnership (WRAP), 2006. Western Regional Air Partnership Fugitive Dust Handbook Chapter 3: Construction and Demolition. Available at https://www.wrapair.org/forums/dejf/fdh/content/FDHandbook_Rev_06.pdf. September 7, 2006.
- U.S. EPA, 2020a. U. S. EPA Emission Standards for Tier 1 3 Engines. Available at https://www.ourair.org/wp-content/uploads/epatierstnds.pdf. Accessed January 2020.
- U.S. EPA, 2020b. U.S. EPA's Motor Vehicle Emission Simulator (MOVES) 3 model. Available at https://www.epa.gov/moves/latest-version-motor-vehicle-emissionsimulator-moves .
- U.S. EPA, 2016. Nonroad Compression Ignition Engines -- Exhaust Emission Standards. EPA-420-B-16-022. March 2016.
- U.S. EPA, 2016. Nonroad Compression Ignition Engines -- Exhaust Emission Standards. EPA-420-B-16-022. Available at https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100OA05.pdf. March 2016.
- U.S. EPA, 2015a. U. S. EPA Speciation Profiles and Toxic Emission Factors for Non-Road Engines. EPA-420-R-15-019. November 2015.
- U.S. EPA, 2015b. Technical support document for NO2-related AERMOD modifications. EPA-454/B-15-004. December 2015.
- U.S. EPA, 2014. Clarification on the Use of AERMOD Dispersion modeling for Demonstrating Compliance with the NO₂ National Ambient Air Quality Standard, Memorandum, September 30, 2014.U.S. EPA, 2012. Memorandum: Haul Road Workgroup Final Report Submission to EPA-OAQPS. March 2, 2012.
- U. S. EPA, 2011. AP-42, Fifth Edition, Volume 1, Chapter 13.2.1 Paved Roads, January 2011.
- U.S. EPA, 1995. AP-42, Fifth Edition, Volume 1, Appendix B.2 Generalized Particle Size Distributions, January 1995.

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report


Appendix A Project Footprint and Components

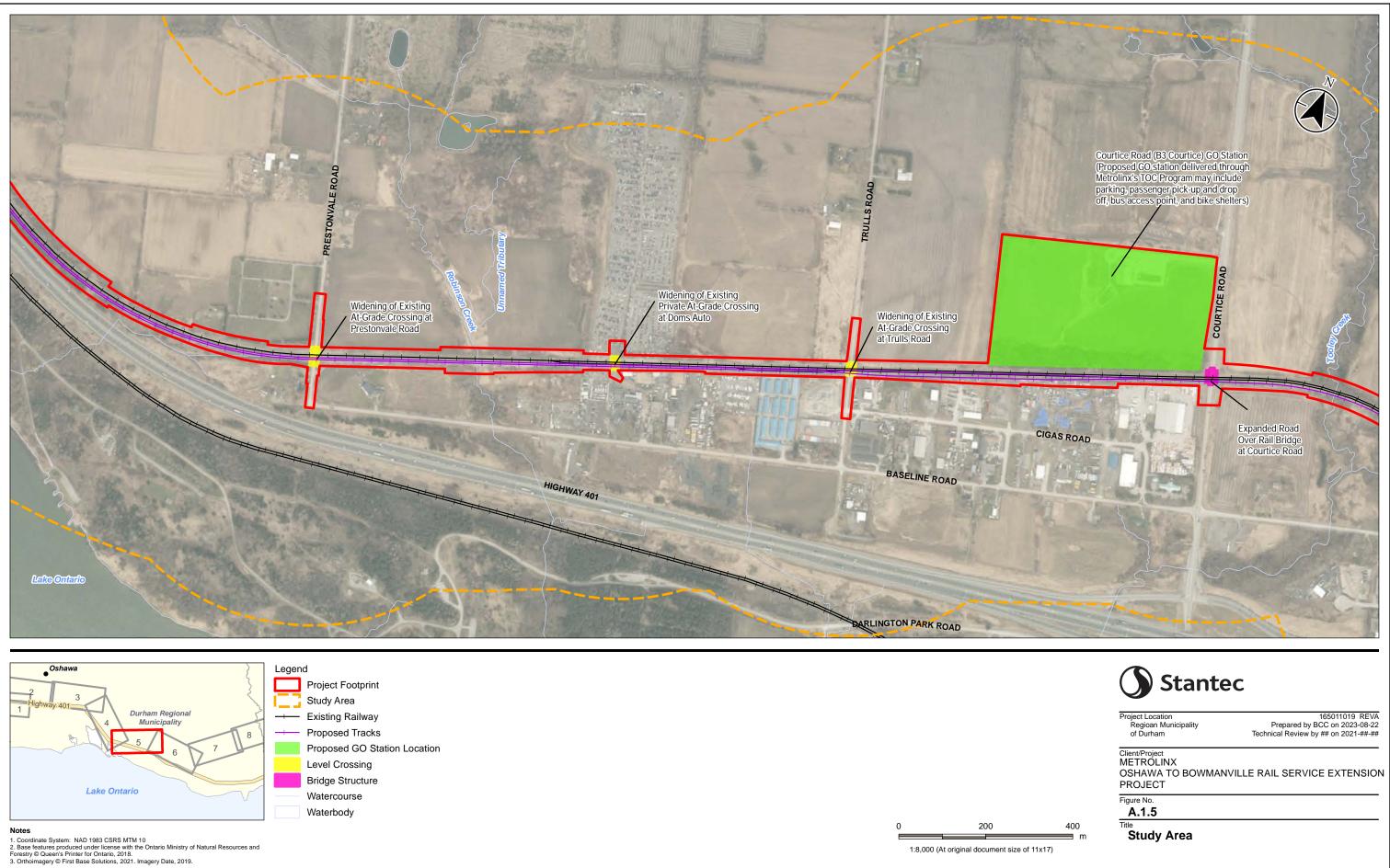
Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

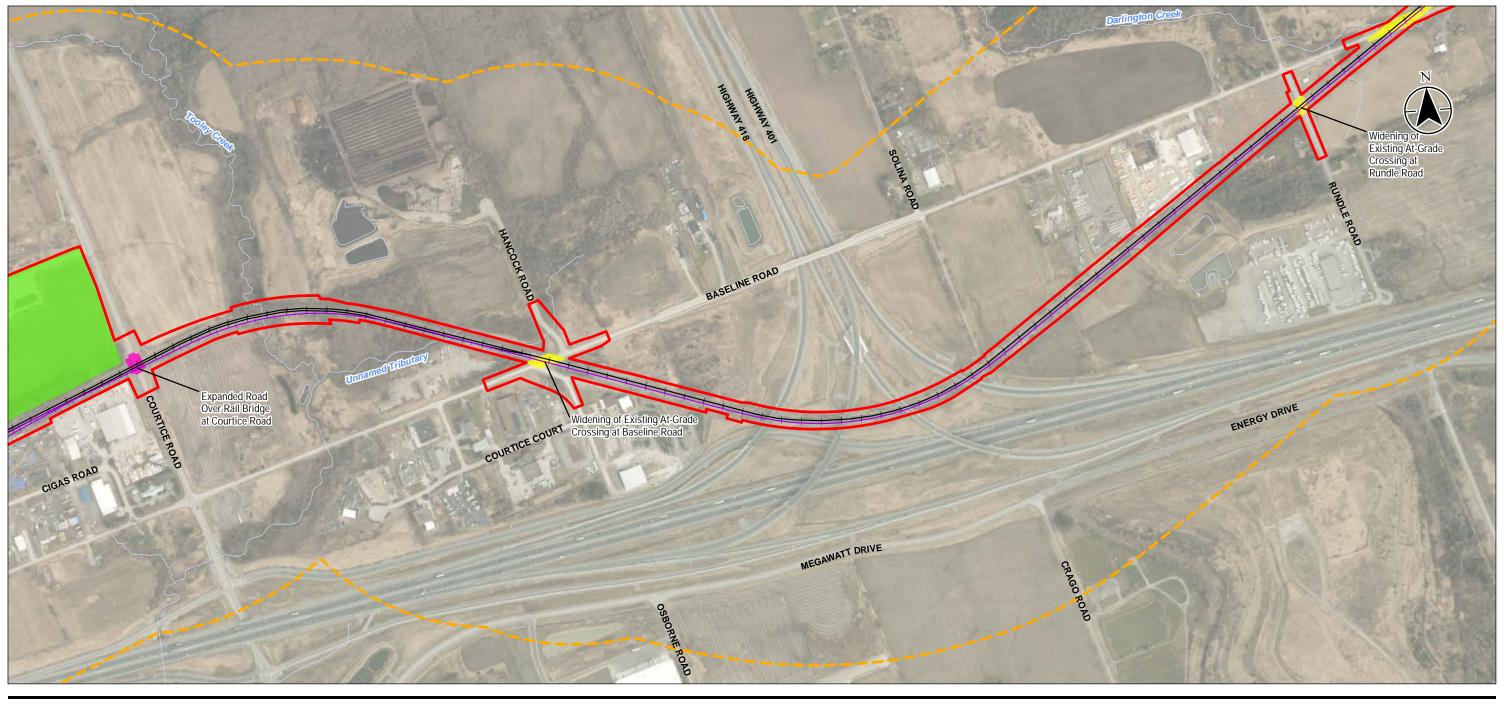


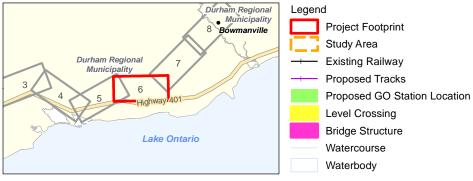
1. Coordinate System: NAD 1983 CSRS MTM 10 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2018.

3. Orthoimagery © First Base Solutions, 2021. Imagery Date, 2019.


Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1:8,750 (At original document size of 11x17)





isclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

200

0

Notes

1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and
 Forestry © Queen's Printer for Ontario, 2018.
 3. Orthoimagery © First Base Solutions, 2021. Imagery Date, 2019.

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

1:8,000 (At original document size of 11x17)

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-08-22 Technical Review by ## on 2021-##-##

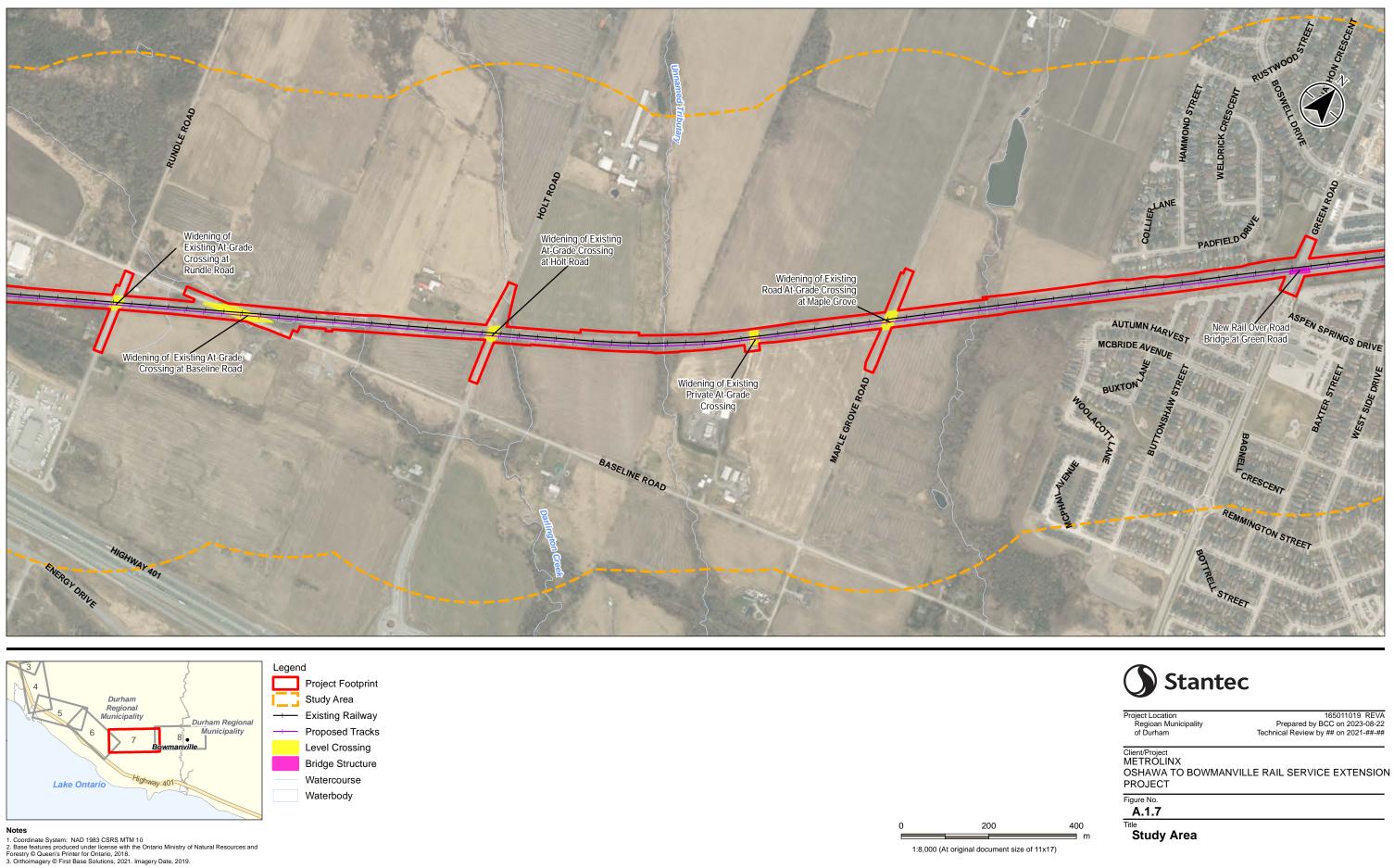

Client/Project METROLINX OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT

Figure No.

A.1.6 Title

Study Area

400 ∃ m

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

200

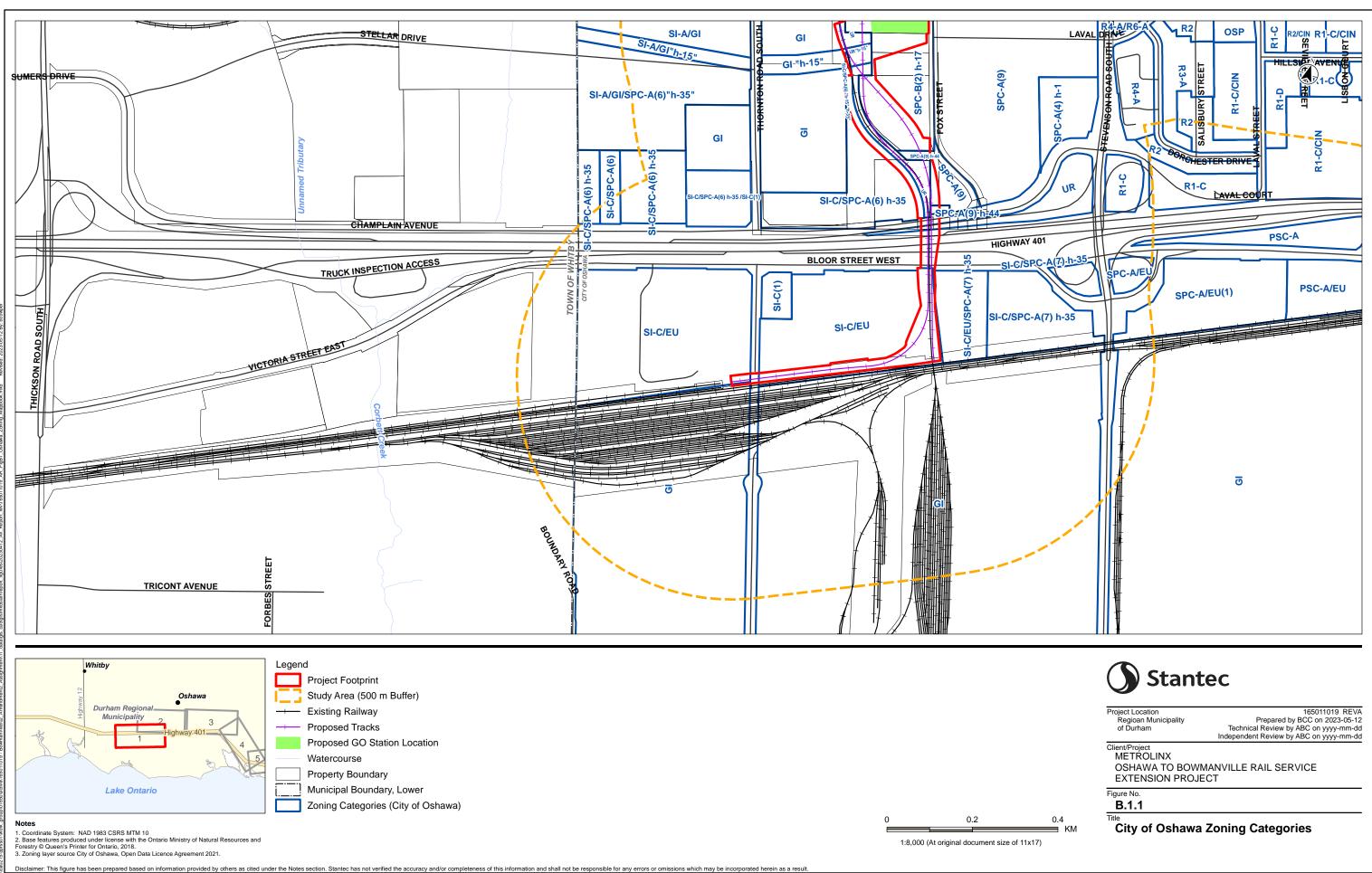
0

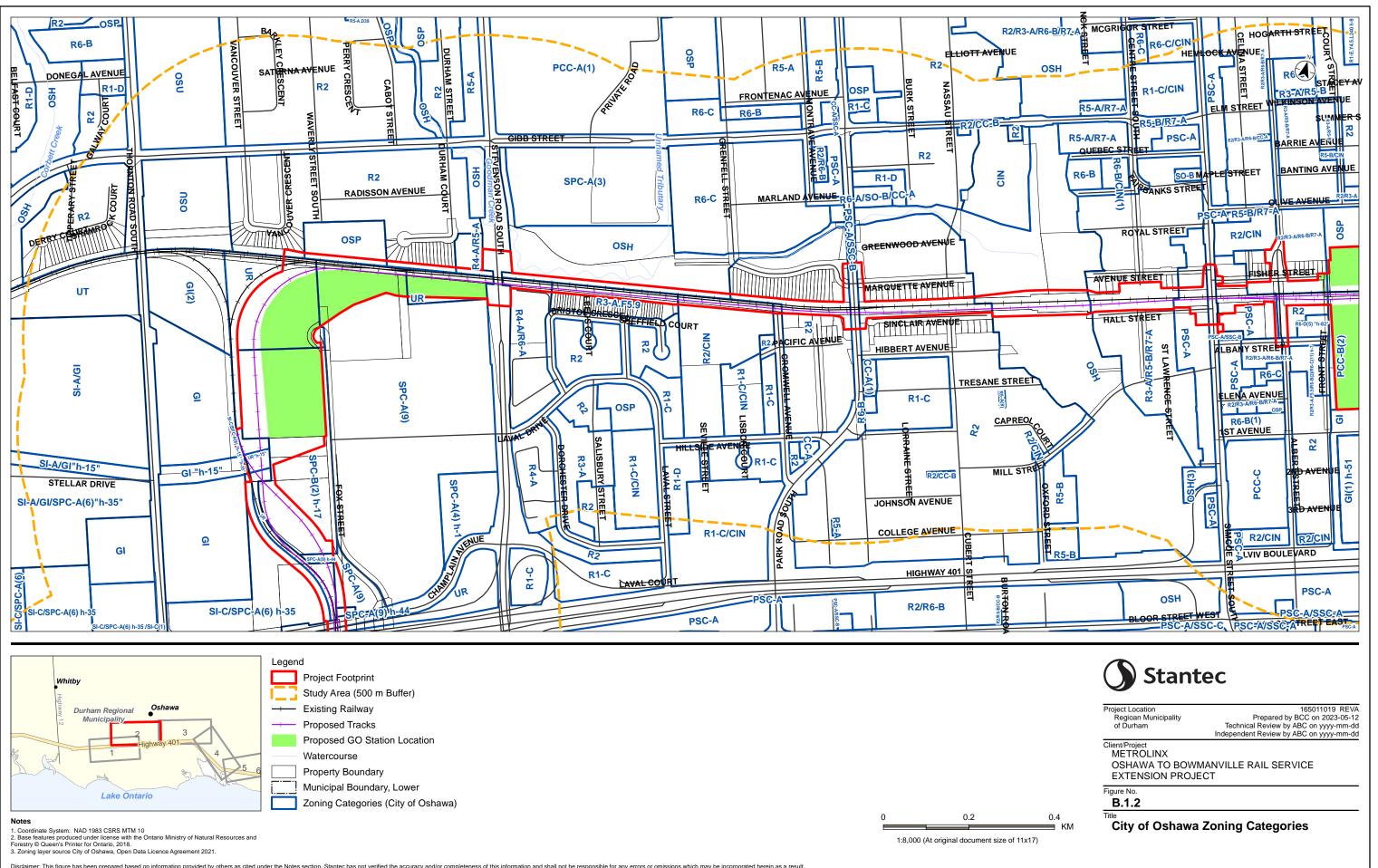
1. Coordinate System: NAD 1983 CSRS MTM 10 2. Base features produced under license with the Ontario Ministry of Natural Resources and Forestry © Queen's Printer for Ontario, 2018. 3. Orthoimagery © First Base Solutions, 2021. Imagery Date, 2019.

claimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

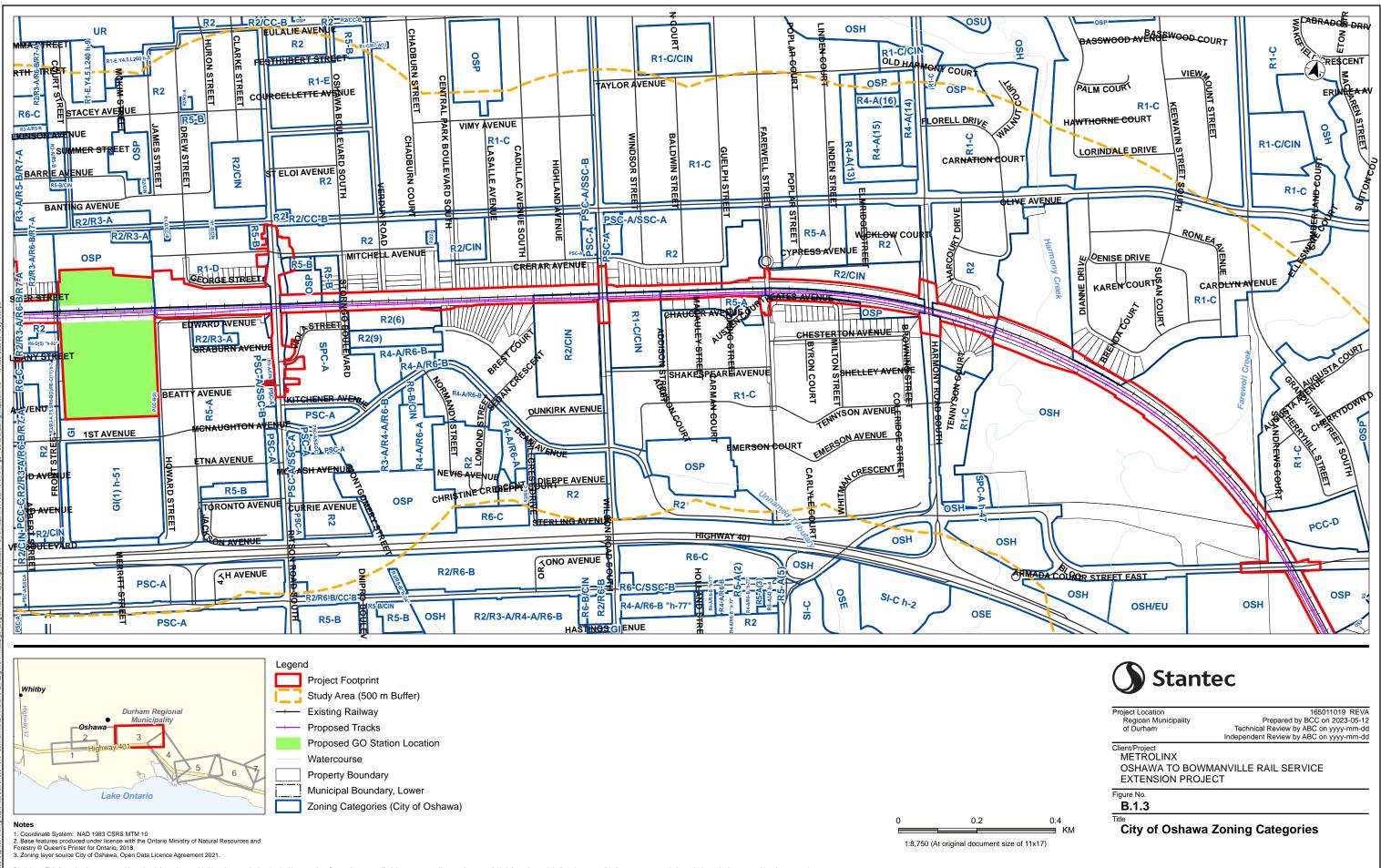
1:8,000 (At original document size of 11x17)

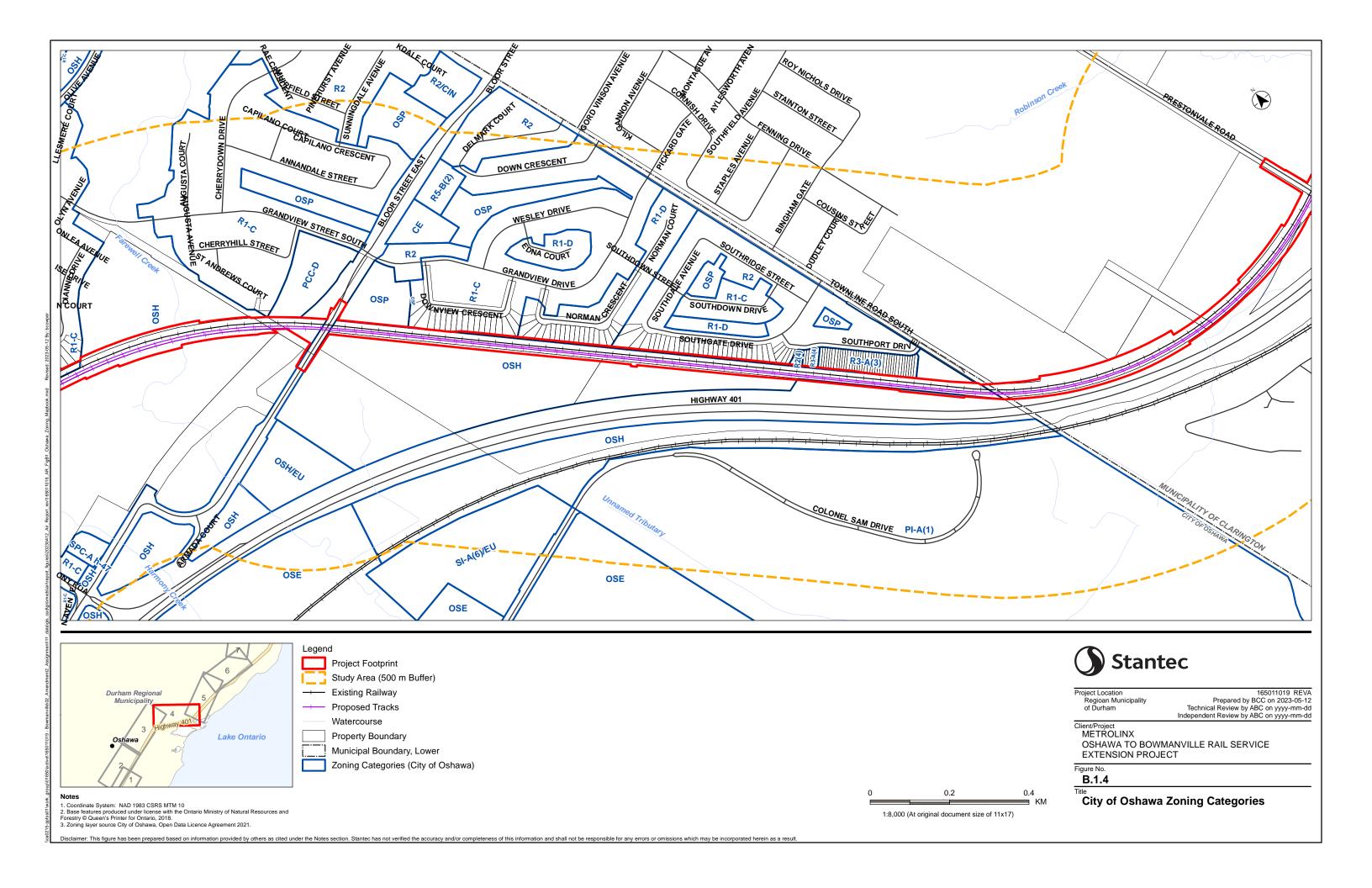
Figure No. A.1.8

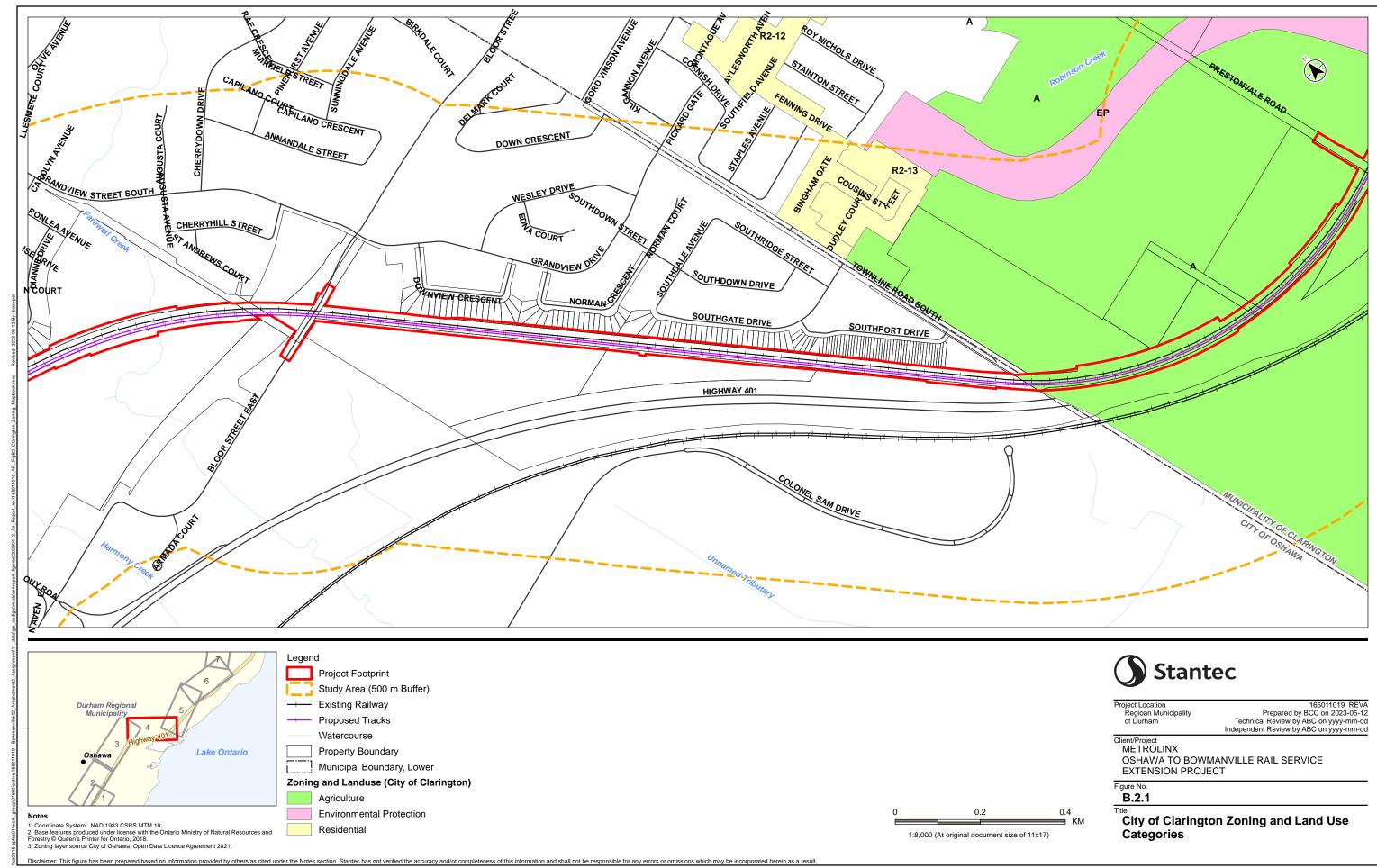

Title Study Area

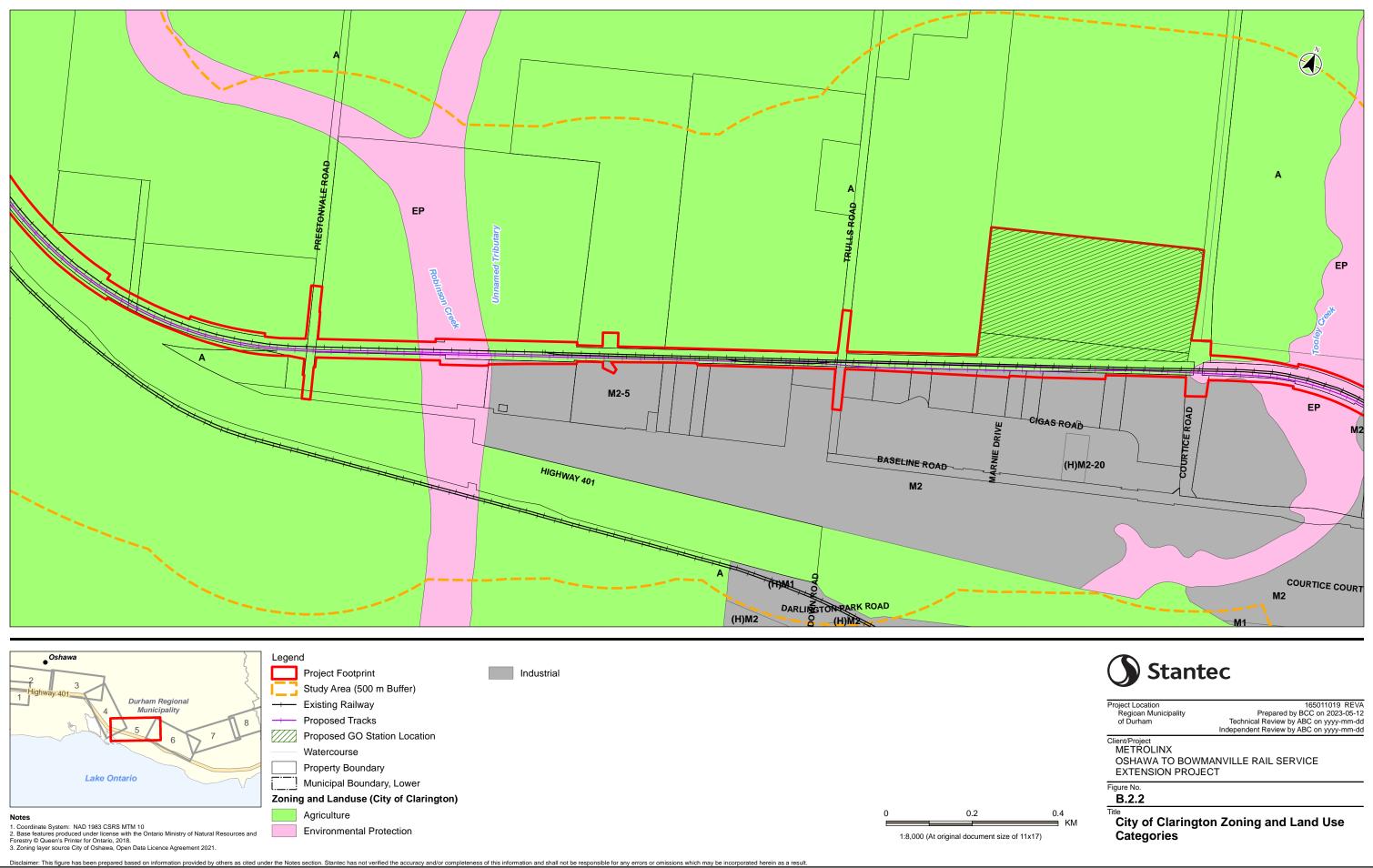

400 m

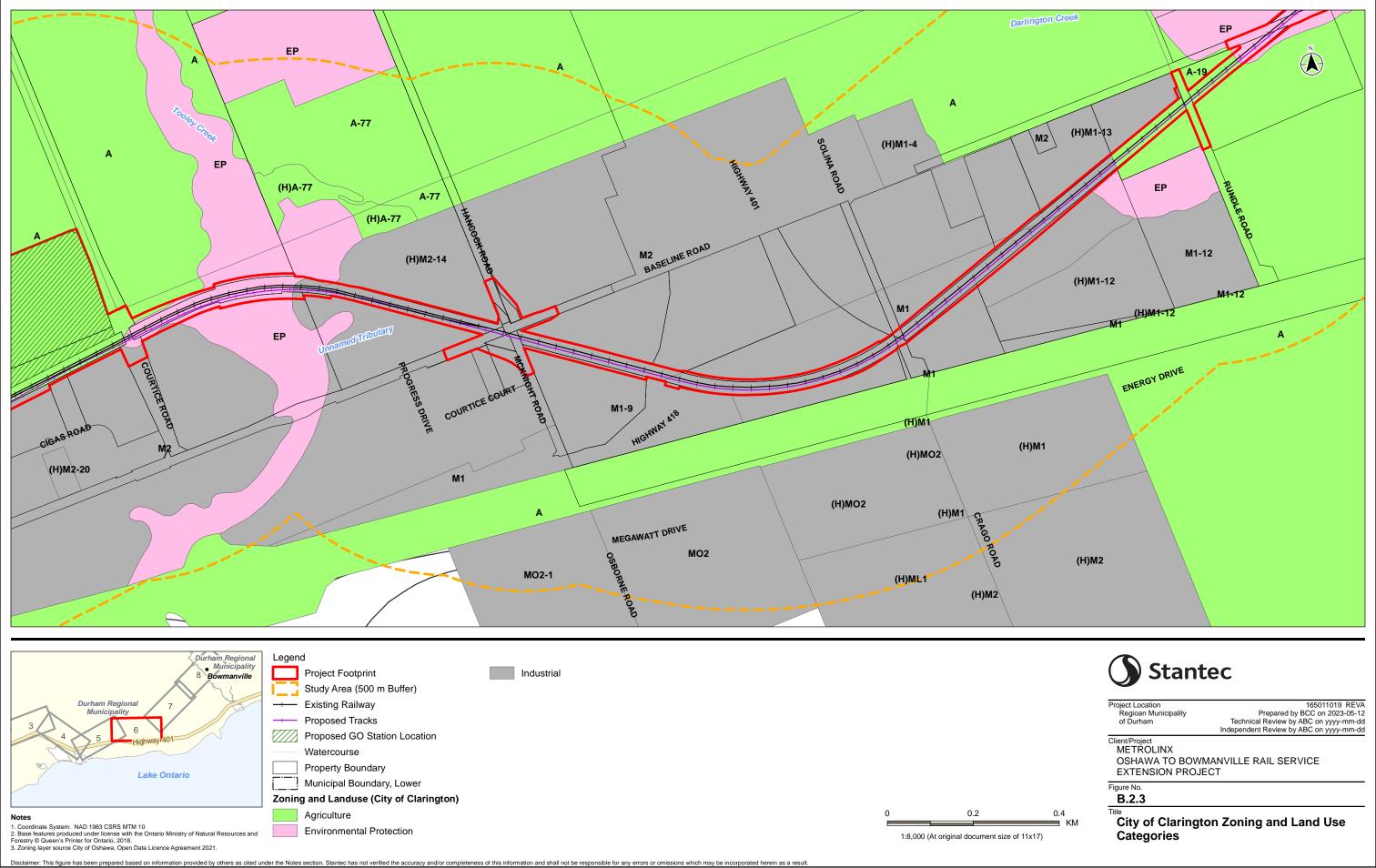
Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report

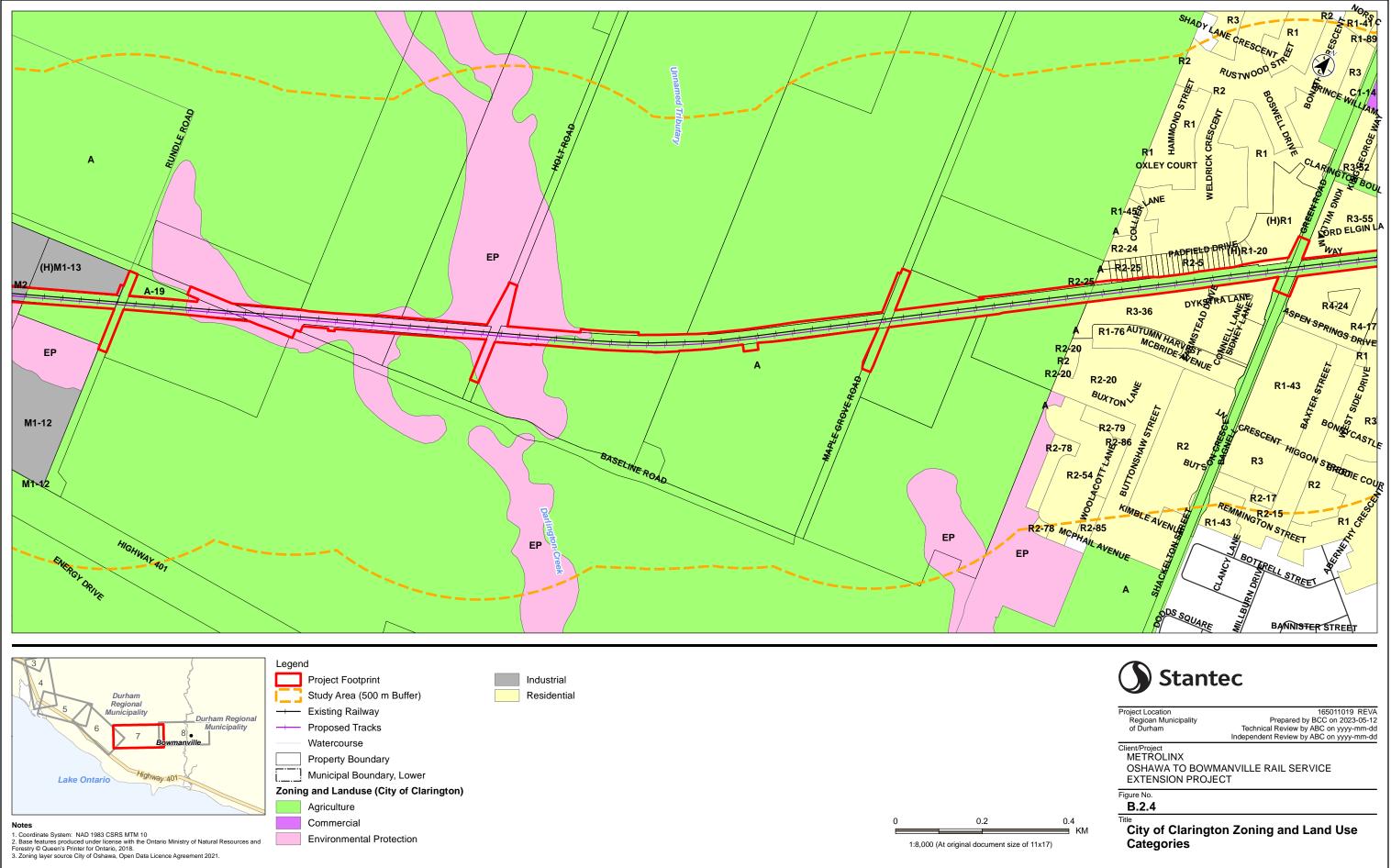

Appendix B Zoning Maps

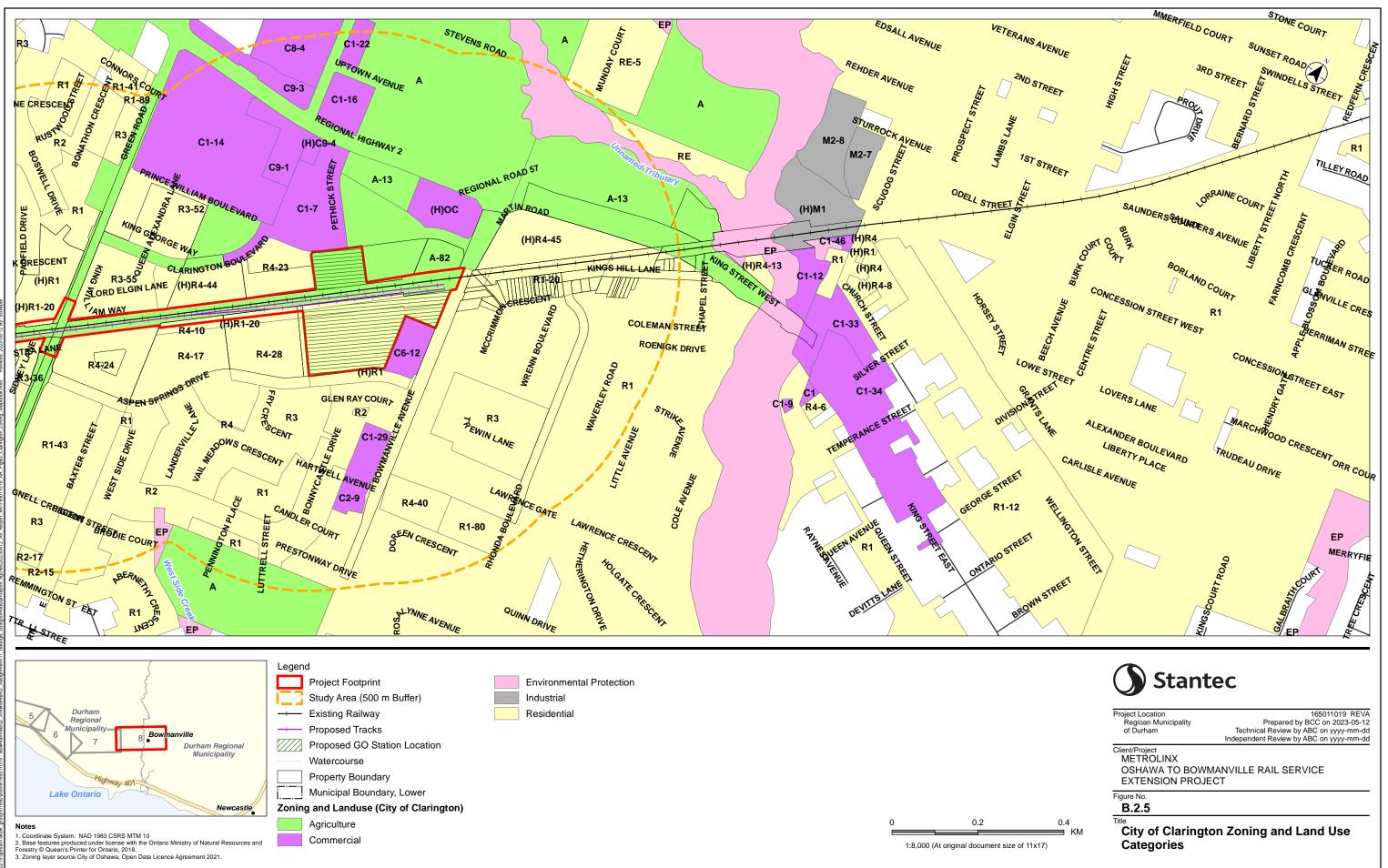





laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.




laimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.



Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

sclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report

Appendix C Air Quality Emission Sources and Emission Estimation

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: Rundle Road - Widen Crossing

Source: Construction Non-Road Mobile Equipment Emissions

Description: Non-road equipment will be used during construction of the Rundle Road Crossing Widening. Tailpipe emissions due to the fuel combustion would be generated from these sources. The Rundle Road Crossing Widening will include removals and reconstruction.

Construction Phase	Remo	ovals and Reconstruction	on	Unit Power Rating (hp)	Fuel	1	Reference/Note	3	Worst-case Ope	rating Scenario
Type of Equipment	Total Number of Equipment to be Used Onsite ¹	Total Number of Equipment Used at the same time ²	% time used ²						Number of Equipment Used	Operating Time
Asphalt spreader				142	Diesel	Assumed AP500F (142 hp)			0	day
Augers/Drill Rigs				260	Diesel	Assumed Atlas Copc	o PowerROC T4	5 Drill (260 h)	0	day
Backhoe	1	1	50%	120	Diesel	Assumed Caterpillar	Assumed Caterpillar 440, 450 Backhoe Loaders (120 hp)			day
Bobcat	1	1	50%	115	Diesel	Assumed Bobcat E14	45 Large Excavat	or (115 hp)	1	day
Boom truck	1	0	10%	500	Diesel	Assume Manitex 401	24SHL mounted	on Peterbilt 567	0	day
Compactor	1	1	10%	100	Diesel	Assumed Caterpillar	CP433E Vibrator	y Compactor	1	day
Concrete breaker				68	Diesel	Assume hydraulic breaker on Bobcat S62			0	day
Concrete pump				100	Diesel	Assumed Ajax ASP7011			0	day
Concrete Saw	1	1	10%	50	Diesel	Assumed Husqvarna	FS 5000 D walk	behind saw	1	day
Concrete truck	1	0	10%	500	Diesel	Assume truck mounte HX515. https://www.in series			0	day
Crane				270	Diesel	Assumed Tadnano G	GR-1000SL-2 (27) hp)	0	day
Dump Truck	2	2	13%	600	Diesel	Assumed Caterpillar	772G dump truc	(600 hp)	2	day
Flatbed truck				360	Diesel	Assumed Hino XL Se	aries 360HP		0	day
Pavement saw	1	1	10%	50	Diesel	Assumed Husqvarna	FS 5000 D walk	behind saw	1	day
Paving roller	1	0	10%	100	Diesel	Assumed CAT CCS7 Combination Asphalt Compactor, https://www.cat.com/en_US/products/new/equipment/comp actors/tandem-vibratory-rollers.html?page=2			0	day
Pile Driver				240	Diesel	Assume Junttan Pile Driving Rig PM23, Cummins QSB6,7 EU Stage IV / US EPA			0	day
Water truck	1	1	10%	285	Diesel	Assumed John Deere 300D water truck (285 hp)			1	day
Zoomboom				110	Diesel	Assume Skytrak Model 8042 Telehandler, Engine Cummins OSB4.5T Turbo			0	day
Total number of equipment		8				Total		8		
Total HP - weighted (5)		316						Avg HP	233.8	

Notes: 1) The total number of each type of construction equipment that may be used onsite is estimated by the project design team. 2) Not all equipment will be used on the same day and for the entire day. The estimated worst-case of equipment used on the same day and the percent of time used that day was estimated by the project design team. Some equipment are not likely to be used on the same day as the other equipment.

3) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction.

c) Construction activities will account of a solution to the population of the solution of

Contaminant(s) of Concern: NOX, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in the equipment engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in the essessment

 Methodology:
 Mass Balance (MB) and Emission Factor (EF)

 Table 2: S0_Emission Factor Calculation
 S0_emission is based on the maximum allowable suffic content in diesel and fuel consumption of the equipment. S0_emission factor is calculated below.

 Data
 Value
 Unit
 Reference

 So_endersion is allowable
 So_endersion is allowable. Environment and
 So_endersion is protocoment and

Sulphur content in diesel	15	ppm	Sulphur in Diesel Fuel Regulations, Environment and Climate Change Canada (ECCC)					
Diesel Engine Efficiency	45%		"Just the basics: Diesel Energy". US department of energy					
Lower Heating Value	128,450	BTU/gal	"Alternative Fuels Data Center – Fuel Properties Comparison " from the US Department of Energy					
Unit Conversion	0.00029	kWh/BTU	-					
	454	g/lb	-					
Density of diesel	7.00	lb/gal	-					
Energy output	16.94	kWh/gal	Calculated					
SO ₂ / gallon of diesel	0.0953	g SO ₂ /gal	A factor of 2 is applied to convert sulfur to SO ₂ assuming all the sulfur will be oxidized to SO ₂ .					
Emission Factor	0.0056	g/kWh	-					
Note: Emissions are calculated based on sulphur content in diesel as per Sulphur in Diesel Fuel Regulations.								

Table 3: Emission factors for NOx, PM, CO, NMHC

Table 3: Enlission factors for Nox, PM, CO, NMHC													
							Emission Fac	tor (1) (2) (g/kWhr)					
			50 < 75 HP			75 < 175 HP		1	175 < 600 HP			600 < 750 HP	
			Weighted (2)	Tier 3 (100-175 HP)	Tier 4 (75-175 HP)	Weighted (2)	Tier 3 (100-600 HP)	Tier 4 (175-750 HP)	Weighted (2)	Tier 3 (600-750 HP)	Tier 4 (175-750 HP)	Weighted (2)	
Nox (3)	10102-44-0	4.7	4.7	4.7	4.0	0.4	1.8	4.0	0.4	1.8	4.0	0.4	1.8
PM	N/A (pm)	0.40	0.030	0.18	0.30	0.020	0.13	0.20	0.020	0.09	0.20	0.020	0.09
PM10	N/A (pm10)	0.38	0.03	0.17	0.29	0.02	0.13	0.19	0.02	0.09	0.19	0.02	0.09
PM2.5	N/A (pm2.5)	0.36	0.03	0.16	0.27	0.02	0.12	0.18	0.02	0.08	0.18	0.02	0.08
CO	630-08-0	5.0	5.0	5.0	5.0	5.0	5.0	3.5	3.5	3.5	3.5	3.5	3.5
NMHC (3)	N/A	4.7	4.7	4.7	4.00	0.19	1.7	4.00	0.2	1.7	4.00	0.2	1.7
Notes:													

1) NOX, CO, PM emission factors: Tier 3 and Tier 4 emission standard In US EPA reference document "Nonroad Compression-lightion Engines -- Exhaust Emission Standards" and "US EPA Tier 1-3 engines" are used. PM10 and PM2.5: Based on US EPA AP-42 Appendix B.2 Generalized Particle Size Distributions for gasoline and dissel fuel combustion engines, PM10 = 96%, PM, PM2.5 = 90%, PM.

2) It is assumed that construction equipment to be used will be either US EPA Tier 3 or Tier 4 emission compliant at the following ratios: Tier 3 40% Tier 4 60% 3) Where emission factors were provided for NMHC + Nox in the US EPA reference document (i.e. not provided separately for NOx and NMHC, the emission factor was consensatively used for both Nox and NMHC.

Table 4: Speciated VOC emission factors

Diesel Engine Tier	Tie	ər3	Tier	r4	Weighted (1)
VOC Emission Factor	0.2	g/hp-h	0.142	g/hp-h	
PM Emission Factor	0.1500	g/hp-h	0.015	g/hp-h	
Key VOCs and PAH	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Emission Factor (g/hph)
Benzene	0.054100	1.08E-02	0.012910	1.83E-03	5.43E-03
1,3-Butadiene	0.001860	3.72E-04	0.000800	1.13E-04	2.17E-04
Acrolein	0.018700	3.74E-03	0.009990	1.42E-03	2.35E-03
Acetaldehyde	0.104000	2.08E-02	0.069340	9.82E-03	1.42E-02
Formaldehyde	0.292000	5.84E-02	0.217440	3.08E-02	4.18E-02
Benzo(a)pyrene	6.67E-06	1.00E-06	3.30E-06	4.92E-08	4.30E-07

Bencoveryprove
 Bencover

Emission Calculations:

SQ2 emission is based on the maximum allowable suffir context in diseal and fuel consumption of the sequence. NOx, PM, CO, and non-mehane hydrocarbon (NMHC) emissions from onsite equipment talipipe enhances far collusiated based on the US EPA reference document. "Noncead Compression-Agrition Engines – Exhaust Emission Standards". Key VOCs emission factors are derived from the data in US EPA AP-42 reference "Speciation Profiles and Toxic Emission Factors for Noncead Engines (Nov 2015)" as shown above.

Source Group	Contaminant	CAS#	Emissior	n Factor	Unit Power Rating (hp)	Operating Load	% of Time Operating ⁽³⁾	Emission Rate - Each Equipment	Worst-case Sce	nario for Modelling
			Value	Unit	1			(g/s)	Number of Equipment	Emission Rate - A Equipment ⁽⁴⁾ (g/s
	SO ₂	7446-09-5	0.0056	g/kWhr	120	40%	50%	2.8E-05	1	2.8E-05
	NO _x PM	10102-44-0 N/A (pm)	1.8 0.13	g/kWhr g/kWhr	120 120	40% 40%	50% 50%	9.1E-03 6.6E-04	1	9.1E-03 6.6E-04
	PM10 PM2.5	N/A (pm10) N/A (pm2.5)	0.13 0.12	g/kWhr g/kWhr	120 120	40% 40%	50% 50%	6.3E-04 5.9E-04	1	6.3E-04 5.9E-04
ckhoe	CO NMHC	630-08-0 N/A	5.0	g/kWhr g/kWhr	120 120	40% 40%	50% 50%	2.5E-02 8.5E-03	1	2.5E-02 8.5E-03
	Benzene 1,3-Butadiene	71-43-2 106-99-0	5.43E-03 2.17E-04	g/hp-h g/hp-h	120 120	40% 40%	50% 50%	3.6E-05 1.4E-06	1	3.6E-05 1.4E-06
	Acrolein Acetaldehyde	107-02-8 75-07-0	2.35E-03 1.42E-02	g/hp-h g/hp-h	120 120	40% 40%	50% 50%	1.6E-05 9.5E-05	1	1.6E-05 9.5E-05
	Formaldehyde Benzo(a)pyrene	50-00-0 50-32-8	4.18E-02 4.30E-07	g/hp-h g/hp-h	120	40% 40%	50% 50%	2.8E-04 2.9E-09	1	2.8E-04 2.9E-09
	SO ₂ NO _x	7446-09-5 10102-44-0	0.0056	g/kWhr g/kWhr	115 115	40% 40%	50% 50%	2.7E-05 8.8E-03	1	2.7E-05 8.8E-03
	PM PM10	N/A (pm) N/A (pm10)	0.13	g/kWhr g/kWhr	115	40% 40%	50% 50%	6.3E-04 6.0E-04	1	6.3E-04 6.0E-04
	PM2.5 CO	N/A (pm2.5) 630-08-0	0.12 5.0	g/kWhr g/kWhr	115	40% 40%	50% 50%	5.7E-04 2.4E-02	1	5.7E-04 2.4E-02
bcat	NMHC Benzene	N/A 71-43-2	1.7 5.43E-03	g/kWhr g/hp-h	115	40% 40%	50% 50%	8.2E-03 3.5E-05	1	8.2E-03 3.5E-05
	1,3-Butadiene Acrolein	106-99-0 107-02-8	2.17E-04 2.35E-03	g/hp-h g/hp-h	115 115	40% 40%	50% 50%	1.4E-06 1.5E-05	1 1	1.4E-06 1.5E-05
	Acetaldehyde Formaldehyde	75-07-0 50-00-0	1.42E-02 4.18E-02	g/hp-h g/hp-h	115 115	40% 40%	50% 50%	9.1E-05 2.7E-04	1	9.1E-05 2.7E-04
	Benzo(a)pyrene SO ₂	50-32-8 7446-09-5	4.30E-07 0.0056	g/hp-h g/kWhr	115 500	40% 50%	50% 10%	2.7E-09 2.9E-05	1	2.7E-09 0.0E+00
	NO _x PM	10102-44-0 N/A (pm)	1.8 0.09	g/kWhr g/kWhr	500 500	50% 50%	10% 10%	9.5E-03 4.8E-04	0	0.0E+00 0.0E+00
	PM10 PM2.5	N/A (pm10) N/A (pm2.5)	0.09	g/kWhr g/kWhr	500 500	50% 50%	10% 10%	4.6E-04 4.3E-04	0	0.0E+00 0.0E+00
om truck	CO NMHC	630-08-0 N/A	3.50 1.71	g/kWhr g/kWhr	500 500	50% 50%	10% 10%	1.8E-02 8.9E-03	0	0.0E+00 0.0E+00
	Benzene 1,3-Butadiene	71-43-2 106-99-0	5.43E-03 2.17E-04	g/hp-h g/hp-h	500	50%	10%	3.8E-05 1.5E-06	0	0.0E+00 0.0E+00
	Acrolein Acetaldehyde	107-02-8 75-07-0	2.35E-03 1.42E-02	g/hp-h g/hp-h	500	50%	10%	1.6E-05 9.9E-05	0	0.0E+00 0.0E+00
	Formaldehyde Benzo(a)pyrene	50-00-0 50-32-8	4.18E-02 4.30E-07	g/hp-h g/hp-h	500	50% 50%	10%	2.9E-04 3.0E-09	0	0.0E+00 0.0E+00
	SO ₂ NO _x	7446-09-5 10102-44-0	0.0056	g/kWhr g/kWhr	100	20%	10%	2.3E-06 7.6E-04	1	2.3E-06 7.6E-04
	PM PM10	N/A (pm) N/A (pm10)	0.13	g/kWhr g/kWhr	100	20%	10%	5.5E-05 5.2E-05	1	5.5E-05 5.2E-05
	PM2.5 CO	N/A (pm2.5) 630-08-0	0.12	g/kWhr g/kWhr	100	20%	10%	4.9E-05 2.1E-03	1	4.9E-05 2.1E-03
mpactor	NMHC Benzene	N/A 71-43-2	1.71 5.43E-03	g/kWhr	100	20%	10%	7.1E-00 3.0E-06	1	7.1E-00 3.0E-06
	1,3-Butadiene Acrolein	106-99-0	2.17E-04 2.35E-03	g/hp-h g/hp-h	100	20%	10%	1.2E-07 1.3E-06	1	1.2E-07 1.3E-06
	Acetaldehyde	75-07-0	1.42E-02 4.18E-02	g/hp-h g/hp-h	100	20%	10%	7.9E-06 2.3E-05	1	7.9E-06 2.3E-05
	Benzo(a)pyrene	50-32-8 7446-09-5	4.30E-02 4.30E-07 0.0056	g/hp-h g/hp-h g/kWhr	100	20%	10%	2.3E-05 2.4E-10 1.2E-06	1	2.3E-05 2.4E-10 1.2E-06
	SO ₂ NO _x PM	10102-44-0	4.7	g/kWhr	50	20% 20%	10%	9.7E-04 3.7E-05	1	9.7E-04 3.7E-05
	PM10 PM2.5	N/A (pm) N/A (pm10)	0.18	g/kWhr g/kWhr	50	20%	10%	3.5E-05	1	3.5E-05
	CO	N/A (pm2.5) 630-08-0	0.16	g/kWhr g/kWhr	50	20%	10% 10%	3.3E-05 1.0E-03	1	3.3E-05 1.0E-03
increte Saw	NMHC Benzene	N/A 71-43-2	4.70 5.43E-03	g/kWhr g/hp-h	50 50 50	20% 20%	10% 10%	9.7E-04 1.5E-06 6.0E-08	1	9.7E-04 1.5E-06
	1,3-Butadiene Acrolein	106-99-0 107-02-8	2.17E-04 2.35E-03	g/hp-h g/hp-h	50	20%	10% 10%	6.5E-07	1	6.0E-08 6.5E-07
	Acetaldehyde Formaldehyde	75-07-0 50-00-0	1.42E-02 4.18E-02	g/hp-h g/hp-h	50	20%	10%	3.9E-06 1.2E-05	1	3.9E-06 1.2E-05
	Benzo(a)pyrene SO ₂	50-32-8 7446-09-5	4.30E-07 0.0056	g/hp-h g/kWhr	50 500	20% 40%	10% 10%	1.2E-10 2.3E-05	1	1.2E-10 0.0E+00
	NO _x PM	10102-44-0 N/A (pm)	1.8	g/kWhr g/kWhr	500 500	40% 40%	10% 10%	7.6E-03 3.8E-04	0	0.0E+00 0.0E+00
	PM10 PM2.5	N/A (pm10) N/A (pm2.5)	0.09 0.08	g/kWhr g/kWhr	500 500	40% 40%	10% 10%	3.7E-04 3.4E-04	0	0.0E+00 0.0E+00
ncrete Truck	CO NMHC	630-08-0 N/A	3.50 1.71	g/kWhr g/kWhr	500 500	40% 40%	10% 10%	1.4E-02 7.1E-03	0	0.0E+00 0.0E+00
	Benzene 1,3-Butadiene	71-43-2 106-99-0	5.43E-03 2.17E-04	g/hp-h g/hp-h	500 500	40% 40%	10% 10%	3.0E-05 1.2E-06	0	0.0E+00 0.0E+00
	Acrolein Acetaldehyde	107-02-8 75-07-0	2.35E-03 1.42E-02	g/hp-h g/hp-h	500 500	40% 40%	10% 10%	1.3E-05 7.9E-05	0	0.0E+00 0.0E+00
	Formaldehyde Benzo(a)pyrene	50-00-0 50-32-8	4.18E-02 4.30E-07	g/hp-h g/hp-h	500 500	40% 40%	10% 10%	2.3E-04 2.4E-09	0	0.0E+00 0.0E+00
	SO ₂ NO _x	7446-09-5 10102-44-0	0.0056	g/kWhr g/kWhr	600 600	40% 40%	13% 13%	3.5E-05 1.1E-02	2	7.0E-05 2.3E-02
	PM PM10	N/A (pm) N/A (pm10)	0.09	g/kWhr g/kWhr	600 600	40% 40%	13% 13%	5.7E-04 5.5E-04	2	1.1E-03 1.1E-03
	PM2.5 CO	N/A (pm2.5) 630-08-0	0.08	g/kWhr g/kWhr	600 600	40% 40%	13% 13%	5.1E-04 2.2E-02	2	1.0E-03 4.3E-02
mp Truck	NMHC Benzene	N/A 71-43-2	1.7 5.43E-03	g/kWhr g/hp-h	600 600	40% 40%	13% 13%	1.1E-02 4.5E-05	2	2.1E-02 9.0E-05
	1,3-Butadiene Acrolein	106-99-0 107-02-8	2.17E-04 2.35E-03	g/hp-h g/hp-h	600 600	40% 40%	13% 13%	1.8E-06 2.0E-05	2	3.6E-06 3.9E-05
	Acetaldehyde Formaldehyde	75-07-0 50-00-0	1.42E-02 4.18E-02	g/hp-h g/hp-h	600 600	40% 40%	13% 13%	1.2E-04 3.5E-04	2	2.4E-04 7.0E-04
	Benzo(a)pyrene SO ₂	50-32-8 7446-09-5	4.30E-07 0.0056	g/hp-h g/kWhr	600 50	40% 20%	13% 10%	3.6E-09 1.2E-06	2	7.2E-09 1.2E-06
	NO _x	10102-44-0 N/A (pm)	4.7 0.18	g/kWhr g/kWhr	50 50	20% 20%	10% 10%	9.7E-04 3.7E-05	1	9.7E-04 3.7E-05
	PM10 PM2.5	N/A (pm10) N/A (pm2.5)	0.17	g/kWhr g/kWhr	50	20%	10%	3.5E-05 3.3E-05	1	3.5E-05 3.3E-05
vement Saw	CO NMHC	630-08-0 N/A	5.0	g/kWhr g/kWhr	50	20%	10%	1.0E-03 9.7E-04	1	1.0E-03 9.7E-04
	Benzene 1,3-Butadiene	71-43-2	5.43E-03 2.17E-04	g/hp-h g/hp-h	50	20%	10%	1.5E-06 6.0E-08	1	1.5E-06 6.0E-08
	Acrolein Acetaldehyde	107-02-8 75-07-0	2.35E-03 1.42E-02	g/hp-h g/hp-h	50	20%	10%	6.5E-07 3.9E-06	1	6.5E-07 3.9E-06
	Formaldehyde Benzo(a)pyrene	50-00-0 50-32-8	4.18E-02 4.30E-07	g/hp-h g/hp-h	50	20%	10%	1.2E-05 1.2E-10	1	1.2E-05 1.2E-10
	SO ₂ NO,	7446-09-5 10102-44-0	0.0056	g/kWhr g/kWhr	100	20%	10%	2.3E-06 7.6E-04	0	0.0E+00 0.0E+00
	PM PM10	N/A (pm) N/A (pm10)	0.13	g/kWhr g/kWhr	100	20%	10%	5.5E-05 5.2E-05	0	0.0E+00 0.0E+00 0.0E+00
	PM2.5 CO	N/A (pm2.5) 630-08-0	0.13	g/kWhr g/kWhr	100	20%	10%	4.9E-05 2.1E-03	0	0.0E+00 0.0E+00 0.0E+00
ving roller	NMHC Benzene	N/A 71-43-2	1.7 5.43E-03	g/kWhr g/hp-h	100	20%	10%	7.1E-03 3.0E-06	0	0.0E+00 0.0E+00 0.0E+00
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	100	20%	10%	1.2E-07	0	0.0E+00
	Acrolein Acetaldehyde	107-02-8 75-07-0 50.00.0	2.35E-03 1.42E-02	g/hp-h g/hp-h	100 100	20%	10% 10%	1.3E-06 7.9E-06 2.3E-05	0	0.0E+00 0.0E+00 0.0E+00
	Formaldehyde Benzo(a)pyrene	50-00-0 50-32-8	4.18E-02 4.30E-07	g/hp-h g/hp-h	100	20%	10% 10%	2.4E-10	0	0.0E+00
	SO ₂ NO _x	7446-09-5 10102-44-0	0.0056	g/kWhr g/kWhr	285 285	40% 40%	10% 10%	1.3E-04 4.3E-02	1	1.3E-04 4.3E-02
	PM PM10	N/A (pm) N/A (pm10)	0.1320 0.1267	g/kWhr g/kWhr	285 285	40% 40%	10%	3.1E-03 3.0E-03	1	3.1E-03 3.0E-03
	PM2.5 CO	N/A (pm2.5) 630-08-0	0.1188 5.0000	g/kWhr g/kWhr	285 285	40% 40%	10% 10%	2.8E-03 1.2E-01	1	2.8E-03 1.2E-01
ater Truck	NMHC Benzene	N/A 71-43-2	1.7140 5.43E-03	g/kWhr g/hp-h	285 285	40% 40%	10% 10%	4.0E-02 1.7E-04	1	4.0E-02 1.7E-04
	1,3-Butadiene Acrolein	106-99-0 107-02-8	2.17E-04 2.35E-03	g/hp-h g/hp-h	285 285	40% 40%	10% 10%	6.9E-06 7.4E-05	1	6.9E-06 7.4E-05
	Acetaldehyde	75-07-0	1.42E-02 4.18E-02	g/hp-h	285 285	40% 40%	10% 10%	4.5E-04 1.3E-03	1	4.5E-04 1.3E-03

Not all the equipment will be operating at heir full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction period is assumed based on the following reference:
 Firth/R Teadway Construction Noise Model Laser's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration.
 Federal Highway Administration.
 Are a for the equipment is uperating to a construction operation operation operation operation operation operating to a construction operation operation.

The Construction biols and Vibration Assessment for his Project uses the load factors in the FHWA Guide as this is the recommended reference in the Metrolinx Environmental Guide for Noise and Vibration Assessment. The Air Quality Assessment is therefore using the same reference to be consistent with assumptions used in the Noise and Vibration Assessment. The Air Quality Assessment is therefore using the same reference to be consistent with assumptions used in the Noise and Vibration Assessment. The Air Quality Assessment is therefore using the same reference to be consistent with assumptions used in the Noise and Vibration Assessment. The Air Quality Assessment is therefore using the same reference were reviewed, and the load factors in these documents are same FHWA Guides. U. S. EPA, Median Life, Annual Activity, and Load Factor Values for Norroad Engine Emissions Modeling. EPA-420-R-10016 July 2010. Hawfrone CAT, Estimating Owning and Operating Costs. Cellplia Performance Handbock Giffion 44. Available at https://www.hawthornecat.com/sites/default/files/content/download/pdfs/Estimating_Owning_Operating_Costs_CPH_v1.1_03.13.14.pdf. Accessed in January 2020.

Water truck average operating load is not available from above U.S. Federal Highway Administration guide. The load for dump truck was assumed for the water truck.
 Percent of time used were assumed based on information from the design team (per Table 1 above).

4) The calculated emission rate is for all equipment that were assumed to operate at the same time.

 Sample Calculation - NOx emissions from each backhoe:

 NOx emissions (g/s) =
 1.8 g/kWh x1 kWh/1.341hph x power of each equipment (hph) x % of load x % of time operating x1 hour/3600 s

 1.8 g/kWh x1 kWh/1.341hph x r20 (hph) x 40% x 50% x1 hour/3600 s =
 0.009 g/s

Operating Condition, Individual Maximum Rates of Production: The emission rate calculation for this source group is based on the maximum estimated number of equipment operating at the same time during the worst-case scenario. The calculated emission rate should be conservative.

Contaminant	CAS#	Worst-case Scenario	Hourly Emission	Emission Rate for each volume sou					
		Rate 1 (g	/s)	(g/s)					
		Daytime (8AM-5PM)	Nighttime	No. of volume sources	9				
SO ₂	7446-09-5	2.62E-04	0.0000		2.91E-05				
NO _x	10102-44-0	8.69E-02	0.0000		9.66E-03				
PM	N/A (pm)	5.67E-03	0.0000		6.30E-04				
PM10	N/A (pm10)	5.45E-03	0.0000		6.05E-04				
PM2.5	N/A (pm2.5)	5.11E-03	0.0000		5.67E-04				
CO	630-08-0	2.14E-01	0.0000		2.38E-02				
NMHC	N/A	8.11E-02	0.0000		9.01E-03				
Benzene	71-43-2	3.39E-04	0.0000		3.77E-05				
1,3-Butadiene	106-99-0	1.36E-05	0.0000		1.51E-06				
Acrolein	107-02-8	1.47E-04	0.0000		1.63E-05				
Acetaldehyde	75-07-0	8.88E-04	0.0000		9.87E-05				
ormaldehyde	50-00-0	2.62E-03	0.0000		2.91E-04				
Benzo(a)pyrene	50-32-8	2.69E-08	0.0000		2.98E-09				

1. Total emission rate for each contaminant for worst-case scenario during construction phase is the total of the above emission rates from each type of equipment assumed to be operated at the same time and their assumed operating time and operating load.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: Rundle Road - Widen Crossing

Source: Construction Activities Dust Emissions

Description:

Construction activities would generate dust emissions and may have substantial temporary impact on the local air quality.

Quantity of dust emissions depends on the area of land being worked, type of equipment onsite and level of construction activities. A large portion of the emissions results from equipment traffic over temporary roads at the construction site.

The Rundle Road Crossing Widening will include removals and reconstruction.

Contaminant(s) of Concern:

Particulate matter (including TSP, PM10 and PM2.5) emissions are the contaminants of concern from construction activities.

Methodology: Emission Factor (EF) and Engineering Calculation (EC)

Emission factors from the following references are used to estimate the overall area-wide dust emissions.

•Reference A: Western Reginal Air Partnership, Fugitive Dust Handbook, Chapter 3: Construction and Demolition (09/03/06), https://www.wrapair.org/forums/dejf/fdh/ •Reference B: California Environmental Protection Agency Air Resources Board. 2002. Section 7.7: Building Construction Dust.

Based on the site plan and drawings for the Rundle Road Crossing Widening, the active construction area is shown below. It is estimated based on drawing CPG-SCL3756-C6106. Rev 0, which shows the active construction area, including road grading on both sides of the track, extends approximately 55 m. Grading work may be conducted in the immediate area of the crossing at the same time which is conservatively included as part of the active construction area.

Construction Phases ¹		uction Area for Scenario ^{2, 3}	Potential Operating Time
	Area (m2)	Area (acre)	
Removals and Reconstruction ²	330.0	0.082	
Grading work at the tracks ³	150.0	0.037	daytime
Total	480.0	0.119	

Notes:

1. Construction phases are estimated by the design team.

2. Based on drawing CPG-SCL3756-C6106. Rev 0, the length of the active construction area at Rundle Road Crossing, including road grading on both sides of the track, is approximately 55 m. The total width of the road is approximately 6 m wide.

3. It was conservatively assumed that some grading work may be conducted in the immediate area of the crossing at the same time, and approximately 15 m on each side of the road surface was added as part of the active construction area.

4. Construction activities will occur during 8:00 a.m. to 5:00 p.m. (8 working hours), Monday to Friday.

Emission Calculation

Level 1 emission estimation method shown in Table 3-2 of Reference A is used.

Contaminant	Emission Factor for Construction Area ⁽¹⁾	Dust Control Efficiency ⁽²⁾	PM Scaling Factor ⁽³⁾	Emission Factor ⁽⁴⁾ (g/s- m2)	Worst-c	ase Scenario	Operating Time
	(ton/acre-month of activity)			,	Active Area of Site (acre)	Emission Rate in Working Area ⁵ (g/s)	
PM	-		1.56	6.68E-05		0.032	
PM10	0.11	50%	1	4.28E-05	0.119	0.021	8 working hours per day, from
PM2.5	-	50%	0.1	4.28E-06	0.119	0.002	8AM - 5 PM
Crystalline silica			0.0522	2.23E-06		0.001	or m

Notes:

(1) Emission factor from Table 3-2 Level 1 of the Reference A.

This value is used for developing estimates of overall emissions from construction scattered throughout a geographical area. The value is applicable to construction operations with: • a dust control effectiveness of 50%

· 8 hours per day and 5 days per week for construction schedule

(2) Dust control measures (such as water suppression and limiting on-site vehicle speed to less than 20 km/hour) will be implemented to control dust emissions. The control efficiency is assumed for the project construction.

(3) PM and PM2.5 factors relative to PM10 from References A and B.

(4) Emission factors are estimated based on 20 days per month, 8 hours a day with the assumed dust control efficiency.

(5) Average emission rates are estimated for the 8 hours per day.

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for the construction activities is based on the emissions factors and operating time. The calculated emission rate should be conservative due to the assumed active area of both construction scenarios.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: Bowmanville Station Construction

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Description: Non-road equipment will be used during construction of the Bowmanville Station. Tailpipe emissions due to the fuel combustion would be generated from these sources.

The B4 Station Construction will include:

•Clearing
 •Parking Construction
 •Building / Platform Construction

Table 1 - List of Construction Equipment and Usage

Construction Phase					Parking construction	1	Bui	Iding / Platform cons	truction	Unit Power Rating (hp)	Fuel		Reference/Note ³		Worst-case O	perating Scenario ⁴
Type of Equipment	Total Number of Equipment to be Used Onsite ¹	Total Number of Equipment Used at the same time ²	% time used ²	Total Number of Equipment to be Used Onsite ¹	Total Number of Equipment Used at the same time ²	% time used ²	Total Number of Equipment to be Used Onsite ¹	Total Number of Equipment Used at the same time ²	% time used ²					Number of Equipment Used	Operating Time ⁵	
Asphalt spreader				1		10%				142	Diesel	Assumed AP500F (14	Assumed AP500F (142 hp)		0	day
Augers/Drill Rigs										260	Diesel	Assumed Atlas Copce	PowerROC T45 Drill	(260 hp)	0	day
Backhoe	1	1	50%	1	0	10%	1	1	10%	120	Diesel	Assumed Caterpillar	140, 450 Backhoe Load	ers (120 hp)	1	day
Bobcat							1	0	50%	115	Diesel	Assumed Bobcat E14	5 Large Excavator (11	5 hp)	0	day
Boom truck										500	Diesel	Assume Manitex 4012	24SHL mounted on Pel	erbilt 567	0	day
Caisson auger							1	1	10%	300	Diesel	Assume Texoma 500	with Cummins Diesel I	Notor 300 HP	0	day
Compactor				1	1	50%	1	0	10%	100	Diesel	Assumed Caterpillar (CP433E Vibratory Com	pactor	0	day
Concrete breaker										68	Diesel	Assume hydraulic bre	aker on Bobcat S62		0	day
Concrete pump										100	Diesel	Assumed Ajax ASP7011		0	day	
Concrete truck				1		10%	1	1	10%	500	Diesel	Assume truck mounted concrete mixer, International HX515. https://www.internationaltrucks.com/en/trucks/hx-series		0	day	
Crane				1		0%	1	0	10%	270	Diesel	Assumed Tadnano G	R-1000SL-2 (270 hp)		0	day
Dump Truck	1	1	50%	2	2	13%	1	1	10%	600	Diesel	Assumed Caterpillar	772G dump truck (600	hp)	1	day
Earth scraper	1	1	50%							600	Diesel	Assumed Caterpillar 6	657G Scraper		1	day
Flatbed truck				1		10%	1	0	50%	360	Diesel	Assumed Hino XL Se	ries 360HP		0	day
Front end loader				1	1	50%				300	Diesel	Assume Caterpillar 97	72M Loader		0	day
Grader				1	1	50%				200	Diesel	Assumed Cat 150/15 adjusted hp (200 hp)	0 AWD Motor Graders	conservatively	0	day
Pavement saw										50	Diesel	Assumed Husqvarna	FS 5000 D walk behin	l saw	0	day
Paving roller				2	0	10%				100	Diesel	Assumed CAT CCS7 Combination Asphalt Compactor, https://www.cat.com/en_US/products/new/equipment/compactor		0	day	
Pile Driver										240	Diesel	Assume Junttan Pile Driving Rig PM23, Cummins QSB6,7 EU Stage IV / US EPA		0	day	
Water truck	1	1	10%	1	1	10%	1	1	10%	285	Diesel	Assumed John Deere 300D water truck (285 hp)		1	day	
Welder							1	0	10%	210	Diesel	Assume Progress Rail Containerized Rail Welder Model K930		0	day	
Zoomboom							1	0	50%	110	Diesel	Assume Skytrak Model 8042 Telehandler, Engine Cummins QSB4.5T Turbo		0	day	
Total number of equipment	4	4		1:	3 6		11	6					Tota		4	
Total HP - weighted (6) Notes:		688.5			478.5			180.5	i					Avg HP	401.3	

Notes:
1) Total number of each type of construction equipment that may be used onsite is estimated by the project design team.

2) Not all equipment will be used on the same day and for the entire day. The estimated worst-case of equipment used on the same day and the percent of time used that day was estimated by the project design team. Some equipment are not likely to be used on the same day as the other equipment, and their usage were assumed to be 0%

3) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction. 4) The worst-case scenario is based on the highest power rating of all the construction vehicles used for that phase and weighted by the percent of time used. 5) Construction activities will occur during 8:00 a.m. to 5:00 p.m. for an 8 hour work day (1 hour assumed for breaks), Monday to Friday.

6) Total HP weighted by percent the equipment was assumed to be used per note 2.

Contaminant(s) of Concern: NOx, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in the equipment engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in the encomponent

Methodology: Mass Balance (MB) and Emission Factor (EF) Table 2: SO₂ Emission Factor Calculation SO. emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the equipment. SO₂ emission factor is calculated below.

Data	Value	Unit	Reference
Sulphur content in diesel	15	ppm	Sulphur in Diesel Fuel Regulations, Environment and Climate Change Canada (ECCC)
Diesel Engine Efficiency	45%		"Just the basics: Diesel Energy". US department of energy
Lower Heating Value	wer Heating Value 128,450		"Alternative Fuels Data Center – Fuel Properties Comparison " from the US Department of Energy
Unit Conversion	0.00029	kWh/BTU	-
	454	g/lb	-
Density of diesel	7.00	lb/gal	-
Energy output	16.94	kWh/gal	Calculated
SO ₂ / gallon of diesel	0.0953	g SO ₂ /gal	A factor of 2 is applied to convert sulfur to SO ₂ , assuming all the sulfur will be oxidized to SO ₂ .
Emission Factor	0.0056	g/kWh	-

Note: Emissions are calculated based on sulphur content in diesel as per Sulphur in Diesel Fuel Regulations.

Table 3: Emission factors for NOx, PM, CO, NMHC____

			Emission Factor (1) (2) (g/kWhr)												
			50 < 75 HP		75 < 175 HP			175 < 600 HP			600 < 750 HP				
		Tier 3 (50-100 HP)	Tier 4 (50-75 HP)	Weighted (2)	Tier 3 (100-175 HP)	Tier 4 (75-175 HP)	Weighted (2)	Tier 3 (100-600 HP)	Tier 4 (175-750 HP)	Weighted (2)	Tier 3 (600-750 HP)	Tier 4 (175-750 HP)	Weighted (2)		
Nox (3)	10102-44-0	4.7	4.7	4.7	4.0	0.4	1.8	4.0	0.4	1.8	4.0	0.4	1.8		
PM	N/A (pm)	0.40	0.030	0.18	0.30	0.020	0.13	0.20	0.020	0.09	0.20	0.020	0.09		
PM10	N/A (pm10)	0.38	0.03	0.17	0.29	0.02	0.13	0.19	0.02	0.09	0.19	0.02	0.09		
PM2.5	N/A (pm2.5)	0.36	0.03	0.16	0.27	0.02	0.12	0.18	0.02	0.08	0.18	0.02	0.08		
CO	630-08-0	5.0	5.0	5.0	5.0	5.0	5.0	3.5	3.5	3.5	3.5	3.5	3.5		
NMHC (3)	N/A	4.7	4.7	4.7	4.00	0.19	1.7	4.00	0.2	1.7	4.00	0.2	1.7		
Notes:															

1) NOX, CO, PM emission factors: Tier 3 and Tier 4 emission standard in US EPA reference document "Nonroad Compression-Ignition Engines -- Exhaust Emission Standards" and "US EPA Tier 1-3 engines" are used. PM10 and PM2.5: Based on US EPA AP-42 Appendix B.2 Generalized Particle Size Distributions for gasoline and diesel fuel combustion engines, PM10 = 96% PM; PM2.5 = 90% PM.

 2) It is assumed that construction equipment to be used will be either US EPA Tier 3 or Tier 4 emission compliant at the following ratios:
 Tier 3
 40%

 3) Where emission factors were provided for NMHC + Nox. in the US EPA reference document (i.e. not provided separately for NOx and NMHC, the emission factor was conservatively used for both Nox and NMHC.
 40%

Table 4: Speciated VOC emission factors

Diesel Engine Tier	Tier	3	Tie	er4	Weighted (1)
VOC Emission Factor	0.2	g/hp-h	0.142	g/hp-h	
PM Emission Factor	0.1500	g/hp-h	0.015	g/hp-h	
Key VOCs and PAH	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Emission Factor (g/hph)
Benzene	0.054100	1.08E-02	0.012910	1.83E-03	5.43E-03
1,3-Butadiene	0.001860	3.72E-04	0.000800	1.13E-04	2.17E-04
Acrolein	0.018700	3.74E-03	0.009990	1.42E-03	2.35E-03
Acetaldehyde	0.104000	2.08E-02	0.069340	9.82E-03	1.42E-02
Formaldehyde	0.292000	5.84E-02	0.217440	3.08E-02	4.18E-02
Benzo(a)pyrene	6.67E-06	1.00E-06	3.30E-06	4.92E-08	4.30E-07
Notes:					

Reference: Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015), Tables 11 & 12

1) It is assumed that construction equipment used are Tier 3 and Tier 4 with the ratios shown in note 2 in the section above

Emission Calculations:

SO2 emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the equipment. NOx, PM, CO, and non-methane hydrocarbon (NMHC) emissions from onsile equipment tailpipe arhausts are calculated based on the US EPA reference document "Nonroad Compression-Ignition Engines – Exhaust Emission Standards". Key VOCs emission factors are derived from the data in US EPA Ar4-2 (reference "Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015)" as shown above.

Source Group	Contaminant	CAS#	Emissio	n Factor	Unit Power Rating (hp)	Operating Load (1)	% of Time Operating ⁽²⁾	Emission Rate - Each Equipment	Worst-case Scenario for Modelling	
			Value	Unit				(g/s)	Number of Equipment	Emission Rate - A Equipment ⁽³⁾ (g/s
	SO ₂	7446-09-5	0.0056	g/kWhr	120	40%	50%	2.8E-05	1	2.8E-05
	NO,	10102-44-0	1.8	g/kWhr	120	40%	50%	9.1E-03	1	9.1E-03
	PM	N/A (pm)	0.13	g/kWhr	120	40%	50%	6.6E-04	1	6.6E-04
	PM10	N/A (pm10)	0.13	g/kWhr	120	40%	50%	6.3E-04	1	6.3E-04
	PM2.5	N/A (pm2.5)	0.12	g/kWhr	120	40%	50%	5.9E-04	1	5.9E-04
	со	630-08-0	5.0	g/kWhr	120	40%	50%	2.5E-02	1	2.5E-02
Backhoe	NMHC	N/A	1.7	g/kWhr	120	40%	50%	8.5E-03	1	8.5E-03
	Benzene	71-43-2	5.43E-03	g/hp-h	120	40%	50%	3.6E-05	1	3.6E-05
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	120	40%	50%	1.4E-06	1	1.4E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	120	40%	50%	1.6E-05	1	1.6E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	120	40%	50%	9.5E-05	1	9.5E-05
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	120	40%	50%	2.8E-04	1	2.8E-04
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	120	40%	50%	2.9E-09	1	2.9E-09
	SO ₂	7446-09-5	0.0056	g/kWhr	600	40%	50%	1.4E-04	1	1.4E-04
	NO,	10102-44-0	1.8	g/kWhr	600	40%	50%	4.6E-02	1	4.6E-02
	PM	N/A (pm)	0.09	g/kWhr	600	40%	50%	2.3E-03	1	2.3E-03
	PM10	N/A (pm10)	0.09	g/kWhr	600	40%	50%	2.2E-03	1	2.2E-03
	PM2.5	N/A (pm2.5)	0.08	g/kWhr	600	40%	50%	2.1E-03	1	2.1E-03
	CO	630-08-0	3.5	g/kWhr	600	40%	50%	8.7E-02	1	8.7E-02
Dump Truck	NMHC	N/A	1.7	g/kWhr	600	40%	50%	4.3E-02	1	4.3E-02
Bamp Haok	Benzene	71-43-2	5.43E-03	g/hp-h	600	40%	50%	1.8E-02	1	1.8E-04
	1.3-Butadiene	106-99-0	2.17E-04	g/hp-h	600	40%	50%	7.2E-04	1	7.2E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	600	40%	50%	7.8E-05	1	7.8E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	600	40%	50%	4.7E-04	1	4.7E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	600	40%	50%	1.4E-03	1	1.4E-03
	Benzo(a)pyrene	50-32-8	4.30E-02	g/hp-h	600	40%	50%	1.4E-05	1	1.4E-08
	SO ₂	7446-09-5	0.0056	g/kWhr	600	40%	50%	1.4E-00	1	1.4E-00
	NO _x	10102-44-0	1.8	g/kWhr	600	40%	50%	4.6E-02	1	4.6E-02
	PM	N/A (pm)	0.09	g/kWhr	600	40%	50%	2.3E-03	1	2.3E-03
	PM10	N/A (pm10)	0.09	g/kWhr	600	40%	50%	2.2E-03	1	2.3E-03
	PM10 PM2.5	N/A (pm2.5)	0.09	g/kWhr	600	40%	50%	2.1E-03	1	2.1E-03
	CO	630-08-0	3.5	g/kWhr	600	40%	50%	8.7E-02	1	8.7E-02
Earth scraper	NMHC	N/A	1.7	g/kWhr	600	40%	50%	4.3E-02	1	4.3E-02
Earth Scraper	Benzene	71-43-2	5.43E-03	g/hp-h	600	40%	50%	4.3E-02 1.8E-04	1	4.3E-02
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	600	40%	50%	7.2E-06	1	7.2E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	600	40%	50%	7.8E-05	1	7.2E-00 7.8E-05
	Acetaldehyde	75-07-0	1.42E-02	g/np-n g/hp-h	600	40%	50%	4.7E-04	1	4.7E-05
	Formaldehyde	50-00-0	4.18E-02	g/np-n g/hp-h	600	40%	50%	4.7E-04 1.4E-03	1	1.4E-03
		50-32-8	4.18E-02 4.30E-07	g/np-n g/hp-h	600	40%	50%	1.4E-03	1	1.4E-08
	Benzo(a)pyrene SO ₂	7446-09-5	0.0056	g/np-n g/kWhr	285	40%	10%	1.4E-06	1	1.4E-08
	NO _x	10102-44-0	1.8	g/kWhr	285	40%	10%	4.3E-02	1	4.3E-02
	PM	N/A (pm)	0.09	g/kWhr	285	40%	10%	4.3E-02 2.2E-03	1	4.3E-02 2.2E-03
	PM10	N/A (pm10)	0.09	g/kWhr	285	40%	10%	2.1E-03	1	2.1E-03
	PM10 PM2.5	N/A (pm2.5)	0.09	g/kWhr	285	40%	10%	2.0E-03	1	2.0E-03
	PWI2.5	630-08-0	3.5	g/kWhr	285	40%	10%	8.3E-02	1	8.3E-02
Water truck	NMHC	N/A	1.7	g/kWhr	285	40%	10%	4.0E-02	1	4.0E-02
FEDICI LIUCK	Benzene	71-43-2	5.43E-03	g/kwni g/hp-h	285	40%	10%	4.0E-02 1.7E-04	1	4.0E-02
	1.3-Butadiene	106-99-0	5.43E-03 2.17E-04		285	40%	10%	1.7E-04 6.9E-06	1	6.9E-06
	1,3-Butadiene Acrolein	106-99-0	2.17E-04 2.35E-03	g/hp-h	285	40%	10%	6.9E-06 7.4E-05	1	6.9E-06 7.4E-05
				g/hp-h		40%			1	4.5E-04
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	285	40%	10%	4.5E-04	1	
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	285		10%	1.3E-03		1.3E-03
Notes:	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	285	40%	10%	1.4E-08	1	1.4E-08

1) Not all the equipment will be operating at their full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction period is assumed based on the following reference: FHVA Roadway Construction Noise Model User's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration. An 'acoustical usage factor' for each type of construction equipment is used to estimate the fraction of time each piece of construction equipment is operating at full power during a construction operation. The acoustical usage factor is also considered as the duty cycle / operating load usage factor of the construction equipment.

The Construction Noise and Vibration Assessment for this Project uses the load factors in the FHWA Guide as this is the recommended reference in the Metrolinx Environmental Guide for Noise and Vibration Assessment. The Air Quality Assessment is therefore using the same reference to be consistent with assumptions used in the Noise and Vibration Assessment. In addition, the following two references were reviewed, and the load factors in these documents are in similar ranges as the FHWA Guide. U. S. EPA, Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling. EPA-420-R-10-016. July 2010. Hawthore CAT, Estimating Owning and Operating Costs, Catepliar Performance Handbock Edition 44. Available at https://www.hawthornecat.com/sites/default/files/content/download/pdfs/Estimating_Owning_Operating_Costs_CPH_v1.1_03.13.14.pdf. Accessed in January 2020.

Water truck average operating load is not available from above U.S. Federal Highway Administration guide. The load for dump truck was assumed for the water truck.

Percent of time used were assumed based on information from the design team.
 The calculated emission rate is for all equipment that were assumed to operate at the same time.

Sample Calculation - NOx emissions from each backhoe:

NOx emissions (g/s) = 1.8 g/kWh x 1 kWh/1.341hph x power of each equipment (hph) x% of load x % of operating time x 1 hour/3600 s 1.8 g/kWh x 1 kWh/1.341hph x 120 (hph) x 40% x 50% x 1 hour/3600 s = 0.009 g/s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the maximum estimated number of equipment operating consistently during construction. The calculated emission rate should be conservative.

Table 6: Summary of Overall Emissions

Contaminant	CAS#	Worst-case Scenar (g/			Emission Rate for each volume so (g/s)		
		Daytime (8AM- 5PM)	Nighttime		No. of volume sources	5	
SO ₂	7446-09-5	4.40E-04	0.0000			8.81E-05	
NO _x	10102-44-0	1.44E-01	0.0000	1		2.88E-02	
PM	N/A (pm)	7.40E-03	0.0000	1		1.48E-03	
PM10	N/A (pm10)	7.11E-03	0.0000	1		1.42E-03	
PM2.5	N/A (pm2.5)	6.66E-03	0.0000	1		1.33E-03	
со	630-08-0	2.82E-01	0.0000	1		5.63E-02	
NMHC	N/A	1.34E-01	0.0000	1		2.68E-02	
Benzene	71-43-2	5.70E-04	0.0000	1		1.14E-04	
1,3-Butadiene	106-99-0	2.28E-05	0.0000	1		4.55E-06	
Acrolein	107-02-8	2.46E-04	0.0000	1		4.93E-05	
Acetaldehyde	75-07-0	1.49E-03	0.0000	1		2.99E-04	
Formaldehyde	50-00-0	4.39E-03	0.0000	1		8.79E-04	
Benzo(a)pyrene	50-32-8	4.51E-08	0.0000	1		9.02E-09	
Notes:							

1. Total emission rate for each contaminant for worst-case scenario during construction phase is the total of the above emission rates from each type of equipment assumed to be operated at the same time and their assumed operating time and operating load.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B4 Station (at Bowmanville) Construction

Source: Construction Activities Dust Emissions

Description:

Construction activities would generate dust emissions and may have substantial temporary impact on the local air quality.

Quantity of dust emissions depends on the area of land being worked, type of equipment onsite and level of construction activities. A large portion of the emissions results from equipment traffic over temporary roads at the construction site.

The B4 Station Construction will include: •Clearing •Parking Construction •Building / Platform Construction

Contaminant(s) of Concern:

Particulate matter (including TSP, PM10 and PM2.5) emissions are the contaminants of concern from construction activities.

Methodology: Emission Factor (EF) and Engineering Calculation (EC)

Emission factors from the following references are used to estimate the overall area-wide dust emissions.

•Reference A: Western Reginal Air Partnership, Fugitive Dust Handbook, Chapter 3: Construction and Demolition (09/03/06), https://www.wrapair.org/forums/dejf/fdh/ •Reference B: California Environmental Protection Agency Air Resources Board. 2002. Section 7.7: Building Construction Dust.

Based on the footprint drawings and available design information for the B4 Station Construction, the construction area is assumed to occur within the station property boundary and is estimated below. It is estimated for a worst-case scenario that 15% of the construction area is the active construction area.

Construction Stages ¹	Estimated Total Area ²	Active Constru Worst-case		Potential Operating
	(acre)	%	Area (acre)	Time⁴
Clearing				daytime
Parking Construction	13.82	15%	2.07	daytime
Building / Platform Construction				daytime

Notes:

1. Construction phases are estimated by the design team.

2. The total area is estimated based on the station property boundary provided by GIS Stantec design team.

3. Only a portion of the construction area will be active (e.g., earth disturbance) at one time, it is conservatively assumed that 15% of the main construction area is active at one time for a worst-case scenario.

4. Construction activities will occur during 8:00 a.m. to 5:00 p.m., Monday to Friday.

Emission Calculation

Level 1 emission estimation method shown in Table 3-2 of Reference A is used.

Contaminant	Emission Factor for Construction Area ⁽¹⁾	Dust Control Efficiency ⁽²⁾	PM Scaling Factor ⁽³⁾	Emission Factor ⁽⁴⁾ (g/s- m2)	Worst-ca	se Scenario	Operating Time
	(ton/acre-month of activity)			,	Active Area of Site (acre)	Emission Rate in Working Area ⁵ (g/s)	
PM	-		1.56	6.68E-05		0.560	
PM10	0.11	50%	1	4.28E-05	2.07	0.359	8 hours per day,
PM2.5	-	5070	0.1	4.28E-06	2.07	0.036	from 8AM - 5 PM
Crystalline silica			0.0522	2.23E-06		0.019	

Notes:

(1) Emission factor from Table 3-2 Level 1 of the Reference A.

This value is used for developing estimates of overall emissions from construction scattered throughout a geographical area. The value is applicable to construction operations with:

 ${\scriptstyle \bullet}$ a dust control effectiveness of 50%

· 8 hours per day and 5 days per week for construction schedule

(2) Dust control measures (such as water suppression and limiting on-site vehicle speed to less than 20 km/hour) will be implemented to control dust emissions. The control efficiency is assumed for the project construction.

(3) PM and PM2.5 factors relative to PM10 from References A and B.

(4) Emission factors are estimated based on 20 days per month, 8 hours a day with the assumed dust control efficiency.

(5) Average emission rates are estimated for the 8 hours per day.

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for the construction activities is based on the emissions factors and operating time. The calculated emission rate should be conservative due to the assumed active area of both construction scenarios.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: Track and Grading Construction (Farewell Street to Harmony Road)

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Description:

Non-road equipment will be used for Track and Grading. Tailpipe emissions due to the fuel combustion would be generated from these sources.

The Track and Grading will include: •Grading •Track

Table 1 - List of Construction Equipment and Usage

Construction Phase	Grading ¹			Track ¹			Unit Power Rating (hp)	Fuel	Reference/Note ³	Worst-case Operat	ng Scenario ⁴
Type of Equipment	Total Number of Equipment to be Used Onsite ²	Total Number of Equipment to be at the same time ¹	% time used ³	Total Number of Equipment to be Used Onsite ²	Total Number of Equipment to be at the same time ¹	% time used ³				Number of Equipment Used	Operating Time ⁵
Asphalt spreader							142	Diesel	Assumed AP500F (142 hp, Tier 4)	0	day
Augers/Drill Rigs							260	Diesel	Assumed Atlas Copco PowerROC T45 Drill (260 hp, Tier 4)	0	day
Backhoe	2	1	50%				120	Diesel	Assumed Caterpillar 440, 450 Backhoe Loaders (120 hp, Tier 4)	1	day
Ballast regulator				2	0	50%	250	Diesel	Assumed Kershaw 4600 Ballast Regulator. Engine - CAT C7.1, 250 HP	0	day
Bobcat				1	0	20%	115	Diesel	Assumed Bobcat E145 Large Excavator (115 hp, Tier 4)	0	day
Boom truck							500	Diesel	Assume Manitex 40124SHL mounted on Peterbilt 567 Tier 4	0	day
Caisson auger							300	Diesel	Assume Texoma 500 with Cummins Diesel Motor 300 HP	0	day
Compactor	2	1	50%				100	Diesel	Assumed Caterpillar CP433E Vibratory Compactor	1	day
Concrete breaker							68	Diesel	Assume hydraulic breaker on Bobcat S62 Tier 4	0	day
Concrete pump							100	Diesel	Assumed Ajax ASP7011	0	day
Concrete truck	4	0	50%				500	Diesel	Assume truck mounted concrete mixer, International HX515. https://www.internationaltrucks.com/en/trucks/hx-series	0	day
Crane	1	0	10%	1	0	10%	270	Diesel	Assumed Tadnano GR-1000SL-2 (270 hp, Tier 3)	0	day
Dump Truck	4	1	50%	2	2	10%	600	Diesel	Assumed Caterpillar 772G dump truck (600 hp, Tier 4)	1	day
Dynamic stabilizer				1	0	25%	450	Diesel	https://www.plasseramerican.com/en/machines- systems/stabilization-consolidation-pts-62.html	0	day
Earth scraper							600	Diesel	Assumed Caterpillar 657G Scraper	0	day
Flatbed truck	1	0	10%	1	0	10%	360	Diesel	Assumed Hino XL Series 360HP	0	day
Flash butt rail welder				1	0	20%	402	Diesel	http://rail-welding.vaiacar.com/p/en/railroad-welder.html	0	day
Front end loader	2	1	50%	1	1	10%	300	Diesel	Assume Caterpillar 972M Loader Tier 4	1	day
Grader	2	1	50%				200	Diesel	Assumed Cat 150/150 AWD Motor Graders, conservatively adjusted hp (200 hp, Tier 3)	1	day
Locomotive / rail cars				1	0	10%	3000	Diesel		0	day
Pavement saw							50	Diesel	Assumed Husqvarna FS 5000 D walk behind saw, Tier 4	0	day
Paving roller							100	Diesel	Assumed CAT CCS7 Combination Asphalt Compactor, https://www.cat.com/en_US/products/new/equipment/compactors/ tandem-vibratory-rollers.html?page=2	0	day
Pickup truck	4	4	10%	6	0	10%	290	Diesel	Assumed Ford F-150	4	day
Pile Driver							240	Diesel	Assume Junttan Pile Driving Rig PM23, Cummins QSB6,7 EU Stage IV / US EPA Tier 4F	0	day
Rail drill				1	0	10%	4	Diesel	https://www.trak-star.com/hydraulic-rail-drill	0	day
Rail grinder				1	0	75%	30	Diesel	https://www.loram.com/products/rail-grinding/specialty-rail- grinding/rgt-quick-deploy-rail-grinder/	0	day
Rail saw				1	0	10%	50	Diesel	Assumed walk behind saw Husqvarna FS 5000 D, Tier 4	0	day
Speedswing				1	0	10%	163	Diesel	https://www.gopettibone.com/products/speed-swing-445f/	0	day
Spike machine				1	0	20%	140	Diesel	https://www.nordco.com/products-catalog/roadway-work- equipment/Spike-Driving-Machines/Production-Spike-Driver-SE-	0	day
Track liner / tamper				2	0	50%	270	Diesel	https://www.plasseramerican.com/en/machines-systems/tamping- grm3000t.html	0	day
Water truck	1	1	10%	1	0	10%	285	Diesel	Assumed John Deere 300D water truck (285 hp, Tier 3)	1	day
Welder							210	Diesel	Assume Progress Rail Containerized Rail Welder Model K930	0	day
Zoomboom				1	0	10%	110	Diesel	Assume Skytrak Model 8042 Telehandler, Engine Cummins QSB4.5T Turbo Tier 3	0	day
Total number of equipmen	nt 23	3 10 804.5		26	i 3 150				Total Avg HP	10 140.5	

Notes:

1) Number of construction equipment used at the same time is estimated by the project design team. For the Grading phase, the work is typically spread out over several kilometers of track under three separate contracts. The equipment used and construction activities are not concentrated in one area (one section of the track). The number of equipment estimated here is based on the maximum number of equipment used at the same time in one section of the track. For the Track phase, the number of construction equipment is estimated for the worst-case task (ballast dumping) within the Track Phase.

2) Total number of each type of construction equipment that may be used onsite is estimated by the project design team.
 3) Percent of time used is the percent of time each piece of equipment is used during the same day and is estimated by the project design team.

3) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction.

4) The worst-case scenario is based on the highest power rating of all the construction vehicles used for that phase and weighted by the percent of time used.
5) Construction activities will occur during 8:00 a.m. to 5:00 p.m. for an 8 hour work day (1 hour assumed for breaks), Monday to Friday.
6) Total HP weighted by percent the equipment was assumed to be used per note 2.

Contaminant(s) of Concern: NOx, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in the equipment engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in

the assessment

Methodology: Mass Balance (MB) and Emission Factor (EF)

ctor is calculated below.

Data	Value	Unit	Reference
Sulphur content in diesel	15	ppm	Sulphur in Diesel Fuel Regulations, Environment and Climate Change Canada (ECCC)
Diesel Engine Efficiency	45%		"Just the basics: Diesel Energy". US department of energy
Lower Heating Value	128,450	BTU/gal	"Alternative Fuels Data Center – Fuel Properties Comparisor " from the US Department of Energy
Unit Conversion	0.00029	kWh/BTU	-
Unit Conversion	454	g/lb	-
Density of diesel	7.00	lb/gal	-
Energy output	16.94	kWh/gal	Calculated
SO ₂ / gallon of diesel	0.0953	g SO₂/gal	A factor of 2 is applied to convert sulfur to SO ₂ , assuming all

		l	the sulfur will be oxidized to SO _{2.}
Emission Factor	0.0056	g/kWh	-

Note: Emissions are calculated based on sulphur content in diesel as per Sulphur in Diesel Fuel Regulations.

Table 3: Emission factors for NOx, PM, CO, NMHC

							Emission Fac	ctor (1) (2) (g/kWhr)						
			50 < 75 HP		75 < 175 HP				175 < 600 HP			600 < 750 HP		
		Tier 3 (50-100 HP)	Tier 4 (50-75 HP)	Weighted (2)	Tier 3 (100-175 HP)	Tier 4 (75-175 HP)	Weighted (2)	Tier 3 (100-600 HP)	Tier 4 (175-750 HP)	Weighted (2)	Tier 3 (600-750 HP)	Tier 4 (175-750 HP)	Weighted (2)	
NOx (3)	10102-44-0	4.7	4.7	4.7	4.0	0.4	1.8	4.0	0.4	1.8	4.0	0.4	1.8	
PM	N/A (pm)	0.40	0.030	0.18	0.30	0.020	0.13	0.20	0.020	0.09	0.20	0.020	0.09	
PM10	N/A (pm10)	0.38	0.03	0.17	0.29	0.02	0.13	0.19	0.02	0.09	0.19	0.02	0.09	
PM2.5	N/A (pm2.5)	0.36	0.03	0.16	0.27	0.02	0.12	0.18	0.02	0.08	0.18	0.02	0.08	
СО	630-08-0	5.0	5.0	5.0	5.0	5.0	5.0	3.5	3.5	3.5	3.5	3.5	3.5	
NMHC (3)	N/A	4.7	4.7	4.7	4.00	0.19	1.7	4.00	0.2	1.7	4.00	0.2	1.7	

Notes:

1) NOx, CO, PM emission factors: Tier 3 and Tier 4 emission standard in US EPA reference document "Nonroad Compression-Ignition Engines -- Exhaust Emission Standards" and "US EPA Tier 1-3 engines" are used. PM10 and PM2.5: Based on US EPA AP-42 Appendix B.2 Generalized Particle Size Distributions for gasoline and diesel fuel combustion engines, PM10 = 96% PM; PM2.5 = 90% PM.

2) It is assumed that construction equipment to be used will be either US EPA Tier 3 or Tier 4 emission compliant at the following ratios:	Tier 3	40%
	Tier 4	60%

3) Where emission factors were provided for NMHC + NOx in the US EPA reference document (i.e. not provided separately for NOx and NMHC, the emission factor was conservatively used for both NOx and NMHC.

Table 4: Speciated VOC emission factors

Diesel Engine Tier	Tier3		Tie	r4	Weighted (1)	
VOC Emission Factor	0.2	g/hp-h	0.142	g/hp-h		
PM Emission Factor	0.1500	g/hp-h	0.015	g/hp-h		
Key VOCs and PAH	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Emission Factor (g/hph)	
Benzene	0.054100	1.08E-02	0.012910	1.83E-03	5.43E-03	
1,3-Butadiene	0.001860	3.72E-04	0.000800	1.13E-04	2.17E-04	
Acrolein	0.018700	3.74E-03	0.009990	1.42E-03	2.35E-03	
Acetaldehyde	0.104000	2.08E-02	0.069340	9.82E-03	1.42E-02	
Formaldehyde	0.292000	5.84E-02	0.217440	3.08E-02	4.18E-02	
Benzo(a)pyrene	6.67E-06	1.00E-06	3.30E-06	4.92E-08	4.30E-07	

Notes:

Reference: Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015), Tables 11 & 12

1) It is assumed that construction equipment used are Tier 3 and Tier 4 with the ratios shown in note 2 in the section above.

Emission Calculations:

SO2 emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the equipment. NOX, PM, CO, and non-methane hydrocarbon (NMHC) emissions from onsite equipment tailpipe exhausts are calculated based on the US EPA reference document "Nonroad Compression-Ignition Engines -- Exhaust Emission Standards".

Key VOCs emission factors are derived from the data in US EPA AP-42 reference "Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015)" as shown above.

Table 5: Worst-case construction phase - Demolition of existing bridge

	Contaminant	CAS#	Emissio		Unit Power Rating (hp)	Operating Load ⁽¹⁾	% of Time Operating ⁽²⁾	Emission Rate - Each Equipment		nario for Modelling
			Value	Unit				(g/s)	Number of Equipment	Emission Rate - A Equipment ⁽³⁾ (g/s
	SO ₂	7446-09-5	0.0056	g/kWhr	120	40%	50%	2.8E-05	1	2.8E-05 9.1E-03
	NO _x PM	10102-44-0 N/A (pm)	1.8 0.13	g/kWhr g/kWhr	120 120	40% 40%	50% 50%	9.1E-03 6.6E-04	1	9.1E-03 6.6E-04
	PM10	N/A (pm10)	0.13	g/kWhr	120	40%	50%	6.3E-04	1	6.3E-04
	PM2.5	N/A (pm2.5)	0.12	g/kWhr	120	40%	50%	5.9E-04	1	5.9E-04
	CO	630-08-0	5.0	g/kWhr	120	40%	50%	2.5E-02	1	2.5E-02
ackhoe	NMHC	N/A	1.7	g/kWhr	120	40%	50%	8.5E-03	1	8.5E-03
	Benzene	71-43-2	5.43E-03	g/hp-h	120	40%	50%	3.6E-05	1	3.6E-05
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	120	40%	50%	1.4E-06	1	1.4E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	120	40%	50%	1.6E-05	1	1.6E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	120	40%	50%	9.5E-05	1	9.5E-05
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	120	40%	50%	2.8E-04	1	2.8E-04
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	120	40%	50%	2.9E-09	1	2.9E-09
	SO ₂	7446-09-5	0.0056	g/kWhr	200	40%	50%	4.7E-05	1	4.7E-05
	NO _x PM	10102-44-0	1.8	g/kWhr	200	40% 40%	50%	1.5E-02 7.6E-04	1	1.5E-02 7.6E-04
	PM PM10	N/A (pm) N/A (pm10)	0.09	g/kWhr g/kWhr	200	40%	50% 50%	7.8E-04 7.3E-04	1	7.3E-04
	PM10 PM2.5	N/A (pm2.5)	0.08	g/kWhr	200	40%	50%	6.9E-04	1	6.9E-04
	CO	630-08-0	3.5	g/kWhr	200	40%	50%	2.9E-02	1	2.9E-02
rader	NMHC	N/A	1.7	g/kWhr	200	40%	50%	1.4E-02	1	1.4E-02
	Benzene	71-43-2	5.43E-03	g/hp-h	200	40%	50%	6.0E-05	1	6.0E-05
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	200	40%	50%	2.4E-06	1	2.4E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	200	40%	50%	2.6E-05	1	2.6E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	200	40%	50%	1.6E-04	1	1.6E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	200	40%	50%	4.6E-04	1	4.6E-04
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	200	40%	50%	4.8E-09	1	4.8E-09
	SO ₂	7446-09-5	0.0056	g/kWhr	300	40%	50%	7.0E-05	1	7.0E-05
	NO _x	10102-44-0	1.8	g/kWhr	300	40%	50%	2.3E-02	1	2.3E-02
	PM	N/A (pm)	0.09	g/kWhr	300	40%	50%	1.1E-03	1	1.1E-03
	PM10	N/A (pm10)	0.09	g/kWhr	300	40%	50%	1.1E-03	1	1.1E-03
	PM2.5	N/A (pm2.5)	0.08	g/kWhr	300	40%	50%	1.0E-03	1	1.0E-03
	CO	630-08-0	3.5	g/kWhr	300	40%	50%	4.3E-02	1	4.3E-02
ont end loader	NMHC	N/A	1.7	g/kWhr	300	40%	50%	2.1E-02	1	2.1E-02
	Benzene	71-43-2	5.43E-03	g/hp-h	300	40%	50%	9.0E-05	1	9.0E-05
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	300 300	40% 40%	50% 50%	3.6E-06	1	3.6E-06 3.9E-05
	Acrolein Acetaldehyde	107-02-8 75-07-0	2.35E-03 1.42E-02	g/hp-h g/hp-h	300	40%	50%	3.9E-05 2.4E-04	1	2.4E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	300	40%	50%	7.0E-04	1	7.0E-04
	Benzo(a)pyrene	50-32-8	4.18E-02 4.30E-07	g/hp-h	300	40%	50%	7.0E-04 7.2E-09	1	7.0E-04 7.2E-09
	SO ₂	7446-09-5	0.0056	g/kWhr	600	40%	50%	1.4E-04	1	1.4E-04
	NO _x	10102-44-0	1.8	g/kWhr	600	40%	50%	4.6E-02	1	4.6E-02
	PM	N/A (pm)	0.09	g/kWhr	600	40%	50%	2.3E-03	1	2.3E-03
	PM10	N/A (pm10)	0.09	g/kWhr	600	40%	50%	2.2E-03	1	2.2E-03
	PM2.5	N/A (pm2.5)	0.08	g/kWhr	600	40%	50%	2.1E-03	1	2.1E-03
	со	630-08-0	3.5	g/kWhr	600	40%	50%	8.7E-02	1	8.7E-02
ump Truck	NMHC	N/A	1.7	g/kWhr	600	40%	50%	4.3E-02	1	4.3E-02
	Benzene	71-43-2	5.43E-03	g/hp-h	600	40%	50%	1.8E-04	1	1.8E-04
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	600	40%	50%	7.2E-06	1	7.2E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	600	40%	50%	7.8E-05	1	7.8E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	600	40%	50%	4.7E-04	1	4.7E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	600	40%	50%	1.4E-03	1	1.4E-03
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	600	40%	50%	1.4E-08	1	1.4E-08
	SO ₂ NO _x	7446-09-5 10102-44-0	0.0056	g/kWhr g/kWhr	100	20%	50% 50%	1.2E-05 3.8E-03	1	1.2E-05 3.8E-03
	PM	N/A (pm)	0.13	g/kWhr	100	20%	50%	2.7E-04	1	2.7E-04
	PM10	N/A (pm10)	0.13	g/kWhr	100	20%	50%	2.6E-04	1	2.6E-04
	PM2.5	N/A (pm2.5)	0.12	g/kWhr	100	20%	50%	2.5E-04	1	2.5E-04
	CO	630-08-0	5.0	g/kWhr	100	20%	50%	1.0E-02	1	1.0E-02
ompactor	NMHC	N/A	1.7	g/kWhr	100	20%	50%	3.6E-03	1	3.6E-03
	Benzene	71-43-2	5.43E-03	g/hp-h	100	20%	50%	1.5E-05	1	1.5E-05
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	100	20%	50%	6.0E-07	1	6.0E-07
	Acrolein	107-02-8	2.35E-03	g/hp-h	100	20%	50%	6.5E-06	1	6.5E-06
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	100	20%	50%	3.9E-05	1	3.9E-05
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	100	20%	50%	1.2E-04	1	1.2E-04
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	100	20%	50%	1.2E-09	1	1.2E-09
	SO ₂	7446-09-5	0.0056	g/kWhr	290	40%	10%	1.4E-05	4	5.4E-05
	NO _x	10102-44-0	1.84	g/kWhr	290	40%	10%	4.4E-03	4	1.8E-02
	PM DM10	N/A (pm)	0.09	g/kWhr	290	40%	10%	2.2E-04	4	8.8E-04
	PM10	N/A (pm10)	0.09	g/kWhr	290	40%	10%	2.1E-04	4	8.5E-04 8.0E-04
	PM2.5 CO	N/A (pm2.5) 630-08-0	0.08	g/kWhr g/kWhr	290 290	40% 40%	10% 10%	2.0E-04 8.4E-03	4 4	8.0E-04 3.4E-02
ckup truck	NMHC	630-08-0 N/A	3.5 1.7	g/kWhr g/kWhr	290	40%	10%	8.4E-03 4.1E-03	4	3.4E-02 1.6E-02
	Benzene	71-43-2	5.43E-03	g/kvvni g/hp-h	290	40%	10%	4.1E-03 1.7E-05	4	7.0E-02
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	290	40%	10%	7.0E-07	4	2.8E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	290	40%	10%	7.6E-06	4	3.0E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	290	40%	10%	4.6E-05	4	1.8E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	290	40%	10%	1.3E-04	4	5.4E-04
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	290	40%	10%	1.4E-09	4	5.5E-09
	SO ₂	7446-09-5	0.0056	g/kWhr	285	40%	10%	1.3E-04	1	1.3E-04
	NO _x	10102-44-0	1.8	g/kWhr	285	40%	10%	4.3E-02	1	4.3E-02
	PM	N/A (pm)	0.09	g/kWhr	285	40%	10%	2.2E-03	1	2.2E-03
	PM10	N/A (pm10)	0.09	g/kWhr	285	40%	10%	2.1E-03	1	2.1E-03
	PM2.5	N/A (pm2.5)	0.08	g/kWhr	285	40%	10%	2.0E-03	1	2.0E-03
	CO	630-08-0	3.5	g/kWhr	285	40%	10%	8.3E-02	1	8.3E-02
ater truck	NMHC	N/A	1.7	g/kWhr	285	40%	10%	4.0E-02	1	4.0E-02
	Benzene	71-43-2	5.43E-03	g/hp-h	285	40%	10%	1.7E-04	1	1.7E-04
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	285	40%	10%	6.9E-06	1	6.9E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	285	40%	10%	7.4E-05	1	7.4E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	285	40%	10%	4.5E-04	1	4.5E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	285	40%	10%	1.3E-03	1	1.3E-03

1) Not all the equipment will be operating at their full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction period is assumed based

on the following reference: FHWA Roadway Construction Noise Model User's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration. An "acoustical usage factor" for each type of construction equipment is used to estimate the fraction of time each piece of construction equipment is operating at full power during a construction operation. The acoustical usage factor is also considered as the duty cycle / operating load usage factor of the construction equipment.

The Construction Noise and Vibration Assessment for this Project uses the load factors in the FHWA Guide as this is the recommended reference in the Metrolinx Environmental Guide for Noise and Vibration Assessment. The Air Quality Assessment is therefore using the same reference to be consistent with assumptions used in the Noise and Vibration Assessment. In addition, the following two references were reviewed, and the load factors in these documents are in similar ranges as the FHWA Guide as the Nedian Life, Annual Activity, and Load Factor Values for Noroad Engine Emissions Modeling. EPA-420-R-10-016. July 2010. Hawthorne CAT, Estimating Owning and Operating Costs, Caterpillar Performance Handbook Edition 44. Available at https://www.hawthornecat.com/sites/default/files/content/download/pdfs/Estimating_Owning_Operating_Costs_CPH_1.1_03.13.14.pdf. Accessed in January 2020.

Water truck average operating load is not available from above U.S. Federal Highway Administration guide. The load for dump truck was assumed for the water truck.

2) Percent of time used were assumed based on information from the design team.

3) The calculated emission rate is for all equipment, assuming operating at the same time.

 Sample Calculation - NOx emissions from each backhoe:

 NOx emissions (g/s) =
 1.8 g/kWh x 1 kWh/1.341hph x power of each equipment (hph) x % of load x % of operating time x 1 hour/3600 s

 1.8 g/kWh x 1 kWh/1.341hph x 120 (hph) x 40% x 50% x 1 hour/3600 s =
 0.009 g/s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the maximum estimated number of equipment operating consistently during the facility operating time. The calculated emission rate should be conservative.

Table 6: Summary of Overall Emissions

Contaminant	CAS#	Worst-case Scenar (g	
		Daytime (8AM- 5PM)	Nighttime
SO ₂	7446-09-5	4.83E-04	0.0000
NO _x	10102-44-0	1.58E-01	0.0000
PM	N/A (pm)	8.18E-03	0.0000
PM10	N/A (pm10)	7.85E-03	0.0000
PM2.5	N/A (pm2.5)	7.36E-03	0.0000
CO	630-08-0	3.11E-01	0.0000
NMHC	N/A	1.47E-01	0.0000
Benzene	71-43-2	6.25E-04	0.0000
1,3-Butadiene	106-99-0	2.50E-05	0.0000
Acrolein	107-02-8	2.70E-04	0.0000
Acetaldehyde	75-07-0	1.64E-03	0.0000
Formaldehyde	50-00-0	4.82E-03	0.0000
Benzo(a)pyrene	50-32-8	4.95E-08	0.0000

Emission Rate for each volume source (g/s)						
No. of volume sources	12					
	4.02E-05					
	1.32E-02					
	6.82E-04					
	6.54E-04					
	6.13E-04					
	2.59E-02					
	1.23E-02					
	5.20E-05					
	2.08E-06					
	2.25E-05					
	1.36E-04					
	4.01E-04					
	4.12E-09					

Notes:

1. Total emission rate for each contaminant for worst-case scenario during construction phase is the total of the above emission rates from each type of equipment assumed to be operated at the same time and their assumed operating time and operating load.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: Track and Grading Construction (west of Farewell Street to west of Harmony Road)

Source: Construction Activities Dust Emissions

Description:

Construction activities would generate dust emissions and may have substantial temporary impact on the local air quality.

Quantity of dust emissions depends on the area of land being worked, type of equipment onsite and level of construction activities. A large portion of the emissions results from equipment traffic over temporary roads at the construction site.

The Track and Grading Construction will include: •Grading

Trackwork

Contaminant(s) of Concern:

Particulate matter (including TSP, PM10 and PM2.5) emissions are the contaminants of concern from construction activities.

Methodology: Emission Factor (EF) and Engineering Calculation (EC)

Emission factors from the following references are used to estimate the overall area-wide dust emissions.

•Reference A: Western Reginal Air Partnership, Fugitive Dust Handbook, Chapter 3: Construction and Demolition (09/03/06), https://www.wrapair.org/forums/dejf/fdh/ •Reference B: California Environmental Protection Agency Air Resources Board. 2002. Section 7.7: Building Construction Dust.

It is estimated for a worst-case scenario that the active daily construction area is 300m x 10m along the railway.

Construction Stages ¹	Estimated Total Area ²	Active Constru Worst-case	Potential Operating	
	(acre)	%	Area (acre)	Time⁴
Trackwork and Grading	0.74	100%	0.74	daytime

Notes:

1. Construction phases are estimated by the design team.

2. The total area is assumed to be the worst case scenario and is provided by the project design team.

3. Only a portion of the entire length of the track will be the active construction area at a time.

4. Construction activities will occur during 8:00 a.m. to 5:00 p.m., Monday to Friday.

Emission Calculation

Level 1 emission estimation method shown in Table 3-2 of Reference A is used.

Contaminant	Emission Factor for Construction Area ⁽¹⁾	Dust Control Efficiency ⁽²⁾	PM Scaling Factor ⁽³⁾	Emission Factor ⁽⁴⁾ (g/s- m2)	Worst-ca	se Scenario	Operating Time
	(ton/acre-month of activity)			,	Active Area of Site (acre)	Emission Rate in Working Area ⁵ (g/s)	
PM	-		1.56	6.68E-05		0.200	
PM10	0.11	50%	1	4.28E-05	0.74	0.128	8 hours per day,
PM2.5	-	50 %	0.1	4.28E-06	0.74	0.013	from 8AM - 5 PM
Crystalline silica			0.0522	2.23E-06		0.007	

Notes:

(1) Emission factor from Table 3-2 Level 1 of the Reference A.

This value is used for developing estimates of overall emissions from construction scattered throughout a geographical area. The value is applicable to construction operations with:

• a dust control effectiveness of 50%

• 8 hours per day and 5 days per week for construction schedule

(2) Dust control measures (such as water suppression and limiting on-site vehicle speed to less than 20 km/hour) will be implemented to control dust emissions. The control efficiency is assumed for the project construction.

(3) PM and PM2.5 factors relative to PM10 from References A and B.

(4) Emission factors are estimated based on 20 days per month, 8 hours a day with the assumed dust control efficiency.

(5) Average emission rates are estimated for the 8 hours per day.

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for the construction activities is based on the emissions factors and operating time. The calculated emission rate should be conservative due to the assumed active area.

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Description:

Non-road equipment will be used during construction of the Simcoe Street Bridge. Tailpipe emissions due to the fuel combustion would be generated from these sources.

The Simcoe Street Bridge Replacement will include: •Utility relocation and road closure •Demolition of existing bridge •Abutment construction Span construction Road reinstatement Site cleanup

Table 1 - List of Construction Equipment and Usage

Construction Phase	Utility relocation	and road closure	Demolition of e	xisting bridge	Abutment o	construction	Span	construction	Road re	instatement	Site	clean up	Unit Power Rating (hp)	Fuel	Reference/Note ³	Worst-case Ope	erating Scenario ⁴
	Total Number of Equipment to be Used Onsite ¹	% time used ²	Total Number of Equipment to be Used Onsite ¹	% time used ²	Total Number of Equipment to be Used Onsite ¹	% time used ²	Total Number of Equipment to be Used	% time used ²	Total Number of Equipment to be Used Onsite ¹	% time used ²	Total Number of Equipment to be Used Onsite ¹	% time used ²				Number of Equipment Used	Operating Time
Asphalt spreader									1	10%			142	Diesel	Assumed AP500F (142 hp)	1	day
Augers/Drill Rigs					1	50%							260	Diesel	Assumed Atlas Copco PowerROC T45 Drill (260 hp)	0	day
Backhoe	1	50%	2	100%	2	50%							120	Diesel	Assumed Caterpillar 440, 450 Backhoe Loaders (120 hp)	0	day
Bobcat	1	50%	1	100%							1	50%	115	Diesel	Assumed Bobcat E145 Large Excavator (115 hp)	0	day
Boom truck	1	0%					1	10%	1	50%			500	Diesel	Assume Manitex 40124SHL mounted on Peterbilt 567	1	day
Compactor	1	10%							1	10%			100	Diesel	Assumed Caterpillar CP433E Vibratory Compactor	1	day
Concrete breaker			2	100%									68	Diesel	Assume hydraulic breaker on Bobcat S62	0	day
Concrete pump					1	10%	1	10%					100	Diesel	Assumed Ajax ASP7011	0	day
Concrete truck					2	10%	2	10%					500	Diesel	International HX515.	0	day
Crane			1	0%									270	Diesel	Assumed Tadnano GR-1000SL-2 (270 hp)	0	day
Dump Truck	2	50%	2	13%	1	10%			2	50%	1	10%	600	Diesel	Assumed Caterpillar 772G dump truck (600 hp)	2	day
Flatbed truck					1	10%	1	10%					360	Diesel	Assumed Hino XL Series 360HP	0	day
Pavement saw	1	10%											50	Diesel	Assumed Husqvarna FS 5000 D walk behind saw	0	day
Paving roller	1	0%							1	10%			100	Diesel	Assumed CAT CCS7 Combination Asphant Compactor,	1	day
Pile Driver					1	50%							240	Diesel	Assume Junttan Pile Driving Rig PM23, Cummins QSB6,7 EU Stage IV / US EPA	0	day
Water truck	1	10%	1	10%	1	10%	1	10%	1	10%	1	10%	285	Diesel	Assumed John Deere 300D water truck (285 hp)	1	day
Zoomboom							1	50%					110	Diesel	Assume Skytrak Model 8042 Telehandler, Engine Cummins QSB4.5T Turbo	0	day
Total number of equipment)	g)	10			7		7		3			Total	7	
Total HP - weighted (6)	76		669.5	5	604.5	5	279.	5	912.	7	14	16			Avg HP	332.4	

Notes:

Notes: 1) Total number of each type of construction equipment that may be used onsite is estimated by the project design team. 2) Not all equipment will be used on the same day and for the entire day. The estimated worst-case of equipment used on the same day and the percent of time used that day was estimated by the project design team. Some equipment are not likely to be used on the same day as the other equipment, and their usage were assumed to be 0%. 3) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction. 4) The worst-case scenario is based on the highest power rating of all the construction vehicles used for that phase and weighted by the percent of time used (per note 2). 5) Construction activities will occur during 8:00 a.m. to 5:00 p.m. for an 8 hour work a? (1) Hour assumed for breaks), Monday to Friday.

6) Total HP weighted by percent the equipment was assumed to be used per note 2.

Contaminant(s) of Concern: NOx, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in the equipment engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in the assessment.

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Methodology: Mass Balance (MB) and Emission Factor (EF) Table 2: SO₂ Emission Factor Calculation

SO₂ emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the equipment. SO₂ emission factor is calculated below.

Data	Value	Unit	Reference
Sulphur content in diesel	15	ppm	Sulphur in Diesel Fuel Regulations, Environment and Climate Change Canada (ECCC)
Diesel Engine Efficiency	45%		"Just the basics: Diesel Energy". US department of energy
Lower Heating Value	128,450	BTU/gal	"Alternative Fuels Data Center – Fuel Properties Comparison " from the US Department of Energy
Unit Conversion	0.00029	kWh/BTU	-
	454	g/lb	-
Density of diesel	7.00	lb/gal	-
Energy output	16.94	kWh/gal	Calculated
SO ₂ / gallon of diesel	0.0953	g SO ₂ /gal	A factor of 2 is applied to convert sulfur to SO_{2} assuming all the sulfur will be oxidized to SO_{2}
Emission Factor	0.0056	g/kWh	-

Note: Emissions are calculated based on sulphur content in diesel as per Sulphur in Diesel Fuel Regulations.

Table 3: Emission factors for NOx, PM, CO, NMHC

			Emission Factor (1) (2) (g/kWhr)											
			50 < 75 HP			75 < 175 HP			175 < 600 HP			600 < 750 HP		
		Tier 3 (50-100 HP)	Tier 4 (50-75 HP)	Weighted (2)	Tier 3 (100-175 HP)	Tier 4 (75-175 HP)	Weighted (2)	Tier 3 (100-600 HP)	Tier 4 (175-750 HP)	Weighted (2)	Tier 3 (600-750 HP)	Tier 4 (175-750 HP)	Weighted (2)	
Nox (3)	10102-44-0	4.7	4.7	4.7	4.0	0.4	1.8	4.0	0.4	1.8	4.0	0.4	1.8	
PM	N/A (pm)	0.40	0.030	0.18	0.30	0.020	0.13	0.20	0.020	0.09	0.20	0.020	0.09	
PM10	N/A (pm10)	0.38	0.03	0.17	0.29	0.02	0.13	0.19	0.02	0.09	0.19	0.02	0.09	
PM2.5	N/A (pm2.5)	0.36	0.03	0.16	0.27	0.02	0.12	0.18	0.02	0.08	0.18	0.02	0.08	
СО	630-08-0	5.0	5.0	5.0	5.0	5.0	5.0	3.5	3.5	3.5	3.5	3.5	3.5	
NMHC (3)	N/A	4.7	4.7	4.7	4.00	0.19	1.7	4.00	0.2	1.7	4.00	0.2	1.7	

Notes:

1) NOX, CO, PM emission factors: Tier 3 and Tier 4 emission standard in US EPA reference document "Nonroad Compression-Ignition Engines -- Exhaust Emission Standards" and "US EPA Tier 1-3 engines" are used.

PM10 and PM2.5: Based on US EPA AP-42 Appendix B.2 Generalized Particle Size Distributions for gasoline and diesel fuel combustion engines, PM10 = 96% PM; PM2.5 = 90% PM.

2) It is assumed that construction equipment to be used will be either US EPA Tier 3 or Tier 4 emission compliant at the following ratios: Tier 3 40%

Tier 4 60% 3) Where emission factors were provided for NMHC + Nox in the US EPA reference document (i.e. not provided separatedly for NOx and NMHC, the emission factor was conservatively used for both Nox and NMHC.

Table 4: Speciated VOC emission factors

Diesel Engine Tier	Tier	3	Tier	4	Weighted (1)
VOC Emission Factor	0.2	g/hp-h	0.142	g/hp-h	
PM Emission Factor	0.1500	g/hp-h	0.015	g/hp-h	
Key VOCs and PAH	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Toxic Fraction of VOC/PM	Emission Factor (g/hph)	Emission Factor (g/hph)
Benzene	0.054100	1.08E-02	0.012910	1.83E-03	5.43E-03
1,3-Butadiene	0.001860	3.72E-04	0.000800	1.13E-04	2.17E-04
Acrolein	0.018700	3.74E-03	0.009990	1.42E-03	2.35E-03
Acetaldehyde	0.104000	2.08E-02	0.069340	9.82E-03	1.42E-02
Formaldehyde	0.292000	5.84E-02	0.217440	3.08E-02	4.18E-02
Benzo(a)pyrene	6.67E-06	1.00E-06	3.30E-06	4.92E-08	4.30E-07

Notes:

Reference: Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015), Tables 11 & 12

1) It is assumed that construction equipment used are Tier 3 and Tier 4 with the ratios shown in note 2 in the section above.

Emission Calculations:

SO2 emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the equipment.

NOx, PM, CO, and non-methane hydrocarbon (NMHC) emissions from onsite equipment tailpipe exhausts are calculated based on the US EPA reference document "Nonroad Compression-Ignition Engines -- Exhaust Emission Standards". Key VOCs emission factors are derived from the data in US EPA AP-42 reference "Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015)" as shown above.

Table 5: Worst-case construction phase - Road Reinstatement

2

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Source Group	Contaminant	CAS#	Emission	Factor	Unit Power Rating (hp)	Operating Load ⁽¹⁾	% of Time Operating ⁽³⁾	Emission Rate - Each Equipment	Worst-case Sce	enario for Modelling
			Value	Unit				(g/s)	Number of Equipment	Emission Rate - Al Equipment ⁽⁴⁾ (g/s)
	SO ₂	7446-09-5	0.0056	g/kWhr	142	50%	10%	8.3E-06	1	8.3E-06
	NO _x	10102-44-0	1.8	g/kWhr	142	50%	10%	2.7E-03	1	2.7E-03
	PM	N/A (pm)	0.1	g/kWhr	142	50%	10%	1.9E-04	1	1.9E-04
	PM10	N/A (pm10)	0.1	g/kWhr	142	50%	10%	1.9E-04	1	1.9E-04
	PM2.5	N/A (pm2.5)	0.1	g/kWhr	142	50%	10%	1.7E-04	1	1.7E-04
	со	630-08-0	5.0	g/kWhr	142	50%	10%	7.4E-03	1	7.4E-03
Asphalt spreader	NMHC	N/A	1.7	g/kWhr	142	50%	10%	2.5E-03	1	2.5E-03
	Benzene	71-43-2	5.43E-03	g/hp-h	142	50%	10%	1.1E-05	1	1.1E-05
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	142	50%	10%	4.3E-07	1	4.3E-07
	Acrolein	107-02-8	2.35E-03	g/hp-h	142	50%	10%	4.6E-06	1	4.6E-06
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	142	50%	10%	2.8E-05	1	2.8E-05 8.3E-05
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	142	50%	10%	8.3E-05	1	8.5E-10
	Benzo(a)pyrene	50-32-8 7446-09-5	4.30E-07 0.0056	g/hp-h	142 500	50% 50%	10% 50%	8.5E-10 1.5E-04	1	1.5E-04
	NO _x	10102-44-0	1.8	g/kWhr g/kWhr	500	50%	50%	4.8E-02	1	4.8E-02
	PM	N/A (pm)	0.1	g/kWhr	500	50%	50%	2.4E-02	1	2.4E-03
	PM10	N/A (pm10)	0.1	g/kWhr	500	50%	50%	2.4E-03 2.3E-03	1	2.4E-03
	PM10 PM2.5	N/A (pm2.5)	0.1	g/kWhr	500	50%	50%	2.1E-03	1	2.1E-03
	CO	630-08-0	3.5	g/kWhr	500	50%	50%	9.1E-02	1	9.1E-02
Boom truck	NMHC	N/A	1.7	g/kWhr	500	50%	50%	4.4E-02	1	4.4E-02
	Benzene	71-43-2	5.43E-03	g/hp-h	500	50%	50%	1.9E-04	1	1.9E-04
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	500	50%	50%	7.5E-06	1	7.5E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	500	50%	50%	8.1E-05	1	8.1E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	500	50%	50%	4.9E-04	1	4.9E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	500	50%	50%	1.5E-03	1	1.5E-03
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	500	50%	50%	1.5E-08	1	1.5E-08
	SO ₂	7446-09-5	0.0056	g/kWhr	100	20%	10%	2.3E-06	1	2.3E-06
	NO _x	10102-44-0	1.8	g/kWhr	100	20%	10%	7.6E-04	1	7.6E-04
	PM	N/A (pm)	0.1	g/kWhr	100	20%	10%	5.5E-05	1	5.5E-05
	PM10	N/A (pm10)	0.1	g/kWhr	100	20%	10%	5.2E-05	1	5.2E-05
	PM2.5	N/A (pm2.5)	0.1	g/kWhr	100	20%	10%	4.9E-05	1	4.9E-05
	со	630-08-0	5.0	g/kWhr	100	20%	10%	2.1E-03	1	2.1E-03
Compactor	NMHC	N/A	1.7	g/kWhr	100	20%	10%	7.1E-04	1	7.1E-04
	Benzene	71-43-2	5.43E-03	g/hp-h	100	20%	10%	3.0E-06	1	3.0E-06
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	100	20%	10%	1.2E-07	1	1.2E-07
	Acrolein	107-02-8	2.35E-03	g/hp-h	100	20%	10%	1.3E-06	1	1.3E-06
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	100	20%	10%	7.9E-06	1	7.9E-06
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	100	20%	10%	2.3E-05	1	2.3E-05 2.4E-10
	Benzo(a)pyrene	50-32-8 7446-09-5	4.30E-07	g/hp-h	100 600	20% 40%	10% 50%	2.4E-10 1.4E-04	1 2	2.4E-10
	SO ₂ NO _x	10102-44-0	0.0056	g/kWhr					2	9.1E-02
	PM	N/A (pm)	1.8 0.09	g/kWhr g/kWhr	600 600	40% 40%	50% 50%	4.6E-02 2.3E-03	2	4.6E-03
	PM10	N/A (pm10)	0.09	g/kWhr	600	40%	50%	2.3E-03 2.2E-03	2	4.4E-03
	PM10 PM2.5	N/A (pm2.5)	0.08	g/kWhr	600	40%	50%	2.1E-03	2	4.1E-03
	CO	630-08-0	3.5	g/kWhr	600	40%	50%	8.7E-02	2	1.7E-01
Dump truck	NMHC	N/A	1.7	g/kWhr	600	40%	50%	4.3E-02	2	8.5E-02
	Benzene	71-43-2	5.43E-03	g/hp-h	600	40%	50%	1.8E-04	2	3.6E-04
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	600	40%	50%	7.2E-06	2	1.4E-05
	Acrolein	107-02-8	2.35E-03	g/hp-h	600	40%	50%	7.8E-05	2	1.6E-04
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	600	40%	50%	4.7E-04	2	9.5E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	600	40%	50%	1.4E-03	2	2.8E-03
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	600	40%	50%	1.4E-08	2	2.9E-08
	SO ₂	7446-09-5	0.0056	g/kWhr	100	20%	10%	2.3E-06	1	2.3E-06
	NO _x	10102-44-0	1.8	g/kWhr	100	20%	10%	7.6E-04	1	7.6E-04
	PM	N/A (pm)	0.13	g/kWhr	100	20%	10%	5.5E-05	1	5.5E-05
	PM10	N/A (pm10)	0.13	g/kWhr	100	20%	10%	5.2E-05	1	5.2E-05
	PM2.5	N/A (pm2.5)	0.12	g/kWhr	100	20%	10%	4.9E-05	1	4.9E-05
	со	630-08-0	5.0	g/kWhr	100	20%	10%	2.1E-03	1	2.1E-03
Paving roller	NMHC	N/A	1.7	g/kWhr	100	20%	10%	7.1E-04	1	7.1E-04
	Benzene	71-43-2	5.43E-03	g/hp-h	100	20%	10%	3.0E-06	1	3.0E-06
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	100	20%	10%	1.2E-07	1	1.2E-07
	Acrolein	107-02-8	2.35E-03	g/hp-h	100	20%	10%	1.3E-06	1	1.3E-06
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	100	20%	10%	7.9E-06	1	7.9E-06
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	100	20%	10%	2.3E-05	1	2.3E-05
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	100	20%	10%	2.4E-10	1	2.4E-10

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

	SO ₂	7446-09-5	5.62E-03	g/kWhr	285	40%	10%	1.3E-04	1	1.3E-04
	NO _x	10102-44-0	1.8	g/kWhr	285	40%	10%	4.3E-02	1	4.3E-02
	PM	N/A (pm)	0.09	g/kWhr	285	40%	10%	2.2E-03	1	2.2E-03
	PM10	N/A (pm10)	0.09	g/kWhr	285	40%	10%	2.1E-03	1	2.1E-03
	PM2.5	N/A (pm2.5)	0.08	g/kWhr	285	40%	10%	2.0E-03	1	2.0E-03
	CO	630-08-0	3.5	g/kWhr	285	40%	10%	8.3E-02	1	8.3E-02
Water Truck	NMHC	N/A	1.7	g/kWhr	285	40%	10%	4.0E-02	1	4.0E-02
	Benzene	71-43-2	5.43E-03	g/hp-h	285	40%	10%	1.7E-04	1	1.7E-04
	1,3-Butadiene	106-99-0	2.17E-04	g/hp-h	285	40%	10%	6.9E-06	1	6.9E-06
	Acrolein	107-02-8	2.35E-03	g/hp-h	285	40%	10%	7.4E-05	1	7.4E-05
	Acetaldehyde	75-07-0	1.42E-02	g/hp-h	285	40%	10%	4.5E-04	1	4.5E-04
	Formaldehyde	50-00-0	4.18E-02	g/hp-h	285	40%	10%	1.3E-03	1	1.3E-03
	Benzo(a)pyrene	50-32-8	4.30E-07	g/hp-h	285	40%	10%	1.4E-08	1	1.4E-08

Notes:

1) Not all the equipment will be operating their full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction period is assumed based on the following reference:

FHWA Roadway Construction Noise Model User's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration.

An "acoustical usage factor" for each type of construction equipment is used to estimate the fraction of time each piece of construction equipment is operating at full power during a construction operation. The acoustical usage factor is also considered as the duty cycle / operating load usage factor of the construction equipment.

The Construction Noise and Vibration Assessment for this Project uses the load factors in the FHWA Guide as this is the recommended reference in the Metrolinx Environmental Guide for Noise and Vibration Assessment. The Air Quality Assessment is therefore using the same reference to be consistent with assumptions used in the Noise and Vibration Assessment.

In addition, the following two references were reviewed, and the load factors in these documents are in similar ranges as the FHWA Guide: U.S. EPA, Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling. EPA-420.R-10-016. July 2010. Hawthorne CAT, Estimating Owning and Operating Costs, Caterpillar Performance Handbook Edition 44. Available at https://www.hawthornecat.com/sites/default/files/content/download/pdfs/Estimating_Owning_Operating_Costs_CPH_v1.1_03.13.14.pdf. Accessed in January 2020.

2) Water truck average operating load is not available from above U.S. Federal Highway Administration guide. The load for dump truck was assumed for the water truck.

3) Percent of time used were assumed based on information from the design team (per Table 1 above).

4) The calculated emission rate is for all equipment, assuming operating at the same time.

4

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Sample Calculation - NOx emissions from each asphalt spreader:

NOx emissions (g/s) =	1.8 g/kWh x 1 kWh/1.341hph x power of each equipment (hph) x % of load x % operating time x 1 hour/3600 s
	1.8 g/kWh x 1 kWh/1.341hph x 142 (hph) x 40% x 50% x 1 hour/3600 s =

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the maximum estimated number of equipment operating consistently during the facility operating time. The calculated emission rate should be conservative.

Table 6: Summary of Overall Emissions

Contaminant	CAS#	CAS# Worst-case Scenario Emission Rate ¹ (g/s)		Emis
		Daytime (8AM- 5PM)	Nighttime	N
SO ₂	7446-09-5	5.71E-04	0.0000	
NO _x	10102-44-0	1.87E-01	0.0000	
PM	N/A (pm)	9.43E-03	0.0000	
PM10	N/A (pm10)	9.05E-03	0.0000	
PM2.5	N/A (pm2.5)	8.49E-03	0.0000	
CO	630-08-0	3.59E-01	0.0000	
NMHC	N/A	1.74E-01	0.0000	
Benzene	71-43-2	7.39E-04	0.0000	
1,3-Butadiene	106-99-0	2.95E-05	0.0000	
Acrolein	107-02-8	3.19E-04	0.0000	
Acetaldehyde	75-07-0	1.94E-03	0.0000	
Formaldehyde	50-00-0	5.70E-03	0.0000	
Benzo(a)pyrene	50-32-8	5.85E-08	0.0000	

Emission Rate for each volume source (g/s)					
No. of volume sources	11				
	5.19E-05				
	1.70E-02				
	8.57E-04				
	8.23E-04				
	7.72E-04				
	3.26E-02				
	1.58E-02				
	6.71E-05				
	2.68E-06				
	2.90E-05				
	1.76E-04				
	5.18E-04				
	5.32E-09				

0.0027 g/s

Notes:

1. Total emission rate for each contaminant for worst-case scenario during construction phase is the total of the above emission rates from each type of equipment assumed to be operated at the same time and their assumed operating time and operating load.

5

Source: Construction Activities Dust Emissions

Description:

Construction activities would generate dust emissions and may have substantial temporary impact on the local air quality.

Quantity of dust emissions depends on the area of land being worked, type of equipment onsite and level of construction activities. A large portion of the emissions results from equipment traffic over temporary roads at the construction site.

The Simcoe Street Bridge Replacement will include: •Utility relocation and road closure •Demolition of existing bridge •Abutment construction •Span construction •Road reinstatement •Site cleanup

Contaminant(s) of Concern:

Particulate matter (including TSP, PM10 and PM2.5) emissions are the contaminants of concern from construction activities.

Methodology: Emission Factor (EF) and Engineering Calculation (EC)

Emission factors from the following references are used to estimate the overall area-wide dust emissions. •Reference A: Western Reginal Air Partnership, Fugitive Dust Handbook, Chapter 3: Construction and Demolition (09/03/06), https://www.wrapair.org/forums/dejf/fdh/ •Reference B: California Environmental Protection Agency Air Resources Board. 2002. Section 7.7: Building Construction Dust.

Construction Stages ¹	Estimated Total Area ² (acre)	Active Construction Area for Worst-case Scenario ³ % Area (acre)		Potential Operating Time ⁴
Utility relocation and road closure Demolition of existing bridge				daytime davtime
Abutment construction	0.5	30%	0.2	daytime
Span construction	0.5	30 /0	0.2	daytime
Road reinstatement				daytime
Site cleanup				daytime

Notes:

1. Construction phases are estimated by the design team.

2. The total area is estimated based on drawing No. CPG_SCL3756_C0500 in BMV PD Civil Package.pdf.

3. It is conservatively assumed that 30% of the construction area is active at one time during the road reinstatement phase.

4. Construction activities will occur during 8:00 a.m. to 5:00 p.m., Monday to Friday.

Emission Calculation

Level 1 emission estimation method shown in Table 3-2 of Reference A is used.

Contaminant	Emission Factor for Construction <u>Area⁽¹⁾</u> (ton/acre-month of activity)	Dust Control Efficiency ⁽²⁾	PM Scaling Factor ⁽³⁾	Emission Factor ⁽⁴⁾ (g/s- m2)	Worst-ca Active Area of Site (acre)	se Scenario Emission Rate in Working	Operating Time
						Area ⁵ (g/s)	
PM	-		1.56	6.68E-05		0.042	
PM10	0.11	50%	1	4.28E-05	0.2	0.027	8 hours per day,
PM2.5	-	50%	0.1	4.28E-06	0.2	0.003	from 8AM - 5 PM
Crystalline silica			0.0522	2.23E-06		0.001	

Notes:

(1) Emission factor from Table 3-2 Level 1 of the Reference A.

This value is used for developing estimates of overall emissions from construction scattered throughout a geographical area. The value is applicable to construction operations with:

a dust control effectiveness of 50%

+ 8 hours per day and 5 days per week for construction schedule

(2) Dust control measures (such as water suppression and limiting on-site vehicle speed to less than 20 km/hour) will be implemented to control dust emissions. The control efficiency is assumed for the project construction.

(3) PM and PM2.5 factors relative to PM10 from References A and B.

(4) Emission factors are estimated based on 20 days per month, 8 hours a day with the assumed dust control efficiency.

(5) Average emission rates are estimated for the 8 hours per day.

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for the construction activities is based on the emissions factors and operating time. The calculated emission rate should be conservative due to the assumed active area of both construction scenarios.

Source: On-Road Vehicle Emissions on Detour Routes During Construction

Description: Local road traffic will be affected during the Simcoe Street bridge reconstruction due to the road closure.

Traffic emissions from the following roads are expected to change during construction. Their location and traffic data are also listed below.

Traffic Data:

raffic Data:			Modelled Road	Average Speed (2)	Projected Traffic	Volume for 2023 ⁽³⁾	Distribution - Cars	Distribution - Trucks
Road Source ID	Description	Link Type	Length (m) ⁽¹⁾	(km/h)	ADT	Peak Hourly ⁽⁴⁾	97%	3%
R1a Q	NB/SB Simcoe / Gibb (queue link)	Queue	35	19	5,592	671	5,424	168
R1b_Q	NB/SB Simcoe / Gibb (queue link)	Queue	35	19	5,333	640	5,173	160
R2a_Q	EB/WB Gibb / Simcoe (queue link)	Queue	38	20	6,392	767	6,200	192
R2b_Q	EB/WB Gibb / Simcoe (queue link)	Queue	38	20	2,650	318	2,571	80
R3_C	EB/WB Gibb (cruise link)	Cruise	75	50	6,192	743	6,006	186
R4a_Q	EB/WB Gibb / Centre (queue link)	Queue	54	18	9,275	1,113	8,997	278
R4b_Q	EB/WB Gibb / Centre (queue link)	Queue	54	18	6,267	752	6,079	188
R5_C	EB/WB Gibb (cruise link)	Cruise	526	50	9,883	1,186	9,587	296
R6a_Q	EB/WB Park Rd / Gibb (queue link)	Queue	88	14	10,983	1,318	10,654	329
R6b_Q	EB/WB Park Rd / Gibb (queue link)	Queue	88	14	9,933	1,192	9,635	298
R7a_Q	NB/SB Park Rd / Gibb (queue link)	Queue	113	19	15,467	1,856	15,003	464
R7b_Q	NB/SB Park Rd / Gibb (queue link)	Queue	113	19	13,283	1,594	12,885	398
R8_C	NB/SB Park Rd (cruise link)	Cruise	503	50	15,342	1,841	14,882	460
R9_C	NB/SB Park Rd (cruise link)	Cruise	70	50	15,342	1,841	14,882	460
R10a_Q	NB/SB Park Rd / Hillside (queue link)	Queue	67	32	12,608	1,513	12,230	378
R10b_Q	NB/SB Park Rd / Hillside (queue link)	Queue	67	32	15,183	1,822	14,728	455
R11_C	NB/SB Park Rd (cruise link)	Cruise	105	50	13,517	1,622	13,111	406
R12_C	NB/SB Park Rd (cruise link)	Cruise	195	50	13,517	1,622	13,111	406
R13_Q	NB/SB Park Rd / Bloor (queue link)	Queue	123	11	12,658	1,519	12,278	380
R14a_Q	EB/WB Bloor / Park Rd (queue link)	Queue	89	20	15,833	1,900	15,358	475
R14b_Q	EB/WB Bloor / Park Rd (queue link)	Queue	89	20	17,183	2,062	16,668 18,462	515 571
R15a_Q	EB/WB Bloor (queue link)	Queue	125 87	19 19	19,033	2,284	10,985	340
R15b_Q R16 C	EB/WB Bloor (queue link) EB/WB Bloor (cruise link)	Queue Cruise	423	50	<u>11,325</u> 11,483	1,359	11,985	340
R16_C	EB/WB Bloor / Simcoe (queue link)	Queue	184	21	15,158	1,378	14,703	455
	EB/WB Bloor / Simcoe (queue link)	Queue	184	21	15,158	1,819	14,703	455
R18 C	EB/WB Bloor (cruise link)	Cruise	312	50	13,433	1,612	13,030	403
R19a Q	EB/WB Bloor / 401 EB ramps (queue link)	Queue	83	18	10,567	1,268	10,250	317
R19b Q	EB/WB Bloor / 401 EB ramps (queue link)	Queue	83	18	13,450	1,614	13,047	404
R20a Q	EB/WB Bloor / Ritson (queue link)	Queue	160	18	16,217	1,946	15,730	487
R20b Q	EB/WB Bloor / Ritson (queue link)	Queue	126	18	9.342	1,121	9,062	280
R21a Q	NB/SB Ritson / Bloor (queue link)	Queue	105	18	9,675	1,161	9,385	290
R21b Q	NB/SB Ritson / Bloor (queue link)	Queue	105	18	18,617	2.234	18.058	559
R22 C	NB/SB Ritson (cruise link)	Cruise	156	50	21,183	2,542	20,548	635
R23a Q	NB/SB Ritson / Mc Naughton / Dean (gueue link)	Queue	187	28	22,125	2,655	21,461	664
R23b Q	NB/SB Ritson / Mc Naughton / Dean (queue link)	Queue	187	28	21,092	2,531	20,459	633
R24 C	NB/SB Ritson (cruise link)	Cruise	168	50	21.000	2,520	20,370	630
R25a Q	NB/SB Ritson / Olive (gueue link)	Queue	165	22	21.283	2,554	20,645	638
R25b Q	NB/SB Ritson / Olive (queue link)	Queue	165	22	16,592	1,991	16,094	498
R26a Q	EB/WB Olive / Ritson (queue link)	Queue	163	16	8,058	967	7,816	242
R26b_Q	EB/WB Olive / Ritson (queue link)	Queue	163	16	9,950	1,194	9,652	299
R27_C	EB/WB Olive (cruise link)	Cruise	331	50	9,242	1,109	8,965	277
R28a_Q	EB/WB Olive/Albert (queue link)	Queue	118	31	9,808	1,177	9,514	294
R28b_Q	EB/WB Olive/Albert (queue link)	Queue	164	31	7,617	914	7,388	229
R29a_Q	NB Albert (queue link)	Queue	56	11	4,875	585	4,729	146
R29b_Q	NB Albert (queue link)	Queue	56	11	1,967	236	1,908	59
R30_Q	EB/WB Olive / Simcoe (queue link)	Queue	45	12	5,333	640	5,173	160
R31_C	NB/SB Albert (cruise link)	Cruise	58	50	5,275	633	5,117	158
R32_C	NB/SB Albert (cruise link)	Cruise	360	50	5,275	633	5,117	158
R33a_Q	NB/SB Albert (queue link)	Queue	54	18	4,617	554	4,478	139
R33b_Q	NB/SB Albert (queue link)	Queue	54	18	5,667	680	5,497	170
R34_Q	EB/WB First (queue link)	Queue	313	23	2,733	328	2,651	82

Source: On-Road Vehicle Emissions on Detour Routes During Construction

R35_C	NB/SB Albert (cruise link)	Cruise	339	50	4,617	554	4,478	139
R36_Q	NB/SB Albert (queue link)	Queue	30	10	4,617	554	4,478	139
R37_C	NB Albert (cruise link)	Cruise	172	50	1,967	236	1,908	59

Notes:

(1) Source length in AERMOD.

(2) Posted speed limits assumed for cruise links and average speed determined using signal cycle data at intersections for queue links. Signal cycle data provided by project traffic team.

(3) Average Daily Traffic (ADT), AM Peak and PM peak data and vehicle distribution data provided by project transportation team. Note that ADT are estimated by applying a K-Factor of 0.12 or the application of an expansion factor of 12 to PM Peak Hour volumes.

(4) The higher traffic counts between the AM and PM Peak Hour traffic are used for peak hourly traffic for emission estimation. Note that PM peak volumes are two-way volumes. (5) Data assumed by the project traffic team.

Contaminant(s) of Concern:

NOx, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in the mobile equipment engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in the

Emission Calculations:

Source: On-Road Vehicle Emissions on Detour Routes During Construction

Methodology: U.S. EPA MOVES program EPA's MOtor Vehicle Emission Simulator (MOVES) is a state-of-the-science emission modeling system that estimates emissions for mobile sources at the national, county, and project level for criteria pollutants, greenhouse gases, and Key Input Data to MOVES3

Parameter	Input Description
Modelling Scale	Project level
Contaminants	CO, NOx, SO ₂ , PM, PM10, PM2.5, Acetaldehyde, Formaldehyde, 1,3-Butadiene, Benzene, Acrolein, and
Contaminants	Benzo(a)pyrene
Construction Year	2023
Evaluation Month and Time	January or July 4PM-5PM - the higher emission factors out of the two months are conservatively used
Meteorology (ambient temp., relative humidity)	Canadian Climate Normals, 1981-2010 for Oshawa WPCP Daily Average temperatures: January -4.8 degrees C July 20.6 degrees C Canadian Climate Normals, 1981-2021 for Toronto Buttonville Airport Average relative humidity: January 79.6% (AM) and 69.6% (PM) July 82.5% (AM) and 53.4% (PM)
Road Type	All Urban Unrestricted Access
Fuel Type	Assumed gasoline for cars and diesel for trucks
Fuel Data	Ontario
Traffic Volume	See table above
Traffic Speed	See table above
Vehicle Age Distribution	U.S. EPA default for the modelling year

Detailed MOVES input and output data are saved in the project folder. Summary of the emission data from the modelling for each of the road links are presented below.

Source: On-Road Vehicle Emissions on Detour Routes During Construction

Emission Data for Onsite Roads:

Road Source ID	Contaminant	CAS#			NB/S	B Simcoe / Gibb (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R1a_Q	NOx	10102-44-0	6.23E-01			8.87E-04			2.55E-03
R1a_Q	CO	630-08-0	5.31E+00			7.56E-03			2.18E-02
R1a_Q	SO ₂	7446-09-5	3.77E-03			5.37E-06			1.55E-05
	PM	N/A (pm)	1.44E-01			2.05E-04			5.91E-04
R1a_Q	PM10	N/A (pm10)	1.44E-01			2.05E-04			5.91E-04
R1a_Q	PM2.5	N/A (pm2.5)	3.78E-02	5,592	123	5.38E-05	671	15	1.55E-04
R1a_Q	Benzene	71-43-2	1.55E-03	0,002	120	2.21E-06	011	10	6.36E-06
R1a_Q	1,3-Butadiene	106-99-0	1.49E-04			2.12E-07			6.11E-07
R1a_Q	Acrolein	107-02-8	2.33E-04			3.31E-07			9.53E-07
R1a_Q	Acetaldehyde	75-07-0	1.60E-03			2.28E-06			6.56E-06
R1a_Q	Formaldehyde	50-00-0	2.98E-03			4.25E-06			1.22E-05
R1a_Q	Benzo(a)pyrene	50-32-8	1.96E-06			2.79E-09			8.04E-09

Road Source ID	Contaminant	CAS#			NB/S	SB Simcoe / Gibb (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R1b_Q	NOx	10102-44-0	6.23E-01			8.46E-04			2.44E-03
R1b_Q	CO	630-08-0	5.31E+00			7.21E-03			2.08E-02
R1b_Q	SO ₂	7446-09-5	3.77E-03			5.12E-06			1.48E-05
R1b_Q	PM	N/A (pm)	1.44E-01			1.96E-04			5.64E-04
R1b_Q	PM10	N/A (pm10)	1.44E-01			1.96E-04			5.64E-04
R1b_Q	PM2.5	N/A (pm2.5)	3.78E-02	5,333	117	5.13E-05	640	14	1.48E-04
R1b_Q	Benzene	71-43-2	1.55E-03	0,000		2.11E-06	040	14	6.06E-06
R1b_Q	1,3-Butadiene	106-99-0	1.49E-04			2.02E-07			5.83E-07
R1b_Q	Acrolein	107-02-8	2.33E-04			3.16E-07			9.09E-07
R1b_Q	Acetaldehyde	75-07-0	1.60E-03			2.17E-06			6.25E-06
R1b_Q	Formaldehyde	50-00-0	2.98E-03			4.05E-06			1.17E-05
R1b_Q	Benzo(a)pyrene	50-32-8	1.96E-06			2.66E-09			7.67E-09

Road Source ID	Contaminant	CAS#			EB/V	VB Gibb / Simcoe (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R2a_Q	NOx	10102-44-0	6.11E-01			1.06E-03			3.05E-03
R2a_Q	CO	630-08-0	5.22E+00			9.04E-03			2.60E-02
R2a_Q	SO ₂	7446-09-5	3.67E-03			6.36E-06			1.83E-05
R2a_Q	PM	N/A (pm)	1.39E-01			2.40E-04			6.92E-04
R2a_Q	PM10	N/A (pm10)	1.39E-01			2.40E-04			6.92E-04
R2a_Q	PM2.5	N/A (pm2.5)	3.71E-02	6,392	150	6.41E-05	767	18	1.85E-04
R2a_Q	Benzene	71-43-2	1.51E-03	0,002	150	2.62E-06	101	10	7.55E-06
R2a_Q	1,3-Butadiene	106-99-0	1.44E-04			2.49E-07			7.17E-07
R2a_Q	Acrolein	107-02-8	2.23E-04			3.86E-07			1.11E-06
R2a_Q	Acetaldehyde	75-07-0	1.54E-03			2.66E-06			7.67E-06
R2a_Q	Formaldehyde	50-00-0	2.86E-03			4.95E-06			1.43E-05
R2a_Q	Benzo(a)pyrene	50-32-8	1.94E-06			3.35E-09			9.66E-09

Road Source ID	Contaminant	CAS#			EB/V	VB Gibb / Simcoe (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R2b_Q	NOx	10102-44-0	6.11E-01			4.39E-04			1.26E-03
R2b_Q	CO	630-08-0	5.22E+00			3.75E-03			1.08E-02
R2b_Q	SO ₂	7446-09-5	3.67E-03			2.64E-06			7.59E-06
R2b_Q	PM	N/A (pm)	1.39E-01			9.97E-05			2.87E-04
R2b_Q	PM10	N/A (pm10)	1.39E-01			9.97E-05			2.87E-04
R2b_Q	PM2.5	N/A (pm2.5)	3.71E-02	2,650	62	2.66E-05	318	7	7.66E-05
R2b_Q	Benzene	71-43-2	1.51E-03	2,000	02	1.09E-06	010	,	3.13E-06
R2b_Q	1,3-Butadiene	106-99-0	1.44E-04			1.03E-07			2.97E-07
R2b_Q	Acrolein	107-02-8	2.23E-04			1.60E-07			4.60E-07
R2b_Q	Acetaldehyde	75-07-0	1.54E-03			1.10E-06			3.18E-06
R2b_Q	Formaldehyde	50-00-0	2.86E-03			2.05E-06			5.91E-06
R2b_Q	Benzo(a)pyrene	50-32-8	1.94E-06			1.39E-09			4.00E-09

Road Source ID	Contaminant	CAS#				EB/WB Gibb (cruise	link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R3_C	NOx	10102-44-0	4.34E-01			1.45E-03			4.17E-03
R3_C	CO	630-08-0	3.41E+00			1.14E-02			3.28E-02
R3_C	SO ₂	7446-09-5	2.33E-03			7.77E-06			2.24E-05
R3 C	PM	N/A (pm)	7.32E-02			2.45E-04			7.04E-04
R3_C	PM10	N/A (pm10)	7.32E-02			2.45E-04			7.04E-04
R3_C	PM2.5	N/A (pm2.5)	2.46E-02	6,192	289	8.22E-05	743	35	2.37E-04
R3_C	Benzene	71-43-2	9.60E-04	0,132	205	3.21E-06	745	55	9.24E-06
R3_C	1,3-Butadiene	106-99-0	7.96E-05			2.66E-07			7.65E-07
R3_C	Acrolein	107-02-8	1.12E-04			3.75E-07			1.08E-06
R3_C	Acetaldehyde	75-07-0	8.13E-04			2.72E-06			7.82E-06
R3_C	Formaldehyde	50-00-0	1.47E-03			4.90E-06			1.41E-05
R3_C	Benzo(a)pyrene	50-32-8	1.29E-06			4.32E-09			1.24E-08

Road Source ID	Contaminant	CAS#			EB	/WB Gibb / Centre (qu	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R4a_Q	NOx	10102-44-0	6.36E-01			2.30E-03			6.61E-03
R4a_Q	CO	630-08-0	5.41E+00			1.95E-02			5.62E-02
R4a_Q	SO ₂	7446-09-5	3.89E-03			1.40E-05			4.04E-05
R4a_Q	PM	N/A (pm)	1.50E-01			5.41E-04			1.56E-03
R4a_Q	PM10	N/A (pm10)	1.50E-01			5.41E-04			1.56E-03
R4a_Q	PM2.5	N/A (pm2.5)	3.86E-02	9,275	312	1.39E-04	1,113	37	4.01E-04
R4a_Q	Benzene	71-43-2	1.59E-03	0,210	012	5.74E-06	1,110	01	1.65E-05
R4a_Q	1,3-Butadiene	106-99-0	1.55E-04			5.59E-07			1.61E-06
R4a_Q	Acrolein	107-02-8	2.43E-04			8.78E-07			2.53E-06
R4a_Q	Acetaldehyde	75-07-0	1.67E-03			6.02E-06			1.73E-05
R4a_Q	Formaldehyde	50-00-0	3.12E-03			1.12E-05			3.24E-05
R4a_Q	Benzo(a)pyrene	50-32-8	1.99E-06			7.17E-09			2.06E-08

Road Source ID	Contaminant	CAS#			EB/	NB Gibb / Centre (qu	eue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R4b_Q	NOx	10102-44-0	6.36E-01			1.55E-03			4.47E-03
R4b_Q	CO	630-08-0	5.41E+00			1.32E-02			3.80E-02
R4b_Q	SO ₂	7446-09-5	3.89E-03			9.48E-06			2.73E-05
R4b_Q	PM	N/A (pm)	1.50E-01			3.66E-04			1.05E-03
R4b_Q	PM10	N/A (pm10)	1.50E-01			3.66E-04			1.05E-03
R4b_Q	PM2.5	N/A (pm2.5)	3.86E-02	6,267	211	9.41E-05	752	25	2.71E-04
R4b_Q	Benzene	71-43-2	1.59E-03	0,201	211	3.88E-06	102	20	1.12E-05
R4b_Q	1,3-Butadiene	106-99-0	1.55E-04			3.77E-07			1.09E-06
R4b_Q	Acrolein	107-02-8	2.43E-04			5.93E-07			1.71E-06
R4b_Q	Acetaldehyde	75-07-0	1.67E-03			4.07E-06			1.17E-05
R4b_Q	Formaldehyde	50-00-0	3.12E-03			7.60E-06			2.19E-05
R4b_Q	Benzo(a)pyrene	50-32-8	1.99E-06			4.84E-09			1.39E-08

Road Source ID	Contaminant	CAS#				EB/WB Gibb (cruise	link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R5_C	NOx	10102-44-0	4.34E-01			1.62E-02			4.67E-02
R5_C	СО	630-08-0	3.41E+00			1.28E-01			3.68E-01
R5 C	SO ₂	7446-09-5	2.33E-03			8.70E-05			2.51E-04
R5_C	PM	N/A (pm)	7.32E-02			2.74E-03			7.88E-03
R5_C	PM10	N/A (pm10)	7.32E-02			2.74E-03			7.88E-03
R5_C	PM2.5	N/A (pm2.5)	2.46E-02	9.883	3,230	9.20E-04	1.186	388	2.65E-03
R5_C	Benzene	71-43-2	9.60E-04	0,000	0,200	3.59E-05	1,100	0000	1.03E-04
R5_C	1,3-Butadiene	106-99-0	7.96E-05			2.97E-06			8.57E-06
R5_C	Acrolein	107-02-8	1.12E-04			4.20E-06			1.21E-05
R5_C	Acetaldehyde	75-07-0	8.13E-04			3.04E-05			8.75E-05
R5_C	Formaldehyde	50-00-0	1.47E-03			5.49E-05			1.58E-04
R5_C	Benzo(a)pyrene	50-32-8	1.29E-06			4.84E-08			1.39E-07

Road Source ID	Contaminant	CAS#			EB/	WB Park Rd / Gibb (o	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R6a_Q	NOx	10102-44-0	3.02E-01			2.11E-03			6.07E-03
R6a_Q	CO	630-08-0	3.08E+00			2.15E-02			6.19E-02
R6a_Q	SO ₂	7446-09-5	2.98E-03			2.08E-05			5.99E-05
R6a_Q	PM	N/A (pm)	4.56E-01			3.18E-03			9.16E-03
R6a_Q	PM10	N/A (pm10)	4.56E-01			3.18E-03			9.16E-03
R6a_Q	PM2.5	N/A (pm2.5)	6.89E-02	10,983	603	4.81E-04	1,318	72	1.38E-03
R6a_Q	Benzene	71-43-2	1.50E-03	10,300	000	1.04E-05	1,010	12	3.01E-05
R6a_Q	1,3-Butadiene	106-99-0	1.56E-04			1.09E-06			3.14E-06
R6a_Q	Acrolein	107-02-8	2.54E-04			1.77E-06			5.09E-06
R6a_Q	Acetaldehyde	75-07-0	1.70E-03			1.18E-05			3.41E-05
R6a_Q	Formaldehyde	50-00-0	3.23E-03			2.25E-05			6.48E-05
R6a_Q	Benzo(a)pyrene	50-32-8	1.41E-06			9.83E-09			2.83E-08

Road Source ID	Contaminant	CAS#			EB/V	VB Park Rd / Gibb (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R6b_Q	NOx	10102-44-0	3.02E-01			1.91E-03			5.49E-03
R6b_Q	со	630-08-0	3.08E+00			1.94E-02			5.60E-02
R6b_Q	SO ₂	7446-09-5	2.98E-03			1.88E-05			5.42E-05
R6b_Q	PM	N/A (pm)	4.56E-01			2.88E-03			8.28E-03
R6b_Q	PM10	N/A (pm10)	4.56E-01			2.88E-03			8.28E-03
R6b_Q	PM2.5	N/A (pm2.5)	6.89E-02	9,933	545	4.35E-04	1,192	65	1.25E-03
R6b_Q	Benzene	71-43-2	1.50E-03	0,000	040	9.44E-06	1,102	00	2.72E-05
R6b_Q	1,3-Butadiene	106-99-0	1.56E-04			9.87E-07			2.84E-06
R6b_Q	Acrolein	107-02-8	2.54E-04			1.60E-06			4.61E-06
R6b_Q	Acetaldehyde	75-07-0	1.70E-03			1.07E-05			3.08E-05
R6b_Q	Formaldehyde	50-00-0	3.23E-03			2.03E-05			5.86E-05
R6b_Q	Benzo(a)pyrene	50-32-8	1.41E-06			8.89E-09			2.56E-08

Road Source ID	Contaminant	CAS#			NB/S	SB Park Rd / Gibb (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R7a_Q	NOx	10102-44-0	6.23E-01			7.84E-03			2.26E-02
R7a_Q	CO	630-08-0	5.31E+00			6.68E-02			1.92E-01
R7a_Q	SO ₂	7446-09-5	3.77E-03			4.75E-05			1.37E-04
R7a_Q	PM	N/A (pm)	1.44E-01			1.81E-03			5.22E-03
R7a_Q	PM10	N/A (pm10)	1.44E-01			1.81E-03			5.22E-03
R7a_Q	PM2.5	N/A (pm2.5)	3.78E-02	15,467	1,087	4.75E-04	1,856	130	1.37E-03
R7a_Q	Benzene	71-43-2	1.55E-03	13,407	1,007	1.95E-05	1,000	150	5.62E-05
R7a_Q	1,3-Butadiene	106-99-0	1.49E-04			1.87E-06			5.40E-06
R7a_Q	Acrolein	107-02-8	2.33E-04			2.92E-06			8.42E-06
R7a_Q	Acetaldehyde	75-07-0	1.60E-03			2.01E-05			5.79E-05
R7a_Q	Formaldehyde	50-00-0	2.98E-03			3.75E-05			1.08E-04
R7a_Q	Benzo(a)pyrene	50-32-8	1.96E-06			2.47E-08			7.10E-08

Road Source ID	Contaminant	CAS#			NB	S/SB Park Rd / Gibb (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R7b_Q	NOx	10102-44-0	6.23E-01			6.73E-03			1.94E-02
R7b_Q	CO	630-08-0	5.31E+00			5.74E-02			1.65E-01
R7b_Q	SO ₂	7446-09-5	3.77E-03			4.08E-05			1.17E-04
R7b Q	PM	N/A (pm)	1.44E-01			1.56E-03			4.48E-03
R7b_Q	PM10	N/A (pm10)	1.44E-01			1.56E-03			4.48E-03
R7b_Q	PM2.5	N/A (pm2.5)	3.78E-02	13,283	933	4.08E-04	1.594	112	1.18E-03
R7b_Q	Benzene	71-43-2	1.55E-03	10,200	555	1.67E-05	1,004	112	4.82E-05
R7b_Q	1,3-Butadiene	106-99-0	1.49E-04			1.61E-06			4.64E-06
R7b_Q	Acrolein	107-02-8	2.33E-04			2.51E-06			7.23E-06
R7b_Q	Acetaldehyde	75-07-0	1.60E-03			1.73E-05			4.97E-05
R7b_Q	Formaldehyde	50-00-0	2.98E-03			3.22E-05			9.28E-05
R7b_Q	Benzo(a)pyrene	50-32-8	1.96E-06			2.12E-08			6.10E-08

Road Source ID	Contaminant	CAS#				NB/SB Park Rd (cruis	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R8_C	NOx	10102-44-0	4.34E-01			2.41E-02			6.93E-02
R8_C	со	630-08-0	3.41E+00			1.89E-01			5.46E-01
R8 C	SO ₂	7446-09-5	2.33E-03			1.29E-04			3.72E-04
R8_C	PM	N/A (pm)	7.32E-02			4.06E-03			1.17E-02
R8_C	PM10	N/A (pm10)	7.32E-02			4.06E-03			1.17E-02
R8_C	PM2.5	N/A (pm2.5)	2.46E-02	15,342	4,795	1.37E-03	1,841	575	3.94E-03
R8_C	Benzene	71-43-2	9.60E-04	10,042	4,700	5.33E-05	1,041	010	1.53E-04
R8_C	1,3-Butadiene	106-99-0	7.96E-05			4.42E-06			1.27E-05
R8_C	Acrolein	107-02-8	1.12E-04			6.23E-06			1.79E-05
R8_C	Acetaldehyde	75-07-0	8.13E-04			4.51E-05			1.30E-04
R8_C	Formaldehyde	50-00-0	1.47E-03			8.14E-05			2.35E-04
R8_C	Benzo(a)pyrene	50-32-8	1.29E-06			7.18E-08			2.07E-07

Road Source ID	Contaminant	CAS#				NB/SB Park Rd (cruis	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R9_C	NOx	10102-44-0	4.34E-01			3.35E-03			9.65E-03
R9_C	CO	630-08-0	3.41E+00			2.64E-02			7.59E-02
R9_C	SO ₂	7446-09-5	2.33E-03			1.80E-05			5.18E-05
R9_C	PM	N/A (pm)	7.32E-02			5.65E-04			1.63E-03
R9_C	PM10	N/A (pm10)	7.32E-02			5.65E-04			1.63E-03
R9_C	PM2.5	N/A (pm2.5)	2.46E-02	15,342	667	1.90E-04	1,841	80	5.48E-04
R9_C	Benzene	71-43-2	9.60E-04	10,042	007	7.42E-06	1,041	00	2.14E-05
R9_C	1,3-Butadiene	106-99-0	7.96E-05			6.14E-07			1.77E-06
R9_C	Acrolein	107-02-8	1.12E-04			8.67E-07			2.50E-06
R9_C	Acetaldehyde	75-07-0	8.13E-04			6.28E-06			1.81E-05
R9_C	Formaldehyde	50-00-0	1.47E-03			1.13E-05			3.26E-05
R9_C	Benzo(a)pyrene	50-32-8	1.29E-06			1.00E-08			2.88E-08

Road Source ID	Contaminant	CAS#			NB/S	SB Park Rd / Hillside (queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R10a_Q	NOx	10102-44-0	5.07E-01			3.09E-03			8.89E-03
R10a_Q	CO	630-08-0	4.40E+00			2.68E-02			7.72E-02
R10a_Q	SO ₂	7446-09-5	2.91E-03			1.77E-05			5.10E-05
R10a_Q	PM	N/A (pm)	1.04E-01			6.36E-04			1.83E-03
R10a_Q	PM10	N/A (pm10)	1.04E-01			6.36E-04			1.83E-03
R10a_Q	PM2.5	N/A (pm2.5)	3.05E-02	12,608	526	1.86E-04	1,513	63	5.36E-04
R10a_Q	Benzene	71-43-2	1.25E-03	12,000	520	7.59E-06	1,010	00	2.19E-05
R10a_Q	1,3-Butadiene	106-99-0	1.06E-04			6.48E-07			1.86E-06
R10a_Q	Acrolein	107-02-8	1.52E-04			9.28E-07			2.67E-06
R10a_Q	Acetaldehyde	75-07-0	1.09E-03			6.65E-06			1.91E-05
R10a_Q	Formaldehyde	50-00-0	1.99E-03			1.21E-05			3.49E-05
R10a_Q	Benzo(a)pyrene	50-32-8	1.64E-06			9.98E-09			2.87E-08

Road Source ID	Contaminant	CAS#			NB/SE	B Park Rd / Hillside (queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R10b_Q	NOx	10102-44-0	5.07E-01			3.72E-03			1.07E-02
R10b_Q	CO	630-08-0	4.40E+00			3.23E-02			9.29E-02
R10b_Q	SO ₂	7446-09-5	2.91E-03			2.13E-05			6.14E-05
R10b_Q	PM	N/A (pm)	1.04E-01			7.66E-04			2.21E-03
R10b_Q	PM10	N/A (pm10)	1.04E-01			7.66E-04			2.21E-03
R10b_Q	PM2.5	N/A (pm2.5)	3.05E-02	15,183	634	2.24E-04	1,822	76	6.45E-04
R10b_Q	Benzene	71-43-2	1.25E-03	10,100	004	9.14E-06	1,022	10	2.63E-05
R10b_Q	1,3-Butadiene	106-99-0	1.06E-04			7.80E-07			2.25E-06
R10b_Q	Acrolein	107-02-8	1.52E-04			1.12E-06			3.22E-06
R10b_Q	Acetaldehyde	75-07-0	1.09E-03			8.00E-06			2.31E-05
R10b_Q	Formaldehyde	50-00-0	1.99E-03			1.46E-05			4.20E-05
R10b_Q	Benzo(a)pyrene	50-32-8	1.64E-06			1.20E-08			3.46E-08

Road Source ID	Contaminant	CAS#			Ν	B/SB Park Rd (cruis	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R11_C	NOx	10102-44-0	4.34E-01			4.43E-03			1.28E-02
R11_C	CO	630-08-0	3.41E+00			3.48E-02			1.00E-01
R11_C	SO ₂	7446-09-5	2.33E-03			2.38E-05			6.84E-05
R11_C	PM	N/A (pm)	7.32E-02			7.47E-04			2.15E-03
R11_C	PM10	N/A (pm10)	7.32E-02			7.47E-04			2.15E-03
R11_C	PM2.5	N/A (pm2.5)	2.46E-02	13,517	882	2.51E-04	1,622	106	7.24E-04
R11_C	Benzene	71-43-2	9.60E-04	10,011	002	9.80E-06	1,022	100	2.82E-05
R11_C	1,3-Butadiene	106-99-0	7.96E-05			8.12E-07			2.34E-06
R11_C	Acrolein	107-02-8	1.12E-04			1.15E-06			3.30E-06
R11_C	Acetaldehyde	75-07-0	8.13E-04			8.30E-06			2.39E-05
R11_C	Formaldehyde	50-00-0	1.47E-03			1.50E-05			4.31E-05
R11_C	Benzo(a)pyrene	50-32-8	1.29E-06			1.32E-08			3.80E-08

Road Source ID	Contaminant	CAS#				NB/SB Park Rd (cruis	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R12_C	NOx	10102-44-0	4.34E-01			8.22E-03			2.37E-02
R12_C	CO	630-08-0	3.41E+00			6.47E-02			1.86E-01
R12_C	SO ₂	7446-09-5	2.33E-03			4.41E-05			1.27E-04
R12_C	PM	N/A (pm)	7.32E-02			1.39E-03			4.00E-03
R12_C	PM10	N/A (pm10)	7.32E-02			1.39E-03			4.00E-03
R12_C	PM2.5	N/A (pm2.5)	2.46E-02	13,517	1,638	4.67E-04	1,622	197	1.34E-03
R12_C	Benzene	71-43-2	9.60E-04	10,017	1,000	1.82E-05	1,022	157	5.24E-05
R12_C	1,3-Butadiene	106-99-0	7.96E-05			1.51E-06			4.34E-06
R12_C	Acrolein	107-02-8	1.12E-04			2.13E-06			6.13E-06
R12_C	Acetaldehyde	75-07-0	8.13E-04			1.54E-05			4.44E-05
R12_C	Formaldehyde	50-00-0	1.47E-03			2.78E-05			8.01E-05
R12_C	Benzo(a)pyrene	50-32-8	1.29E-06			2.45E-08			7.07E-08

Road Source ID	Contaminant	CAS#			NB/S	B Park Rd / Bloor (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R13_Q	NOx	10102-44-0	8.51E-01			9.56E-03			2.75E-02
R13_Q	СО	630-08-0	6.59E+00			7.40E-02			2.13E-01
R13_Q	SO ₂	7446-09-5	5.35E-03			6.01E-05			1.73E-04
R13_Q	PM	N/A (pm)	2.14E-01			2.40E-03			6.92E-03
R13_Q	PM10	N/A (pm10)	2.14E-01			2.40E-03			6.92E-03
R13_Q	PM2.5	N/A (pm2.5)	5.26E-02	12,658	971	5.91E-04	1,519	116	1.70E-03
R13_Q	Benzene	71-43-2	2.06E-03	12,000	011	2.32E-05	1,010	110	6.67E-05
R13_Q	1,3-Butadiene	106-99-0	2.22E-04			2.50E-06			7.20E-06
R13_Q	Acrolein	107-02-8	3.71E-04			4.17E-06			1.20E-05
R13_Q	Acetaldehyde	75-07-0	2.47E-03			2.78E-05			8.00E-05
R13_Q	Formaldehyde	50-00-0	4.69E-03			5.27E-05			1.52E-04
R13_Q	Benzo(a)pyrene	50-32-8	2.60E-06			2.92E-08			8.42E-08

Road Source ID	Contaminant	CAS#			EB/W	B Bloor / Park Rd (queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R14a_Q	NOx	10102-44-0	6.11E-01			6.18E-03			1.78E-02
R14a_Q	CO	630-08-0	5.22E+00			5.28E-02			1.52E-01
R14a_Q	SO ₂	7446-09-5	3.67E-03			3.71E-05			1.07E-04
R14a_Q	PM	N/A (pm)	1.39E-01			1.40E-03			4.04E-03
R14a_Q	PM10	N/A (pm10)	1.39E-01			1.40E-03			4.04E-03
R14a_Q	PM2.5	N/A (pm2.5)	3.71E-02	15,833	874	3.75E-04	1,900	105	1.08E-03
R14a_Q	Benzene	71-43-2	1.51E-03	10,000	0/4	1.53E-05	1,500	105	4.41E-05
R14a_Q	1,3-Butadiene	106-99-0	1.44E-04			1.46E-06			4.19E-06
R14a_Q	Acrolein	107-02-8	2.23E-04			2.25E-06			6.49E-06
R14a_Q	Acetaldehyde	75-07-0	1.54E-03			1.56E-05			4.48E-05
R14a_Q	Formaldehyde	50-00-0	2.86E-03			2.89E-05			8.33E-05
R14a_Q	Benzo(a)pyrene	50-32-8	1.94E-06			1.96E-08			5.64E-08

Road Source ID	Contaminant	CAS#			EB/	WB Bloor / Park Rd (o	queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R14b_Q	NOx	10102-44-0	6.11E-01			6.71E-03			1.93E-02
R14b_Q	CO	630-08-0	5.22E+00			5.73E-02			1.65E-01
R14b Q	SO ₂	7446-09-5	3.67E-03			4.03E-05			1.16E-04
R14b Q	PM	N/A (pm)	1.39E-01			1.52E-03			4.39E-03
R14b_Q	PM10	N/A (pm10)	1.39E-01			1.52E-03			4.39E-03
R14b_Q	PM2.5	N/A (pm2.5)	3.71E-02	17,183	948	4.07E-04	2,062	114	1.17E-03
R14b_Q	Benzene	71-43-2	1.51E-03	17,100	540	1.66E-05	2,002		4.79E-05
R14b_Q	1,3-Butadiene	106-99-0	1.44E-04			1.58E-06			4.55E-06
R14b_Q	Acrolein	107-02-8	2.23E-04			2.44E-06			7.04E-06
R14b_Q	Acetaldehyde	75-07-0	1.54E-03			1.69E-05			4.86E-05
R14b_Q	Formaldehyde	50-00-0	2.86E-03			3.14E-05			9.04E-05
R14b_Q	Benzo(a)pyrene	50-32-8	1.94E-06			2.13E-08			6.12E-08

Road Source ID	Contaminant	CAS#				EB/WB Bloor (queue	link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R15a_Q	NOx	10102-44-0	6.23E-01			1.07E-02			3.07E-02
R15a_Q	СО	630-08-0	5.31E+00			9.09E-02			2.62E-01
R15a_Q	SO ₂	7446-09-5	3.77E-03			6.46E-05			1.86E-04
R15a_Q	PM	N/A (pm)	1.44E-01			2.47E-03			7.10E-03
R15a_Q	PM10	N/A (pm10)	1.44E-01			2.47E-03			7.10E-03
R15a_Q	PM2.5	N/A (pm2.5)	3.78E-02	19,033	1,478	6.46E-04	2,284	177	1.86E-03
R15a_Q	Benzene	71-43-2	1.55E-03	10,000	1,410	2.65E-05	2,204		7.64E-05
R15a_Q	1,3-Butadiene	106-99-0	1.49E-04			2.55E-06			7.34E-06
R15a_Q	Acrolein	107-02-8	2.33E-04			3.98E-06			1.15E-05
R15a_Q	Acetaldehyde	75-07-0	1.60E-03			2.74E-05			7.88E-05
R15a_Q	Formaldehyde	50-00-0	2.98E-03			5.10E-05			1.47E-04
R15a_Q	Benzo(a)pyrene	50-32-8	1.96E-06			3.35E-08			9.66E-08

Road Source ID	Contaminant	CAS#				EB/WB Bloor (queue	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R15b_Q	NOx	10102-44-0	6.23E-01			4.40E-03			1.27E-02
R15b_Q	CO	630-08-0	5.31E+00			3.75E-02			1.08E-01
R15b_Q	SO ₂	7446-09-5	3.77E-03			2.67E-05			7.68E-05
R15b Q	PM	N/A (pm)	1.44E-01			1.02E-03			2.93E-03
R15b_Q	PM10	N/A (pm10)	1.44E-01			1.02E-03			2.93E-03
R15b_Q	PM2.5	N/A (pm2.5)	3.78E-02	11.325	610	2.67E-04	1,359	73	7.69E-04
R15b_Q	Benzene	71-43-2	1.55E-03	11,020	010	1.10E-05	1,000	10	3.15E-05
R15b_Q	1,3-Butadiene	106-99-0	1.49E-04			1.05E-06			3.03E-06
R15b_Q	Acrolein	107-02-8	2.33E-04			1.64E-06			4.73E-06
R15b_Q	Acetaldehyde	75-07-0	1.60E-03			1.13E-05			3.25E-05
R15b_Q	Formaldehyde	50-00-0	2.98E-03			2.11E-05			6.07E-05
R15b_Q	Benzo(a)pyrene	50-32-8	1.96E-06			1.39E-08			3.99E-08

Road Source ID	Contaminant	CAS#				EB/WB Bloor (cruise	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R16_C	NOx	10102-44-0	4.34E-01			1.52E-02			4.36E-02
R16_C	CO	630-08-0	3.41E+00			1.19E-01			3.43E-01
R16_C	SO ₂	7446-09-5	2.33E-03			8.13E-05			2.34E-04
R16 C	PM	N/A (pm)	7.32E-02			2.56E-03			7.37E-03
R16_C	PM10	N/A (pm10)	7.32E-02			2.56E-03			7.37E-03
R16_C	PM2.5	N/A (pm2.5)	2.46E-02	11,483	3,018	8.60E-04	1,378	362	2.48E-03
R16_C	Benzene	71-43-2	9.60E-04	11,400	5,010	3.35E-05	1,570	502	9.66E-05
R16_C	1,3-Butadiene	106-99-0	7.96E-05			2.78E-06			8.00E-06
R16_C	Acrolein	107-02-8	1.12E-04			3.92E-06			1.13E-05
R16_C	Acetaldehyde	75-07-0	8.13E-04			2.84E-05			8.18E-05
R16_C	Formaldehyde	50-00-0	1.47E-03			5.13E-05			1.48E-04
R16_C	Benzo(a)pyrene	50-32-8	1.29E-06			4.52E-08			1.30E-07

Road Source ID	Contaminant	CAS#			EB/W	/B Bloor / Simcoe (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R17a_Q	NOx	10102-44-0	6.01E-01			1.21E-02			3.47E-02
R17a_Q	CO	630-08-0	5.14E+00			1.03E-01			2.97E-01
R17a_Q	SO ₂	7446-09-5	3.58E-03			7.19E-05			2.07E-04
R17a_Q	PM	N/A (pm)	1.39E-01			2.79E-03			8.03E-03
R17a_Q	PM10	N/A (pm10)	1.39E-01			2.79E-03			8.03E-03
R17a_Q	PM2.5	N/A (pm2.5)	3.71E-02	15,158	1,733	7.45E-04	1,819	208	2.14E-03
R17a_Q	Benzene	71-43-2	1.48E-03	10,100	1,700	2.97E-05	1,010	200	8.57E-05
R17a_Q	1,3-Butadiene	106-99-0	1.39E-04			2.79E-06			8.04E-06
R17a_Q	Acrolein	107-02-8	2.14E-04			4.29E-06			1.24E-05
R17a_Q	Acetaldehyde	75-07-0	1.48E-03			2.97E-05			8.57E-05
R17a_Q	Formaldehyde	50-00-0	2.75E-03			5.52E-05			1.59E-04
R17a_Q	Benzo(a)pyrene	50-32-8	1.92E-06			3.84E-08			1.11E-07

Road Source ID	Contaminant	CAS#			EB/	NB Bloor / Simcoe (c	(ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R17b_Q	NOx	10102-44-0	6.01E-01			1.25E-02			3.60E-02
R17b_Q	CO	630-08-0	5.14E+00			1.07E-01			3.08E-01
R17b_Q	SO ₂	7446-09-5	3.58E-03			7.44E-05			2.14E-04
R17b_Q	PM	N/A (pm)	1.39E-01			2.89E-03			8.31E-03
R17b_Q	PM10	N/A (pm10)	1.39E-01			2.89E-03			8.31E-03
R17b_Q	PM2.5	N/A (pm2.5)	3.71E-02	15,700	1,795	7.71E-04	1,884	215	2.22E-03
R17b_Q	Benzene	71-43-2	1.48E-03	10,700	1,735	3.08E-05	1,004	215	8.87E-05
R17b_Q	1,3-Butadiene	106-99-0	1.39E-04			2.89E-06			8.33E-06
R17b_Q	Acrolein	107-02-8	2.14E-04			4.45E-06			1.28E-05
R17b_Q	Acetaldehyde	75-07-0	1.48E-03			3.08E-05			8.87E-05
R17b_Q	Formaldehyde	50-00-0	2.75E-03			5.72E-05			1.65E-04
R17b_Q	Benzo(a)pyrene	50-32-8	1.92E-06			3.98E-08			1.15E-07

Road Source ID	Contaminant	CAS#				EB/WB Bloor (cruise	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R18_C	NOx	10102-44-0	4.34E-01			1.31E-02			3.77E-02
R18_C	CO	630-08-0	3.41E+00			1.03E-01			2.96E-01
R18_C	SO ₂	7446-09-5	2.33E-03			7.01E-05			2.02E-04
R18 C	PM	N/A (pm)	7.32E-02			2.21E-03			6.36E-03
R18_C	PM10	N/A (pm10)	7.32E-02			2.21E-03			6.36E-03
R18_C	PM2.5	N/A (pm2.5)	2.46E-02	13,433	2,604	7.42E-04	1,612	313	2.14E-03
R18_C	Benzene	71-43-2	9.60E-04	10,400	2,004	2.89E-05	1,012	515	8.34E-05
R18_C	1,3-Butadiene	106-99-0	7.96E-05			2.40E-06			6.91E-06
R18_C	Acrolein	107-02-8	1.12E-04			3.38E-06			9.74E-06
R18_C	Acetaldehyde	75-07-0	8.13E-04			2.45E-05			7.06E-05
R18_C	Formaldehyde	50-00-0	1.47E-03			4.42E-05			1.27E-04
R18_C	Benzo(a)pyrene	50-32-8	1.29E-06			3.90E-08			1.12E-07

Road Source ID	Contaminant	CAS#			EB/WB E	Bloor / 401 EB ramps	s (queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R19a_Q	NOx	10102-44-0	6.36E-01			4.01E-03			1.16E-02
R19a_Q	CO	630-08-0	5.41E+00			3.41E-02			9.82E-02
R19a_Q	SO ₂	7446-09-5	3.89E-03			2.45E-05			7.06E-05
R19a_Q	PM	N/A (pm)	1.50E-01			9.46E-04			2.73E-03
R19a_Q	PM10	N/A (pm10)	1.50E-01			9.46E-04			2.73E-03
R19a_Q	PM2.5	N/A (pm2.5)	3.86E-02	10,567	545	2.43E-04	1,268	65	7.01E-04
R19a_Q	Benzene	71-43-2	1.59E-03	10,001	040	1.00E-05	1,200	00	2.89E-05
R19a_Q	1,3-Butadiene	106-99-0	1.55E-04			9.76E-07			2.81E-06
R19a_Q	Acrolein	107-02-8	2.43E-04			1.53E-06			4.42E-06
R19a_Q	Acetaldehyde	75-07-0	1.67E-03			1.05E-05			3.03E-05
R19a_Q	Formaldehyde	50-00-0	3.12E-03			1.97E-05			5.66E-05
R19a_Q	Benzo(a)pyrene	50-32-8	1.99E-06			1.25E-08			3.61E-08

Road Source ID	Contaminant	CAS#			EB/WB	Bloor / 401 EB ramp	s (queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R19b_Q	NOx	10102-44-0	6.36E-01			5.11E-03			1.47E-02
R19b_Q	CO	630-08-0	5.41E+00			4.34E-02			1.25E-01
R19b_Q	SO ₂	7446-09-5	3.89E-03			3.12E-05			8.99E-05
R19b_Q	PM	N/A (pm)	1.50E-01			1.20E-03			3.47E-03
R19b_Q	PM10	N/A (pm10)	1.50E-01			1.20E-03			3.47E-03
R19b_Q	PM2.5	N/A (pm2.5)	3.86E-02	13.450	694	3.10E-04	1,614	83	8.92E-04
R19b_Q	Benzene	71-43-2	1.59E-03	10,400	004	1.28E-05	1,014	00	3.68E-05
R19b_Q	1,3-Butadiene	106-99-0	1.55E-04			1.24E-06			3.58E-06
R19b_Q	Acrolein	107-02-8	2.43E-04			1.95E-06			5.63E-06
R19b_Q	Acetaldehyde	75-07-0	1.67E-03			1.34E-05			3.85E-05
R19b_Q	Formaldehyde	50-00-0	3.12E-03			2.50E-05			7.21E-05
R19b_Q	Benzo(a)pyrene	50-32-8	1.99E-06			1.59E-08			4.59E-08

Road Source ID	Contaminant	CAS#			EB	/WB Bloor / Ritson (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R20a_Q	NOx	10102-44-0	6.36E-01			1.19E-02			3.42E-02
R20a_Q	CO	630-08-0	5.41E+00			1.01E-01			2.91E-01
R20a_Q	SO ₂	7446-09-5	3.89E-03			7.25E-05			2.09E-04
R20a_Q	PM	N/A (pm)	1.50E-01			2.80E-03			8.06E-03
R20a_Q	PM10	N/A (pm10)	1.50E-01			2.80E-03			8.06E-03
R20a_Q	PM2.5	N/A (pm2.5)	3.86E-02	16.217	1,612	7.20E-04	1,946	193	2.07E-03
R20a_Q	Benzene	71-43-2	1.59E-03	10,217	1,012	2.97E-05	1,540	100	8.54E-05
R20a_Q	1,3-Butadiene	106-99-0	1.55E-04			2.89E-06			8.32E-06
R20a Q	Acrolein	107-02-8	2.43E-04			4.54E-06			1.31E-05
R20a_Q	Acetaldehyde	75-07-0	1.67E-03			3.11E-05			8.96E-05
R20a_Q	Formaldehyde	50-00-0	3.12E-03			5.82E-05			1.67E-04
R20a_Q	Benzo(a)pyrene	50-32-8	1.99E-06			3.71E-08			1.07E-07

Road Source ID	Contaminant	CAS#			EB/V	VB Bloor / Ritson (qı	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R20b_Q	NOx	10102-44-0	6.36E-01			5.38E-03			1.55E-02
R20b_Q	CO	630-08-0	5.41E+00			4.57E-02			1.32E-01
R20b_Q	SO ₂	7446-09-5	3.89E-03			3.29E-05			9.47E-05
R20b_Q	PM	N/A (pm)	1.50E-01			1.27E-03			3.65E-03
R20b_Q	PM10	N/A (pm10)	1.50E-01			1.27E-03			3.65E-03
R20b_Q	PM2.5	N/A (pm2.5)	3.86E-02	9,342	731	3.26E-04	1,121	88	9.40E-04
R20b_Q	Benzene	71-43-2	1.59E-03	0,042	701	1.34E-05	1,121	00	3.87E-05
R20b_Q	1,3-Butadiene	106-99-0	1.55E-04			1.31E-06			3.77E-06
R20b_Q	Acrolein	107-02-8	2.43E-04			2.06E-06			5.93E-06
R20b_Q	Acetaldehyde	75-07-0	1.67E-03			1.41E-05			4.06E-05
R20b_Q	Formaldehyde	50-00-0	3.12E-03			2.64E-05			7.59E-05
R20b_Q	Benzo(a)pyrene	50-32-8	1.99E-06			1.68E-08			4.84E-08

Road Source ID	Contaminant	CAS#			NB	B/SB Ritson / Bloor (qu	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R21a_Q	NOx	10102-44-0	6.36E-01			4.64E-03			1.34E-02
R21a_Q	CO	630-08-0	5.41E+00			3.94E-02			1.14E-01
R21a_Q	SO ₂	7446-09-5	3.89E-03			2.83E-05			8.16E-05
R21a_Q	PM	N/A (pm)	1.50E-01			1.09E-03			3.15E-03
R21a_Q	PM10	N/A (pm10)	1.50E-01			1.09E-03			3.15E-03
R21a_Q	PM2.5	N/A (pm2.5)	3.86E-02	9,675	630	2.81E-04	1,161	76	8.10E-04
R21a_Q	Benzene	71-43-2	1.59E-03	5,075	000	1.16E-05	1,101	10	3.34E-05
R21a_Q	1,3-Butadiene	106-99-0	1.55E-04			1.13E-06			3.25E-06
R21a_Q	Acrolein	107-02-8	2.43E-04			1.77E-06			5.11E-06
R21a_Q	Acetaldehyde	75-07-0	1.67E-03			1.22E-05			3.50E-05
R21a_Q	Formaldehyde	50-00-0	3.12E-03			2.27E-05			6.54E-05
R21a_Q	Benzo(a)pyrene	50-32-8	1.99E-06			1.45E-08			4.17E-08

Road Source ID	Contaminant	CAS#			NB	/SB Ritson / Bloor (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R21b_Q	NOx	10102-44-0	6.36E-01			8.92E-03			2.57E-02
R21b_Q	CO	630-08-0	5.41E+00			7.59E-02			2.18E-01
R21b_Q	SO ₂	7446-09-5	3.89E-03			5.45E-05			1.57E-04
R21b_Q	PM	N/A (pm)	1.50E-01			2.10E-03			6.06E-03
R21b_Q	PM10	N/A (pm10)	1.50E-01			2.10E-03			6.06E-03
R21b_Q	PM2.5	N/A (pm2.5)	3.86E-02	18,617	1,212	5.41E-04	2,234	145	1.56E-03
R21b_Q	Benzene	71-43-2	1.59E-03	10,017	1,212	2.23E-05	2,204	145	6.42E-05
R21b_Q	1,3-Butadiene	106-99-0	1.55E-04			2.17E-06			6.25E-06
R21b_Q	Acrolein	107-02-8	2.43E-04			3.41E-06			9.83E-06
R21b_Q	Acetaldehyde	75-07-0	1.67E-03			2.34E-05			6.73E-05
R21b_Q	Formaldehyde	50-00-0	3.12E-03			4.37E-05			1.26E-04
R21b_Q	Benzo(a)pyrene	50-32-8	1.99E-06			2.79E-08			8.02E-08

Road Source ID	Contaminant	CAS#				NB/SB Ritson (cruise	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R22_C	NOx	10102-44-0	4.34E-01			1.03E-02			2.97E-02
R22_C	СО	630-08-0	3.41E+00			8.11E-02			2.34E-01
R22_C	SO ₂	7446-09-5	2.33E-03			5.53E-05			1.59E-04
R22_C	PM	N/A (pm)	7.32E-02			1.74E-03			5.01E-03
R22_C	PM10	N/A (pm10)	7.32E-02			1.74E-03			5.01E-03
R22_C	PM2.5	N/A (pm2.5)	2.46E-02	21,183	2,053	5.85E-04	2,542	246	1.69E-03
R22_C	Benzene	71-43-2	9.60E-04	21,100	2,000	2.28E-05	2,042	240	6.57E-05
R22_C	1,3-Butadiene	106-99-0	7.96E-05			1.89E-06			5.45E-06
R22_C	Acrolein	107-02-8	1.12E-04			2.67E-06			7.68E-06
R22_C	Acetaldehyde	75-07-0	8.13E-04			1.93E-05			5.56E-05
R22_C	Formaldehyde	50-00-0	1.47E-03			3.49E-05			1.00E-04
R22_C	Benzo(a)pyrene	50-32-8	1.29E-06			3.08E-08			8.86E-08

Road Source ID	Contaminant	CAS#			NB/SB Rits	on / Mc Naughton / D	ean (queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R23a_Q	NOx	10102-44-0	5.38E-01			1.60E-02			4.60E-02
R23a_Q	CO	630-08-0	4.74E+00			1.41E-01			4.05E-01
R23a_Q	SO ₂	7446-09-5	3.11E-03			9.23E-05			2.66E-04
R23a_Q	PM	N/A (pm)	1.12E-01			3.34E-03			9.62E-03
R23a_Q	PM10	N/A (pm10)	1.12E-01			3.34E-03			9.62E-03
R23a_Q	PM2.5	N/A (pm2.5)	3.26E-02	22,125	2,566	9.68E-04	2,655	308	2.79E-03
R23a_Q	Benzene	71-43-2	1.32E-03	22,120	2,000	3.93E-05	2,000	0000	1.13E-04
R23a_Q	1,3-Butadiene	106-99-0	1.16E-04			3.44E-06			9.90E-06
R23a_Q	Acrolein	107-02-8	1.69E-04			5.03E-06			1.45E-05
R23a_Q	Acetaldehyde	75-07-0	1.20E-03			3.57E-05			1.03E-04
R23a_Q	Formaldehyde	50-00-0	2.20E-03			6.53E-05			1.88E-04
R23a_Q	Benzo(a)pyrene	50-32-8	1.77E-06			5.25E-08			1.51E-07

Road Source ID	Contaminant	CAS#			NB/SB Rit	son / Mc Naughton / I	Dean (queue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R23b_Q	NOx	10102-44-0	5.38E-01			1.52E-02			4.39E-02
R23b_Q	CO	630-08-0	4.74E+00			1.34E-01			3.86E-01
R23b Q	SO ₂	7446-09-5	3.11E-03			8.80E-05			2.54E-04
R23b_Q	PM	N/A (pm)	1.12E-01			3.18E-03			9.17E-03
R23b_Q	PM10	N/A (pm10)	1.12E-01			3.18E-03			9.17E-03
R23b_Q	PM2.5	N/A (pm2.5)	3.26E-02	21,092	2,446	9.23E-04	2,531	294	2.66E-03
R23b_Q	Benzene	71-43-2	1.32E-03	21,002	2,440	3.74E-05	2,001	234	1.08E-04
R23b_Q	1,3-Butadiene	106-99-0	1.16E-04			3.28E-06			9.44E-06
R23b_Q	Acrolein	107-02-8	1.69E-04			4.79E-06			1.38E-05
R23b_Q	Acetaldehyde	75-07-0	1.20E-03			3.40E-05			9.80E-05
R23b_Q	Formaldehyde	50-00-0	2.20E-03			6.23E-05			1.79E-04
R23b_Q	Benzo(a)pyrene	50-32-8	1.77E-06			5.01E-08			1.44E-07

Road Source ID	Contaminant	CAS#				NB/SB Ritson (cruise	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R24_C	NOx	10102-44-0	4.34E-01			1.10E-02			3.17E-02
R24_C	CO	630-08-0	3.41E+00			8.66E-02			2.49E-01
R24_C	SO ₂	7446-09-5	2.33E-03			5.90E-05			1.70E-04
R24_C	PM	N/A (pm)	7.32E-02			1.86E-03			5.35E-03
R24_C	PM10	N/A (pm10)	7.32E-02			1.86E-03			5.35E-03
R24_C	PM2.5	N/A (pm2.5)	2.46E-02	21,000	2,192	6.25E-04	2,520	263	1.80E-03
R24_C	Benzene	71-43-2	9.60E-04	21,000	2,102	2.44E-05	2,020	200	7.02E-05
R24_C	1,3-Butadiene	106-99-0	7.96E-05			2.02E-06			5.81E-06
R24_C	Acrolein	107-02-8	1.12E-04			2.85E-06			8.20E-06
R24_C	Acetaldehyde	75-07-0	8.13E-04			2.06E-05			5.94E-05
R24_C	Formaldehyde	50-00-0	1.47E-03			3.72E-05			1.07E-04
R24_C	Benzo(a)pyrene	50-32-8	1.29E-06			3.28E-08			9.46E-08

Road Source ID	Contaminant	CAS#			NB	/SB Ritson / Olive (qu	ieue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R25a_Q	NOx	10102-44-0	5.91E-01			1.49E-02			4.30E-02
R25a_Q	CO	630-08-0	5.07E+00			1.28E-01			3.69E-01
R25a_Q	SO ₂	7446-09-5	3.50E-03			8.84E-05			2.55E-04
R25a_Q	PM	N/A (pm)	1.34E-01			3.40E-03			9.78E-03
R25a_Q	PM10	N/A (pm10)	1.34E-01			3.40E-03			9.78E-03
R25a_Q	PM2.5	N/A (pm2.5)	3.65E-02	21,283	2,183	9.22E-04	2,554	262	2.66E-03
R25a_Q	Benzene	71-43-2	1.45E-03	21,200	2,100	3.67E-05	2,004	202	1.06E-04
R25a_Q	1,3-Butadiene	106-99-0	1.35E-04			3.41E-06			9.82E-06
R25a_Q	Acrolein	107-02-8	2.06E-04			5.20E-06			1.50E-05
R25a_Q	Acetaldehyde	75-07-0	1.43E-03			3.62E-05			1.04E-04
R25a_Q	Formaldehyde	50-00-0	2.65E-03			6.70E-05			1.93E-04
R25a_Q	Benzo(a)pyrene	50-32-8	1.90E-06			4.80E-08			1.38E-07

Road Source ID	Contaminant	CAS#			NE	B/SB Ritson / Olive (qu	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R25b_Q	NOx	10102-44-0	5.91E-01			1.16E-02			3.35E-02
R25b_Q	CO	630-08-0	5.07E+00			9.99E-02			2.88E-01
R25b Q	SO ₂	7446-09-5	3.50E-03			6.89E-05			1.98E-04
R25b Q	PM	N/A (pm)	1.34E-01			2.65E-03			7.62E-03
R25b_Q	PM10	N/A (pm10)	1.34E-01			2.65E-03			7.62E-03
R25b_Q	PM2.5	N/A (pm2.5)	3.65E-02	16,592	1,702	7.19E-04	1,991	204	2.07E-03
R25b_Q	Benzene	71-43-2	1.45E-03	10,002	1,702	2.86E-05	1,551	204	8.25E-05
R25b_Q	1,3-Butadiene	106-99-0	1.35E-04			2.66E-06			7.66E-06
R25b_Q	Acrolein	107-02-8	2.06E-04			4.06E-06			1.17E-05
R25b_Q	Acetaldehyde	75-07-0	1.43E-03			2.82E-05			8.13E-05
R25b_Q	Formaldehyde	50-00-0	2.65E-03			5.22E-05			1.50E-04
R25b_Q	Benzo(a)pyrene	50-32-8	1.90E-06			3.74E-08			1.08E-07

Road Source ID	Contaminant	CAS#			EB/	VB Olive / Ritson (qu	ieue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R26a_Q	NOx	10102-44-0	6.78E-01			6.40E-03			1.84E-02
R26a_Q	CO	630-08-0	5.64E+00			5.32E-02			1.53E-01
R26a_Q	SO ₂	7446-09-5	4.18E-03			3.94E-05			1.13E-04
R26a_Q	PM	N/A (pm)	1.65E-01			1.55E-03			4.47E-03
R26a_Q	PM10	N/A (pm10)	1.65E-01			1.55E-03			4.47E-03
R26a_Q	PM2.5	N/A (pm2.5)	4.17E-02	8,058	815	3.93E-04	967	98	1.13E-03
R26a_Q	Benzene	71-43-2	1.68E-03	0,000	010	1.59E-05	001	00	4.57E-05
R26a_Q	1,3-Butadiene	106-99-0	1.68E-04			1.59E-06			4.57E-06
R26a_Q	Acrolein	107-02-8	2.68E-04			2.53E-06			7.29E-06
R26a_Q	Acetaldehyde	75-07-0	1.83E-03			1.72E-05			4.96E-05
R26a_Q	Formaldehyde	50-00-0	3.43E-03			3.23E-05			9.31E-05
R26a_Q	Benzo(a)pyrene	50-32-8	2.11E-06			1.99E-08			5.72E-08

Road Source ID	Contaminant	CAS#			EB	/WB Olive / Ritson (qu	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R26b_Q	NOx	10102-44-0	6.78E-01			7.90E-03			2.28E-02
R26b_Q	CO	630-08-0	5.64E+00			6.57E-02			1.89E-01
R26b_Q	SO ₂	7446-09-5	4.18E-03			4.86E-05			1.40E-04
R26b_Q	PM	N/A (pm)	1.65E-01			1.92E-03			5.52E-03
R26b_Q	PM10	N/A (pm10)	1.65E-01			1.92E-03			5.52E-03
R26b_Q	PM2.5	N/A (pm2.5)	4.17E-02	9,950	1,006	4.85E-04	1,194	121	1.40E-03
R26b_Q	Benzene	71-43-2	1.68E-03	3,330	1,000	1.96E-05	1,134	121	5.64E-05
R26b_Q	1,3-Butadiene	106-99-0	1.68E-04			1.96E-06			5.64E-06
R26b_Q	Acrolein	107-02-8	2.68E-04			3.13E-06			9.00E-06
R26b_Q	Acetaldehyde	75-07-0	1.83E-03			2.13E-05			6.12E-05
R26b_Q	Formaldehyde	50-00-0	3.43E-03			3.99E-05			1.15E-04
R26b_Q	Benzo(a)pyrene	50-32-8	2.11E-06			2.45E-08			7.07E-08

Road Source ID	Contaminant	CAS#				EB/WB Olive (cruise	link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R27_C	NOx	10102-44-0	4.34E-01			9.54E-03			2.75E-02
R27_C	CO	630-08-0	3.41E+00			7.51E-02			2.16E-01
R27_C	SO ₂	7446-09-5	2.33E-03			5.12E-05			1.47E-04
R27_C	PM	N/A (pm)	7.32E-02			1.61E-03			4.64E-03
R27_C	PM10	N/A (pm10)	7.32E-02			1.61E-03			4.64E-03
R27_C	PM2.5	N/A (pm2.5)	2.46E-02	9,242	1,901	5.42E-04	1,109	228	1.56E-03
R27_C	Benzene	71-43-2	9.60E-04	3,242	1,501	2.11E-05	1,105	220	6.08E-05
R27_C	1,3-Butadiene	106-99-0	7.96E-05			1.75E-06			5.04E-06
R27_C	Acrolein	107-02-8	1.12E-04			2.47E-06			7.11E-06
R27_C	Acetaldehyde	75-07-0	8.13E-04			1.79E-05			5.15E-05
R27_C	Formaldehyde	50-00-0	1.47E-03			3.23E-05			9.30E-05
R27_C	Benzo(a)pyrene	50-32-8	1.29E-06			2.85E-08			8.20E-08

Road Source ID	Contaminant	CAS#			EB/	WB Olive/Albert (qu	eue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R28a_Q	NOx	10102-44-0	5.14E-01			4.28E-03			1.23E-02
R28a_Q	CO	630-08-0	4.52E+00			3.76E-02			1.08E-01
R28a_Q	SO ₂	7446-09-5	2.96E-03			2.46E-05			7.09E-05
R28a_Q	PM	N/A (pm)	1.07E-01			8.87E-04			2.55E-03
R28a_Q	PM10	N/A (pm10)	1.07E-01			8.87E-04			2.55E-03
R28a_Q	PM2.5	N/A (pm2.5)	3.10E-02	9,808	719	2.58E-04	1,177	86	7.44E-04
R28a_Q	Benzene	71-43-2	1.27E-03	0,000	110	1.05E-05	1,111	00	3.04E-05
R28a_Q	1,3-Butadiene	106-99-0	1.08E-04			9.03E-07			2.60E-06
R28a_Q	Acrolein	107-02-8	1.56E-04			1.30E-06			3.74E-06
R28a_Q	Acetaldehyde	75-07-0	1.11E-03			9.28E-06			2.67E-05
R28a_Q	Formaldehyde	50-00-0	2.03E-03			1.69E-05			4.87E-05
R28a_Q	Benzo(a)pyrene	50-32-8	1.68E-06			1.40E-08			4.02E-08

Road Source ID	Contaminant	CAS#			EB	/WB Olive/Albert (qu	eue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R28b_Q	NOx	10102-44-0	5.14E-01			4.62E-03			1.33E-02
R28b_Q	CO	630-08-0	4.52E+00			4.06E-02			1.17E-01
R28b_Q	SO ₂	7446-09-5	2.96E-03			2.65E-05			7.65E-05
R28b_Q	PM	N/A (pm)	1.07E-01			9.57E-04			2.76E-03
R28b_Q	PM10	N/A (pm10)	1.07E-01			9.57E-04			2.76E-03
R28b_Q	PM2.5	N/A (pm2.5)	3.10E-02	7,617	776	2.79E-04	914	93	8.03E-04
R28b_Q	Benzene	71-43-2	1.27E-03	7,017	110	1.14E-05	514	55	3.27E-05
R28b_Q	1,3-Butadiene	106-99-0	1.08E-04			9.74E-07			2.81E-06
R28b_Q	Acrolein	107-02-8	1.56E-04			1.40E-06			4.03E-06
R28b_Q	Acetaldehyde	75-07-0	1.11E-03			1.00E-05			2.88E-05
R28b_Q	Formaldehyde	50-00-0	2.03E-03			1.82E-05			5.25E-05
R28b_Q	Benzo(a)pyrene	50-32-8	1.68E-06			1.51E-08			4.34E-08

Road Source ID	Contaminant	CAS#				NB Albert (queue I	ink)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R29a_Q	NOx	10102-44-0	8.51E-01			1.68E-03			4.85E-03
R29a_Q	CO	630-08-0	6.59E+00			1.30E-02			3.75E-02
R29a_Q	SO ₂	7446-09-5	5.35E-03			1.06E-05			3.05E-05
R29a Q	PM	N/A (pm)	2.14E-01			4.23E-04			1.22E-03
R29a_Q	PM10	N/A (pm10)	2.14E-01			4.23E-04			1.22E-03
R29a_Q	PM2.5	N/A (pm2.5)	5.26E-02	4,875	171	1.04E-04	585	21	3.00E-04
R29a_Q	Benzene	71-43-2	2.06E-03	4,075	17.1	4.08E-06	505	21	1.17E-05
R29a_Q	1,3-Butadiene	106-99-0	2.22E-04			4.40E-07			1.27E-06
R29a_Q	Acrolein	107-02-8	3.71E-04			7.33E-07			2.11E-06
R29a_Q	Acetaldehyde	75-07-0	2.47E-03			4.89E-06			1.41E-05
R29a_Q	Formaldehyde	50-00-0	4.69E-03			9.28E-06			2.67E-05
R29a_Q	Benzo(a)pyrene	50-32-8	2.60E-06			5.14E-09			1.48E-08

Road Source ID	Contaminant	CAS#				NB Albert (queue I	ink)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R29b_Q	NOx	10102-44-0	8.51E-01			6.79E-04			1.96E-03
R29b_Q	CO	630-08-0	6.59E+00			5.26E-03			1.51E-02
R29b_Q	SO ₂	7446-09-5	5.35E-03			4.27E-06			1.23E-05
R29b_Q	PM	N/A (pm)	2.14E-01			1.71E-04			4.92E-04
R29b_Q	PM10	N/A (pm10)	2.14E-01			1.71E-04			4.92E-04
R29b_Q	PM2.5	N/A (pm2.5)	5.26E-02	1.967	69	4.20E-05	236	8	1.21E-04
R29b_Q	Benzene	71-43-2	2.06E-03	1,007	00	1.65E-06	200	Ū	4.74E-06
R29b_Q	1,3-Butadiene	106-99-0	2.22E-04			1.78E-07			5.11E-07
R29b_Q	Acrolein	107-02-8	3.71E-04			2.96E-07			8.52E-07
R29b_Q	Acetaldehyde	75-07-0	2.47E-03			1.97E-06			5.68E-06
R29b_Q	Formaldehyde	50-00-0	4.69E-03			3.75E-06			1.08E-05
R29b_Q	Benzo(a)pyrene	50-32-8	2.60E-06			2.08E-09			5.98E-09

Road Source ID	Contaminant	CAS#			EB/	WB Olive / Simcoe (q	ueue link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R30_Q	NOx	10102-44-0	8.05E-01			1.40E-03			4.03E-03
R30_Q	CO	630-08-0	6.34E+00			1.10E-02			3.17E-02
R30_Q	SO ₂	7446-09-5	5.04E-03			8.76E-06			2.52E-05
R30_Q	PM	N/A (pm)	1.99E-01			3.45E-04			9.95E-04
R30_Q	PM10	N/A (pm10)	1.99E-01			3.45E-04			9.95E-04
R30_Q	PM2.5	N/A (pm2.5)	4.94E-02	5,333	150	8.58E-05	640	18	2.47E-04
R30_Q	Benzene	71-43-2	1.96E-03	0,000	100	3.41E-06	040	10	9.81E-06
R30_Q	1,3-Butadiene	106-99-0	2.08E-04			3.61E-07			1.04E-06
R30_Q	Acrolein	107-02-8	3.43E-04			5.97E-07			1.72E-06
R30_Q	Acetaldehyde	75-07-0	2.30E-03			4.00E-06			1.15E-05
R30_Q	Formaldehyde	50-00-0	4.36E-03			7.57E-06			2.18E-05
R30_Q	Benzo(a)pyrene	50-32-8	2.47E-06			4.29E-09			1.24E-08

Road Source ID	Contaminant	CAS#				NB/SB Albert (cruise	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R31_C	NOx	10102-44-0	4.34E-01			9.54E-04			2.75E-03
R31_C	CO	630-08-0	3.41E+00			7.51E-03			2.16E-02
R31_C	SO ₂	7446-09-5	2.33E-03			5.12E-06			1.47E-05
R31_C	PM	N/A (pm)	7.32E-02			1.61E-04			4.64E-04
R31_C	PM10	N/A (pm10)	7.32E-02			1.61E-04			4.64E-04
R31_C	PM2.5	N/A (pm2.5)	2.46E-02	5,275	190	5.42E-05	633	23	1.56E-04
R31_C	Benzene	71-43-2	9.60E-04	0,210	100	2.11E-06	000	20	6.08E-06
R31_C	1,3-Butadiene	106-99-0	7.96E-05			1.75E-07			5.04E-07
R31_C	Acrolein	107-02-8	1.12E-04			2.47E-07			7.11E-07
R31_C	Acetaldehyde	75-07-0	8.13E-04			1.79E-06			5.15E-06
R31_C	Formaldehyde	50-00-0	1.47E-03			3.23E-06			9.30E-06
R31_C	Benzo(a)pyrene	50-32-8	1.29E-06			2.85E-09			8.20E-09

Road Source ID	Contaminant	CAS#				NB/SB Albert (cruise	link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R32_C	NOx	10102-44-0	4.34E-01			5.92E-03			1.71E-02
R32_C	CO	630-08-0	3.41E+00			4.66E-02			1.34E-01
R32_C	SO ₂	7446-09-5	2.33E-03			3.18E-05			9.15E-05
R32_C	PM	N/A (pm)	7.32E-02			1.00E-03			2.88E-03
R32_C	PM10	N/A (pm10)	7.32E-02			1.00E-03			2.88E-03
R32_C	PM2.5	N/A (pm2.5)	2.46E-02	5,275	1,180	3.36E-04	633	142	9.68E-04
R32_C	Benzene	71-43-2	9.60E-04	0,210	1,100	1.31E-05	000	172	3.78E-05
R32_C	1,3-Butadiene	106-99-0	7.96E-05			1.09E-06			3.13E-06
R32_C	Acrolein	107-02-8	1.12E-04			1.53E-06			4.42E-06
R32_C	Acetaldehyde	75-07-0	8.13E-04			1.11E-05			3.20E-05
R32_C	Formaldehyde	50-00-0	1.47E-03			2.00E-05			5.77E-05
R32_C	Benzo(a)pyrene	50-32-8	1.29E-06			1.77E-08			5.09E-08

Road Source ID	Contaminant	CAS#				NB/SB Albert (queue	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R33a_Q	NOx	10102-44-0	6.36E-01			1.14E-03			3.28E-03
R33a_Q	CO	630-08-0	5.41E+00			9.68E-03			2.79E-02
R33a_Q	SO ₂	7446-09-5	3.89E-03			6.96E-06			2.00E-05
R33a Q	PM	N/A (pm)	1.50E-01			2.68E-04			7.73E-04
R33a_Q	PM10	N/A (pm10)	1.50E-01			2.68E-04			7.73E-04
R33a_Q	PM2.5	N/A (pm2.5)	3.86E-02	4,617	155	6.91E-05	554	19	1.99E-04
R33a_Q	Benzene	71-43-2	1.59E-03	4,017	100	2.85E-06	004	15	8.19E-06
R33a_Q	1,3-Butadiene	106-99-0	1.55E-04			2.77E-07			7.98E-07
R33a_Q	Acrolein	107-02-8	2.43E-04			4.35E-07			1.25E-06
R33a_Q	Acetaldehyde	75-07-0	1.67E-03			2.98E-06			8.59E-06
R33a_Q	Formaldehyde	50-00-0	3.12E-03			5.58E-06			1.61E-05
R33a_Q	Benzo(a)pyrene	50-32-8	1.99E-06			3.55E-09			1.02E-08

Road Source ID	Contaminant	CAS#				NB/SB Albert (queue	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R33b_Q	NOx	10102-44-0	6.36E-01			1.40E-03			4.02E-03
R33b_Q	CO	630-08-0	5.41E+00			1.19E-02			3.42E-02
R33b Q	SO ₂	7446-09-5	3.89E-03			8.54E-06			2.46E-05
R33b Q	PM	N/A (pm)	1.50E-01			3.30E-04			9.49E-04
R33b_Q	PM10	N/A (pm10)	1.50E-01			3.30E-04			9.49E-04
R33b_Q	PM2.5	N/A (pm2.5)	3.86E-02	5.667	190	8.48E-05	680	23	2.44E-04
R33b_Q	Benzene	71-43-2	1.59E-03	3,007	150	3.49E-06	000	20	1.01E-05
R33b_Q	1,3-Butadiene	106-99-0	1.55E-04			3.40E-07			9.79E-07
R33b_Q	Acrolein	107-02-8	2.43E-04			5.35E-07			1.54E-06
R33b_Q	Acetaldehyde	75-07-0	1.67E-03			3.66E-06			1.05E-05
R33b_Q	Formaldehyde	50-00-0	3.12E-03			6.85E-06			1.97E-05
R33b_Q	Benzo(a)pyrene	50-32-8	1.99E-06			4.36E-09			1.26E-08

Road Source ID	Contaminant	CAS#				EB/WB First (queue	link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R34_Q	NOx	10102-44-0	5.83E-01			3.58E-03			1.03E-02
R34_Q	CO	630-08-0	5.00E+00			3.08E-02			8.86E-02
R34_Q	SO ₂	7446-09-5	3.42E-03			2.11E-05			6.06E-05
R34_Q	PM	N/A (pm)	1.30E-01			8.01E-04			2.31E-03
R34_Q	PM10	N/A (pm10)	1.30E-01			8.01E-04			2.31E-03
R34_Q	PM2.5	N/A (pm2.5)	3.59E-02	2,733	531	2.21E-04	328	64	6.36E-04
R34_Q	Benzene	71-43-2	1.43E-03	2,100	001	8.78E-06	020	04	2.53E-05
R34_Q	1,3-Butadiene	106-99-0	1.31E-04			8.07E-07			2.32E-06
R34_Q	Acrolein	107-02-8	1.99E-04			1.22E-06			3.52E-06
R34_Q	Acetaldehyde	75-07-0	1.39E-03			8.53E-06			2.46E-05
R34_Q	Formaldehyde	50-00-0	2.56E-03			1.58E-05			4.54E-05
R34_Q	Benzo(a)pyrene	50-32-8	1.88E-06			1.16E-08			3.33E-08

Road Source ID	Contaminant	CAS#				NB/SB Albert (cruise	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R35_C	NOx	10102-44-0	4.34E-01			4.88E-03			1.41E-02
R35_C	CO	630-08-0	3.41E+00			3.84E-02			1.11E-01
R35_C	SO ₂	7446-09-5	2.33E-03			2.62E-05			7.54E-05
R35_C	PM	N/A (pm)	7.32E-02			8.24E-04			2.37E-03
R35_C	PM10	N/A (pm10)	7.32E-02			8.24E-04			2.37E-03
R35_C	PM2.5	N/A (pm2.5)	2.46E-02	4.617	973	2.77E-04	554	117	7.98E-04
R35_C	Benzene	71-43-2	9.60E-04	4,017	515	1.08E-05	554		3.11E-05
R35_C	1,3-Butadiene	106-99-0	7.96E-05			8.96E-07			2.58E-06
R35_C	Acrolein	107-02-8	1.12E-04			1.26E-06			3.64E-06
R35_C	Acetaldehyde	75-07-0	8.13E-04			9.15E-06			2.64E-05
R35_C	Formaldehyde	50-00-0	1.47E-03			1.65E-05			4.76E-05
R35_C	Benzo(a)pyrene	50-32-8	1.29E-06			1.46E-08			4.20E-08

Road Source ID	Contaminant	CAS#				NB/SB Albert (queue	e link)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R36_Q	NOx	10102-44-0	9.06E-01			9.03E-04			2.60E-03
R36_Q	CO	630-08-0	6.90E+00			6.87E-03			1.98E-02
R36_Q	SO ₂	7446-09-5	5.73E-03			5.71E-06			1.64E-05
R36_Q	PM	N/A (pm)	2.32E-01			2.31E-04			6.66E-04
R36_Q	PM10	N/A (pm10)	2.32E-01			2.31E-04			6.66E-04
R36_Q	PM2.5	N/A (pm2.5)	5.65E-02	4,617	86	5.63E-05	554	10	1.62E-04
R36_Q	Benzene	71-43-2	2.18E-03	4,017		2.18E-06	004	10	6.26E-06
R36_Q	1,3-Butadiene	106-99-0	2.40E-04			2.39E-07			6.88E-07
R36_Q	Acrolein	107-02-8	4.04E-04			4.02E-07			1.16E-06
R36_Q	Acetaldehyde	75-07-0	2.68E-03			2.67E-06			7.69E-06
R36_Q	Formaldehyde	50-00-0	5.10E-03			5.08E-06			1.46E-05
R36_Q	Benzo(a)pyrene	50-32-8	2.76E-06			2.75E-09			7.92E-09

Source: On-Road Vehicle Emissions on Detour Routes During Construction

Road Source ID	Contaminant	CAS#				NB Albert (cruise l	ink)		
			Emission Factor ⁽¹⁾ (g/VMT)	ADT	Daily VMT	Daily Emission Rate ⁽²⁾ (g/s)	Peak Hourly	Hourly VMT	Hourly Emission Rate ⁽³⁾ (g/s)
R37_C	NOx	10102-44-0	4.34E-01			1.06E-03			3.04E-03
R37_C	CO	630-08-0	3.41E+00			8.31E-03			2.39E-02
R37_C	SO ₂	7446-09-5	2.33E-03			5.66E-06			1.63E-05
R37_C	PM	N/A (pm)	7.32E-02			1.78E-04			5.13E-04
R37_C	PM10	N/A (pm10)	7.32E-02			1.78E-04			5.13E-04
R37_C	PM2.5	N/A (pm2.5)	2.46E-02	1.967	210	5.99E-05	236	25	1.72E-04
R37_C	Benzene	71-43-2	9.60E-04	1,001	210	2.34E-06	200	20	6.73E-06
R37_C	1,3-Butadiene	106-99-0	7.96E-05			1.94E-07			5.57E-07
R37_C	Acrolein	107-02-8	1.12E-04			2.73E-07			7.86E-07
R37_C	Acetaldehyde	75-07-0	8.13E-04			1.98E-06			5.70E-06
R37_C	Formaldehyde	50-00-0	1.47E-03			3.57E-06			1.03E-05
R37_C	Benzo(a)pyrene	50-32-8	1.29E-06			3.15E-09			9.07E-09

Notes:

(1) Emission factor data are produced using MOVES3.

(2) Daily emission rate (g/s) = Emission factor (g/VMT) x Daily VMT x 1day/24hours x 1hour/3600s

(3) Hourly emission rate (g/s) = Emission factor (g/VMT) x Hourly VMT x 1hour/3600s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on future traffic data and assumed travelling speeds along the major detour routes around the construction area. Meteorological data (temperature and humidity) in January are used in the model. The calculated emission rate should be conservative.

Source: Traffic Emissions from Paved Road during Construction

Description: Dust emissions from public road traffic during construction period are estimated in this sheet. The detour roads are paved.

Contaminant(s) of Concern:

Particulate matter, including PM, PM₁₀, and PM₂₅ emissions are the contaminants of concern due to the traffic on paved road. Resuspended particulate emissions from paved roads originate from, and result in the depletion of, the loose material present on the surface of roads.

Methodology: Emission Factor (EF)

Emission factor was calculated using Equation (1a) in the US EPA AP-42 document Chapter 13.2.1. (Paved Road). The equation is:

 $E = k (sL)^{0.91} x (W)^{1.02}$

where:

E = particulate emission factor (g/VMT)

k = particle size multiplier for particle size range and units of interest (g/VMT)

sL = road surface silt loading (g/m²) W = average weight of vehicles traveling the road (tons)

Vehicle Weight Calculation:

Road Source ID	Road and Direction	Weight of Ve	hicle ⁽¹⁾ , (tons)	Percentag	ge of Vehicle	Average Weight
	Road and Direction	Car	Truck	Car	Truck	(tons)
R1a_Q	NB/SB Simcoe / Gibb (queue link)	1.8	20	97%	3%	2.3
R1b Q	NB/SB Simcoe / Gibb (queue link)	1.8	20	97%	3%	2.3
R2a Q	R2a_Q EB/WB Gibb / Simcoe (queue link)		20	97%	3%	2.3
R2b_Q	EB/WB Gibb / Simcoe (queue link)	1.8	20	97%	3%	2.3
R3 C	EB/WB Gibb (cruise link)	1.8	20	97%	3%	2.3
R4a Q	EB/WB Gibb / Centre (queue link)	1.8	20	97%	3%	2.3
R4b Q	EB/WB Gibb / Centre (queue link)	1.8	20	97%	3%	2.3
R5_C	EB/WB Gibb (cruise link)	1.8	20	97%	3%	2.3
R6a_Q	EB/WB Park Rd / Gibb (queue link)	1.8	20	97%	3%	2.3
R6b_Q	EB/WB Park Rd / Gibb (queue link)	1.8	20	97%	3%	2.3
R7a Q	NB/SB Park Rd / Gibb (queue link)	1.8	20	97%	3%	2.3
R7b Q	NB/SB Park Rd / Gibb (queue link)	1.8	20	97%	3%	2.3
R8 C	NB/SB Park Rd (cruise link)	1.8	20	97%	3%	2.3
R9 C	NB/SB Park Rd (cruise link)	1.8	20	97%	3%	2.3
R10a Q	NB/SB Park Rd / Hillside (queue link)	1.8	20	97%	3%	2.3
R10b Q	NB/SB Park Rd / Hillside (queue link)	1.8	20	97%	3%	2.3
R11 C	NB/SB Park Rd (cruise link)	1.8	20	97%	3%	2.3
R12 C	NB/SB Park Rd (cruise link)	1.8	20	97%	3%	2.3
R13 Q	NB/SB Park Rd / Bloor (queue link)	1.8	20	97%	3%	2.3
R14a Q	EB/WB Bloor / Park Rd (queue link)	1.8	20	97%	3%	2.3
R14b Q	EB/WB Bloor / Park Rd (queue link)	1.8	20	97%	3%	2.3
R15a Q	EB/WB Bloor (queue link)	1.8	20	97%	3%	2.3
R15b Q	EB/WB Bloor (queue link)	1.8	20	97%	3%	2.3
R16 C	EB/WB Bloor (cruise link)	1.8	20	97%	3%	2.3
R17a Q	EB/WB Bloor / Simcoe (queue link)	1.8	20	97%	3%	2.3
R17b Q	EB/WB Bloor / Simcoe (queue link)	1.8	20	97%	3%	2.3
R18 C	EB/WB Bloor (cruise link)	1.8	20	97%	3%	2.3
R19a Q	EB/WB Bloor / 401 EB ramps (queue link)	1.8	20	97%	3%	2.3
R19b Q	EB/WB Bloor / 401 EB ramps (queue link)	1.8	20	97%	3%	2.3
R20a Q	EB/WB Bloor / Ritson (gueue link)	1.8	20	97%	3%	2.3
R20b Q	EB/WB Bloor / Ritson (queue link)	1.8	20	97%	3%	2.3
R21a Q	NB/SB Ritson / Bloor (queue link)	1.8	20	97%	3%	2.3
R21b Q	NB/SB Ritson / Bloor (queue link)	1.8	20	97%	3%	2.3
R22 C	NB/SB Ritson (cruise link)	1.8	20	97%	3%	2.3
R23a Q	NB/SB Ritson / Mc Naughton / Dean (queue link)	1.8	20	97%	3%	2.3
R23b Q	NB/SB Ritson / Mc Naughton / Dean (gueue link)	1.8	20	97%	3%	2.3
R24 C	NB/SB Ritson (cruise link)	1.8	20	97%	3%	2.3
R25a Q	NB/SB Ritson / Olive (queue link)	1.8	20	97%	3%	2.3
R25b Q	NB/SB Ritson / Olive (queue link)	1.8	20	97%	3%	2.3
R26a Q	EB/WB Olive / Ritson (queue link)	1.8	20	97%	3%	2.3
R26b Q	EB/WB Olive / Ritson (queue link)	1.8	20	97%	3%	2.3

Source: Traffic Emissions from Paved Road during Construction

R27_C	EB/WB Olive (cruise link)	1.8	20	97%	3%	2.3
R28a_Q	EB/WB Olive/Albert (queue link)	1.8	20	97%	3%	2.3
R28b_Q	EB/WB Olive/Albert (queue link)	1.8	20	97%	3%	2.3
R29a_Q	NB Albert (queue link)	1.8	20	97%	3%	2.3
R29b_Q	NB Albert (queue link)	1.8	20	97%	3%	2.3
R30_Q	EB/WB Olive / Simcoe (queue link)	1.8	20	97%	3%	2.3
R31_C	NB/SB Albert (cruise link)	1.8	20	97%	3%	2.3
R32_C	NB/SB Albert (cruise link)	1.8	20	97%	3%	2.3
R33a_Q	NB/SB Albert (queue link)	1.8	20	97%	3%	2.3
R33b_Q	NB/SB Albert (queue link)	1.8	20	97%	3%	2.3
R34_Q	EB/WB First (queue link)	1.8	20	97%	3%	2.3
R35_C	NB/SB Albert (cruise link)	1.8	20	97%	3%	2.3
R36_Q	NB/SB Albert (queue link)	1.8	20	97%	3%	2.3
R37_C	NB Albert (cruise link)	1.8	20	97%	3%	2.3

Notes:

(1) Average weight of each type of vehicle is assumed (trucks will include empty load and full load of containers) (2) Since there are different vehicles running on different schedules and the estimation methodology suggested by US. EPA is intended for a "fleet" average weight of all vehicles travelling on the road, a weighted (based on weight of each vehicle and travelled distance) vehicle mass is used for emissions estimation. Therefore, the average weight on each road is estimated based on the traffic data.

Emission Factor Calculation:

	Dead and Disation	Average	Parti	cle Size Factor k	⁽¹⁾ (g/VMT)		Silt Loading ⁽²⁾	Emissi	on Factor ⁽³⁾ (g/VM	Т)
Road Source ID	Road and Direction	Vehicle Weight - (tons)	РМ	PM10	PM2.5	ADT	g/m²	РМ	PM10	PM2.5
R1a_Q	NB/SB Simcoe / Gibb (queue link)	2.3	5.24	1	0.25	5,592	0.06	0.966	0.184	0.046
R1b_Q	R1b Q NB/SB Simcoe / Gibb (queue link)		5.24	1	0.25	5,333	0.06	0.966	0.184	0.046
R2a_Q	EB/WB Gibb / Simcoe (queue link)	2.3	5.24	1	0.25	6,392	0.06	0.966	0.184	0.046
R2b_Q	EB/WB Gibb / Simcoe (queue link)	2.3	5.24	1	0.25	2,650	0.20	2.891	0.552	0.138
R3_C	EB/WB Gibb (cruise link)	2.3	5.24	1	0.25	6,192	0.06	0.966	0.184	0.046
R4a_Q	EB/WB Gibb / Centre (queue link)	2.3	5.24	1	0.25	9,275	0.06	0.966	0.184	0.046
R4b Q	EB/WB Gibb / Centre (queue link)	2.3	5.24	1	0.25	6,267	0.06	0.966	0.184	0.046
R5 C	EB/WB Gibb (cruise link)	2.3	5.24	1	0.25	9,883	0.06	0.966	0.184	0.046
R6a Q	EB/WB Park Rd / Gibb (queue link)	2.3	5.24	1	0.25	10,983	0.03	0.514	0.098	0.025
R6b_Q	EB/WB Park Rd / Gibb (queue link)	2.3	5.24	1	0.25	9,933	0.06	0.966	0.184	0.046
R7a Q	NB/SB Park Rd / Gibb (gueue link)	2.3	5.24	1	0.25	15,467	0.03	0.514	0.098	0.025
R7b Q	NB/SB Park Rd / Gibb (gueue link)	2.3	5.24	1	0.25	13,283	0.03	0.514	0.098	0.025
R8 C	NB/SB Park Rd (cruise link)	2.3	5.24	1	0.25	15,342	0.03	0.514	0.098	0.025
R9 C	NB/SB Park Rd (cruise link)	2.3	5.24	1	0.25	15,342	0.03	0.514	0.098	0.025
R10a Q	NB/SB Park Rd / Hillside (queue link)	2.3	5.24	1	0.25	12,608	0.03	0.514	0.098	0.025
R10b Q	NB/SB Park Rd / Hillside (gueue link)	2.3	5.24	1	0.25	15,183	0.03	0.514	0.098	0.025
R11 C	NB/SB Park Rd (cruise link)	2.3	5.24	1	0.25	13,517	0.03	0.514	0.098	0.025
R12 C	NB/SB Park Rd (cruise link)	2.3	5.24	1	0.25	13,517	0.03	0.514	0.098	0.025
R13 Q	NB/SB Park Rd / Bloor (gueue link)	2.3	5.24	1	0.25	12,658	0.03	0.514	0.098	0.025
R14a Q	EB/WB Bloor / Park Rd (queue link)	2.3	5.24	1	0.25	15,833	0.03	0.514	0.098	0.025
R14b Q	EB/WB Bloor / Park Rd (queue link)	2.3	5.24	1	0.25	17,183	0.03	0.514	0.098	0.025
R15a Q	EB/WB Bloor (queue link)	2.3	5.24	1	0.25	19,033	0.03	0.514	0.098	0.025
R15b Q	EB/WB Bloor (queue link)	2.3	5.24	1	0.25	11,325	0.03	0.514	0.098	0.025
R16 C	EB/WB Bloor (cruise link)	2.3	5.24	1	0.25	11,483	0.03	0.514	0.098	0.025
R17a Q	EB/WB Bloor / Simcoe (gueue link)	2.3	5.24	1	0.25	15,158	0.03	0.514	0.098	0.025
R17b Q	EB/WB Bloor / Simcoe (gueue link)	2.3	5.24	1	0.25	15,700	0.03	0.514	0.098	0.025
R18 C	EB/WB Bloor (cruise link)	2.3	5.24	1	0.25	13,433	0.03	0.514	0.098	0.025
R19a Q	EB/WB Bloor / 401 EB ramps (gueue link)	2.3	5.24	1	0.25	10,567	0.03	0.514	0.098	0.025
R19b Q	EB/WB Bloor / 401 EB ramps (queue link)	2.3	5.24	1	0.25	13,450	0.03	0.514	0.098	0.025
R20a Q	EB/WB Bloor / Ritson (gueue link)	2.3	5.24	1	0.25	16,217	0.03	0.514	0.098	0.025
R20b Q	EB/WB Bloor / Ritson (queue link)	2.3	5.24	1	0.25	9,342	0.06	0.966	0.184	0.046
R21a Q	NB/SB Ritson / Bloor (queue link)	2.3	5.24	1	0.25	9,675	0.06	0.966	0.184	0.046
R21b Q	NB/SB Ritson / Bloor (queue link)	2.3	5.24	1	0.25	18,617	0.03	0.514	0.098	0.025
R22 C	NB/SB Ritson (cruise link)	2.3	5.24	1	0.25	21,183	0.03	0.514	0.098	0.025
R23a Q	NB/SB Ritson / Mc Naughton / Dean (gueue link)	2.3	5.24	1	0.25	22,125	0.03	0.514	0.098	0.025
R23b Q	NB/SB Ritson / Mc Naughton / Dean (gueue link)	2.3	5.24	1	0.25	21.092	0.03	0.514	0.098	0.025

Source: Traffic Emissions from Paved Road during Construction

R24_C	NB/SB Ritson (cruise link)	2.3	5.24	1	0.25	21,000	0.03	0.514	0.098	0.025
R25a_Q	NB/SB Ritson / Olive (queue link)	2.3	5.24	1	0.25	21,283	0.03	0.514	0.098	0.025
R25b_Q	NB/SB Ritson / Olive (queue link)	2.3	5.24	1	0.25	16,592	0.03	0.514	0.098	0.025
R26a_Q	EB/WB Olive / Ritson (queue link)	2.3	5.24	1	0.25	8,058	0.06	0.966	0.184	0.046
R26b Q	EB/WB Olive / Ritson (queue link)	2.3	5.24	1	0.25	9,950	0.06	0.966	0.184	0.046
R27_C	EB/WB Olive (cruise link)	2.3	5.24	1	0.25	9,242	0.06	0.966	0.184	0.046
R28a_Q	EB/WB Olive/Albert (queue link)	2.3	5.24	1	0.25	9,808	0.06	0.966	0.184	0.046
R28b_Q	EB/WB Olive/Albert (queue link)	2.3	5.24	1	0.25	7,617	0.06	0.966	0.184	0.046
R29a_Q	NB Albert (queue link)	2.3	5.24	1	0.25	4,875	0.20	2.891	0.552	0.138
R29b_Q	NB Albert (queue link)	2.3	5.24	1	0.25	1,967	0.20	2.891	0.552	0.138
R30_Q	EB/WB Olive / Simcoe (queue link)	2.3	5.24	1	0.25	5,333	0.06	0.966	0.184	0.046
R31_C	NB/SB Albert (cruise link)	2.3	5.24	1	0.25	5,275	0.06	0.966	0.184	0.046
R32_C	NB/SB Albert (cruise link)	2.3	5.24	1	0.25	5,275	0.06	0.966	0.184	0.046
R33a_Q	NB/SB Albert (queue link)	2.3	5.24	1	0.25	4,617	0.20	2.891	0.552	0.138
R33b_Q	NB/SB Albert (queue link)	2.3	5.24	1	0.25	5,667	0.06	0.966	0.184	0.046
R34_Q	EB/WB First (queue link)	2.3	5.24	1	0.25	2,733	0.20	2.891	0.552	0.138
R35_C	NB/SB Albert (cruise link)	2.3	5.24	1	0.25	4,617	0.20	2.891	0.552	0.138
R36_Q	NB/SB Albert (queue link)	2.3	5.24	1	0.25	4,617	0.20	2.891	0.552	0.138
R37_C	NB Albert (cruise link)	2.3	5.24	1	0.25	1,967	0.20	2.891	0.552	0.138

Notes:

(1) Reference: USEPA AP-42 Table 13.2.1-1

(2) Ubiquitous Silt Loading Default Values (AP-42 Chapter 13.2.1 - T2). The ADT of future traffic on the subject road is used in the evaluation.

ADT Category	sL (g/m²)
<500	0.6
500-5,000	0.2
5,000-10,000	0.06
>10,000	0.03

(3) Emission factors are calculated using the above equation.

Source: Traffic Emissions from Paved Road during Construction

Emission Calculation:

Baad Caura ID		Road Length (mile)	Traffic Volume per Day ⁽¹⁾	Total Travel Distance		Emission F	Rate ^(2,3) (g/s)	
Road Source ID	Road and Direction	(mile)	per Day.	(mile/day)	РМ	PM10	PM2.5	Crystalline silica
R1a Q	NB/SB Simcoe / Gibb (queue link)	0.02	5,592	123	0.0014	0.0003	0.0001	0.00001
R1b Q	NB/SB Simcoe / Gibb (queue link)	0.02	5,333	117	0.0013	0.0003	0.0001	0.00001
R2a Q	EB/WB Gibb / Simcoe (queue link)	0.02	6,392	150	0.0017	0.0003	0.0001	0.00002
R2b Q	EB/WB Gibb / Simcoe (queue link)	0.02	2,650	62	0.0021	0.0004	0.0001	0.00002
R3 C	EB/WB Gibb (cruise link)	0.05	6,192	289	0.0032	0.0006	0.0002	0.00003
R4a Q	EB/WB Gibb / Centre (queue link)	0.03	9,275	312	0.0035	0.0007	0.0002	0.00003
R4b Q	EB/WB Gibb / Centre (queue link)	0.03	6,267	211	0.0024	0.0004	0.0001	0.00002
R5 C	EB/WB Gibb (cruise link)	0.33	9,883	3,230	0.0361	0.0069	0.0017	0.00036
R6a Q	EB/WB Park Rd / Gibb (queue link)	0.05	10,983	603	0.0036	0.0007	0.0002	0.00004
R6b Q	EB/WB Park Rd / Gibb (gueue link)	0.05	9,933	545	0.0061	0.0012	0.0003	0.00006
R7a Q	NB/SB Park Rd / Gibb (queue link)	0.07	15,467	1,087	0.0065	0.0012	0.0003	0.00006
R7b Q	NB/SB Park Rd / Gibb (queue link)	0.07	13,283	933	0.0056	0.0011	0.0003	0.00006
R8 C	NB/SB Park Rd (cruise link)	0.31	15,342	4,795	0.0285	0.0054	0.0014	0.00028
R9 C	NB/SB Park Rd (cruise link)	0.04	15,342	667	0.0040	0.0008	0.0002	0.00004
R10a Q	NB/SB Park Rd / Hillside (gueue link)	0.04	12,608	526	0.0031	0.0006	0.0001	0.00003
R10b Q	NB/SB Park Rd / Hillside (queue link)	0.04	15,183	634	0.0038	0.0007	0.0002	0.00004
R11 C	NB/SB Park Rd (cruise link)	0.04	13,517	882	0.0053	0.0010	0.0002	0.00004
R12 C	NB/SB Park Rd (cruise link)	0.12	13,517	1,638	0.0098	0.0010	0.0005	0.00010
R12_0	NB/SB Park Rd / Bloor (queue link)	0.08	12,658	971	0.0058	0.0019	0.0003	0.00006
R13_Q	EB/WB Bloor / Park Rd (queue link)	0.08	15,833	874	0.0058	0.0011	0.0003	0.00005
		0.06		948		0.0010		0.00005
R14b_Q	EB/WB Bloor / Park Rd (queue link)		17,183		0.0056		0.0003	
R15a_Q	EB/WB Bloor (queue link)	0.08	19,033	1,478	0.0088	0.0017	0.0004	0.00009
R15b_Q	EB/WB Bloor (queue link)	0.05	11,325	610	0.0036	0.0007	0.0002	0.00004
R16_C	EB/WB Bloor (cruise link)	0.26	11,483	3,018	0.0180	0.0034	0.0009	0.00018
R17a_Q	EB/WB Bloor / Simcoe (queue link)	0.11	15,158	1,733	0.0103	0.0020	0.0005	0.00010
R17b_Q	EB/WB Bloor / Simcoe (queue link)	0.11	15,700	1,795	0.0107	0.0020	0.0005	0.00011
R18_C	EB/WB Bloor (cruise link)	0.19	13,433	2,604	0.0155	0.0030	0.0007	0.00015
R19a_Q	EB/WB Bloor / 401 EB ramps (queue link)	0.05	10,567	545	0.0032	0.0006	0.0002	0.00003
R19b_Q	EB/WB Bloor / 401 EB ramps (queue link)	0.05	13,450	694	0.0041	0.0008	0.0002	0.00004
R20a_Q	EB/WB Bloor / Ritson (queue link)	0.10	16,217	1,612	0.0096	0.0018	0.0005	0.00010
R20b_Q	EB/WB Bloor / Ritson (queue link)	0.08	9,342	731	0.0082	0.0016	0.0004	0.00008
R21a_Q	NB/SB Ritson / Bloor (queue link)	0.07	9,675	630	0.0070	0.0013	0.0003	0.00007
R21b_Q	NB/SB Ritson / Bloor (queue link)	0.07	18,617	1,212	0.0072	0.0014	0.0003	0.00007
R22_C	NB/SB Ritson (cruise link)	0.10	21,183	2,053	0.0122	0.0023	0.0006	0.00012
R23a_Q	NB/SB Ritson / Mc Naughton / Dean (queue link)	0.12	22,125	2,566	0.0153	0.0029	0.0007	0.00015
R23b_Q	NB/SB Ritson / Mc Naughton / Dean (queue link)	0.12	21,092	2,446	0.0146	0.0028	0.0007	0.00015
R24_C	NB/SB Ritson (cruise link)	0.10	21,000	2,192	0.0131	0.0025	0.0006	0.00013
R25a_Q	NB/SB Ritson / Olive (queue link)	0.10	21,283	2,183	0.0130	0.0025	0.0006	0.00013
R25b_Q	NB/SB Ritson / Olive (queue link)	0.10	16,592	1,702	0.0101	0.0019	0.0005	0.00010
R26a_Q	EB/WB Olive / Ritson (queue link)	0.10	8,058	815	0.0091	0.0017	0.0004	0.00009
R26b_Q	EB/WB Olive / Ritson (queue link)	0.10	9,950	1,006	0.0113	0.0021	0.0005	0.00011
R27_C	EB/WB Olive (cruise link)	0.21	9,242	1,901	0.0213	0.0041	0.0010	0.00021
R28a_Q	EB/WB Olive/Albert (queue link)	0.07	9,808	719	0.0080	0.0015	0.0004	0.00008
R28b_Q	EB/WB Olive/Albert (queue link)	0.10	7,617	776	0.0087	0.0017	0.0004	0.00009
R29a_Q	NB Albert (queue link)	0.04	4,875	171	0.0057	0.0011	0.0003	0.00006
R29b_Q	NB Albert (queue link)	0.04	1,967	69	0.0023	0.0004	0.0001	0.00002
R30_Q	EB/WB Olive / Simcoe (queue link)	0.03	5,333	150	0.0017	0.0003	0.0001	0.00002
R31_C	NB/SB Albert (cruise link)	0.04	5,275	190	0.0021	0.0004	0.0001	0.00002
R32_C	NB/SB Albert (cruise link)	0.22	5,275	1,180	0.0132	0.0025	0.0006	0.00013
R33a_Q	NB/SB Albert (queue link)	0.03	4,617	155	0.0052	0.0010	0.0002	0.00005
R33b_Q	NB/SB Albert (queue link)	0.03	5,667	190	0.0021	0.0004	0.0001	0.00002
R34_Q	EB/WB First (queue link)	0.19	2,733	531	0.0178	0.0034	0.0008	0.00018
R35_C	NB/SB Albert (cruise link)	0.21	4,617	973	0.0325	0.0062	0.0016	0.00032
R36 Q	NB/SB Albert (gueue link)	0.02	4,617	86	0.0029	0.0005	0.0001	0.00003
R37 C	NB Albert (cruise link)	0.11	1.967	210	0.0070	0.0013	0.0003	0.00007

Source: Traffic Emissions from Paved Road during Construction

Notes:

(1) Average Daily Traffic (ADT), AM Peak and PM peak data and vehicle distribution data provided by project transportation team. Note that ADT are estimated by applying a K-Factor of 0.12 or the application of an (2) Emission control efficiency is not applied to the dust quantification.

(3) Crystalline silica emission rate is based on 5.22% of PM10 from road dust and from dust from construction activities. Percent of silicon oxide (SiO2) from Table 4 in "Screening Assessment for the Challenge, Quartz Chemical Abstracts Service Registry Number 14808-60-7, Cristobalite Chemical Abstracts Service Registry Number 14464-46-1", Environment Canada / Health Canada, June 2013

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Operation Scenario - Baseline / Future No Build / Future Build

Source: Emissions from GM Diesel Trains During Operation

SOURCE ID: CP0, GM1, GM2, CP1A, CP1B, CP2A, CP2B, CP2C, CP3, CP4

Description: Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet. The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station. The study area is divided into three model segments including the Oshawa, Courtice and Bowmanville segments to match the area of coverage specified by the MECP site specific meteorological data sets. It is assumed that GM and CP trains within the study area are only travelling / passing by at constant speed. There are no GO trains operating within the study area during the baseline and future no build scenario.

The train data are summarized below.

Number of Trains										
GM trains	3	trains/day	Maximum daily trains provided by PM team (daytime 3)							
	1	trains/hour	Assumed maximum hourly trains							
Number of Engines per Locomotive										
GM locomotive	1	engine	Average one (1) locomotive and 6 cars							
Total Number of Engines										
GM locomotive	3	engines /day	calculated							
Power rating of locomotive	4245	hp/each	Train engine based on 201075-STANTEC-RFI-00017. Tier 2 engine data (notch 8).							
Fuel type in locomotive	Diesel	-	-							
Line volume source lengths in Oshawa segment										
CP0	1.09	km	EX/FNB/FB - CP and GM trains west of study area							
GM1	1.29	km	EX/FNB - GM Trains on Existing Railway Tracks							
GM2	1.29	km	FB - GM Trains on Future Build Railway Tracks							
CP1A	1.36	km	EX/FNB/FB - CP and GM trains along main railway corridor in Oshawa							
CP1B	6.22	km	EX/FNB/FB - CP and GM trains along main railway corridor in Oshawa							
Line volume source lengths in Courtice segment										
CP2A	3.79	km	EX/FNB/FB - CP and GM trains along main railway corridor in Courtice							
CP2B	2.36	km	EX/FNB/FB - CP and GM trains along main railway corridor in Courtice							
CP2C	3.44	km	EX/FNB/FB - CP and GM trains along main railway corridor in Courtice							
Line volume source lengths in Bowmanville segment										
CP3	4.54	km	EX/FNB/FB - CP and GM trains along main railway corridor in Bowmanville							
CP4	1.00	km	EX/FNB/FB - CP and GM trains east of study area							
Travel Speeds										
Along main rail corridor	55	mph	Assumed 55 mph (88.5 km/h) for CP and GM trains							
Connecting line between CP and CN	25	mph	Assumed 25 mph (40 km/h) for GM trains and GO trains							

Contaminant(s) of Concern: NOx, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in locomotive engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in the assessment.

Methodology: Mass Balance (MB) and Emission Factor (EF) SO₂ emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the vehicle. SO₂ emission factor is calculated below.

Data	Value	Unit	Reference				
Sulphur content in diesel	15	ppm	Sulphur in Diesel Fuel Regulations, Environment and Climate Change Canada (ECCC)				
Diesel Engine Efficiency	45%		"Just the basics: Diesel Energy". US department of energy				
Lower Heating Value	128,450	BTU/gal	"Alternative Fuels Data Center – Fuel Properties Comparison " from the US Department of Energy				
Unit Conversion	0.00029	kWh/BTU	-				
Unit Conversion	454	g/lb	-				
Density of diesel	7.00	lb/gal	-				
Energy output	16.94	kWh/gal	Calculated				
SO ₂ / gallon of diesel	0.0953	g SO ₂ /gal	A factor of 2 is applied to convert sulfur to SO_{2} , assuming all the sulfur will be oxidized to SO_{2}				
Emission Factor	0.0056	g/kWh	-				

Note: Emissions are calculated based on sulphur content in diesel as per Sulphur in Diesel Fuel Regulations.

1

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Operation Scenario - Baseline / Future No Build / Future Build

Source: Emissions from GM Diesel Trains During Operation

NOx, PM, CO, and non-methane hydrocarbon (NMHC) emissions from onsite travelling train tailpipe exhausts are calculated based on the document "201075-STANTEC-RFI-00017" provided by Metrolinx. Tier 2 engine emission rates are conservatively used. These emission factors are listed below along with the emission calculations for both maximum hourly and daily emission rates.

sion Calculations - Criteria Contai	minants: Diesel Trains Travelling							Number of	Equipment			
Source ID	Contaminant	CAS#	Tier 2 Engine Maximum Power Rating (hp each)	Tier 2 Engine E	nission Factor ⁽¹⁾	Tier 2 Engine Operating Load ⁽²⁾	Peak Emission Rate per Equipment ⁽⁴⁾ (g/s)	per Hour	per Day	Onsite Travelling Time ⁽³⁾ (hour/train)	Hourly Emission Rate (g/s)	Daily Average Emission Rat (g/s)
	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.012	7.48E-05	9.35E-06
	NO _x	10102-44-0	4245	13425.2	g/h	69%	3.7292	1	3	0.012	4.58E-02	5.72E-03
	PM	N/A (pm)	4245	182.4	g/h	69%	0.0507	1	3	0.012	6.22E-04	7.77E-05
	PM10	N/A (pm10)	4245	175.1	g/h	69%	0.0486	1	3	0.012	5.97E-04	7.46E-05
	PM2.5 CO	N/A (pm2.5) 630-08-0	4245 4245	<u>164.16</u> 224.6	g/h	<u>69%</u> 69%	0.0456 0.0624	1	3	0.012	5.60E-04 7.66E-04	6.99E-05 9.57E-05
	HC	N/A	4245	306.4	g/h g/h	69%	0.0851	1	3	0.012	1.04E-03	1.31E-04
	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.032	1.95E-04	2.44E-05
	NO _x	10102-44-0	4245	13425.2		69%	3.7292	1	3	0.032	1.20E-01	1.49E-02
	PM	N/A (pm)	4245	182.4	g/h	69%	0.0507	1	3	0.032	1.62E-03	2.03E-02
	PM10	N/A (pm10)	4245	175.1	g/h	69%	0.0486	1	3	0.032	1.56E-03	1.95E-04
	PM2.5	N/A (pm2.5)	4245	164.2	g/h	69%	0.0456	1	3	0.032	1.46E-03	1.83E-04
	CO	630-08-0	4245	224.6	g/h	69%	0.0624	1	3	0.032	2.00E-03	2.50E-04
	HC	N/A	4245	306.4	g/h	69%	0.0851	1	3	0.032	2.73E-03	3.41E-04
	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.032	1.95E-04	2.44E-05
	NO _x	10102-44-0	4245	13425.2	g/h	69%	3.7292	1	3	0.032	1.20E-01	1.49E-02
	PM	N/A (pm)	4245	182.4	g/h	69%	0.0507	1	3	0.032	1.62E-03	2.03E-04
	PM10	N/A (pm10)	4245	175.1	g/h	69%	0.0486	1	3	0.032	1.56E-03	1.95E-04
	PM2.5	N/A (pm2.5)	4245	164.2	g/h	69%	0.0456	1	3	0.032	1.46E-03	1.83E-04
	CO	630-08-0	4245	224.6	g/h	69%	0.0624	1	3	0.032	2.00E-03	2.50E-04
	HC	N/A	4245	306.4	g/h	69%	0.0851	1	3	0.032	2.73E-03	3.41E-04
	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.015	9.35E-05	1.17E-05
L	NO _x	10102-44-0	4245	13425.2	g/h	69%	3.7292	1	3	0.015	5.72E-02	7.15E-03
L	PM	N/A (pm)	4245	182.4	g/h	69%	0.0507	1	3	0.015	7.77E-04	9.71E-05
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	PM10	N/A (pm10)	4245	175.1	g/h	69%	0.0486	1	3	0.015	7.46E-04	9.33E-05
<u> </u>	PM2.5 CO	N/A (pm2.5) 630-08-0	4245 4245	164.2 224.6	g/h g/h	<u>69%</u> 69%	0.0456 0.0624	1	3	0.015	6.99E-04 9.57E-04	8.74E-05 1.20E-04
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	HC	N/A	4245	306.4		69%	0.0851	1	3	0.015	1.31E-03	1.63E-04
5	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.070	4.28E-04	5.35E-05
}	NO _x	10102-44-0	4245	13425.2	÷ .	69%	3.7292	1	3	0.070	2.62E-04	3.27E-02
) 	PM	N/A (pm)	4245	182.4	g/h g/h	69%	0.0507	1	3	0.070	3.56E-03	4.45E-04
}	PM10	N/A (pm10)	4245	175.1	g/h	69%	0.0486	1	3	0.070	3.42E-03	4.43E-04 4.27E-04
,	PM2.5	N/A (pm2.5)	4245	164.2	g/h	69%	0.0456	1	3	0.070	3.20E-03	4.00E-04
	CO	630-08-0	4245	224.6	g/h	69%	0.0624	1	3	0.070	4.38E-03	5.48E-04
8	HC	N/A	4245	306.4	g/h	69%	0.0851	1	3	0.070	5.98E-03	7.47E-04
	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.043	2.61E-04	3.26E-05
L Contraction of the second seco	NO _x	10102-44-0	4245	13425.2	g/h	69%	3.7292	1	3	0.043	1.60E-01	1.99E-02
•	PM	N/A (pm)	4245	182.4	g/h	69%	0.0507	1	3	0.043	2.17E-03	2.71E-04
	PM10	N/A (pm10)	4245	175.1	g/h	69%	0.0486	1	3	0.043	2.08E-03	2.60E-04
L Contraction of the second seco	PM2.5	N/A (pm2.5)	4245	164.2	g/h	69%	0.0456	1	3	0.043	1.95E-03	2.44E-04
۱	CO	630-08-0	4245	224.6	g/h	69%	0.0624	1	3	0.043	2.67E-03	3.34E-04
	HC	N/A	4245	306.4	g/h	69%	0.0851	1	3	0.043	3.64E-03	4.55E-04
k	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.027	1.63E-04	2.03E-05
8	NO _x	10102-44-0	4245	13425.2	g/h	69%	3.7292	1	3	0.027	9.95E-02	1.24E-02
3	PM	N/A (pm)	4245	182.4	g/h	69%	0.0507	1	3	0.027	1.35E-03	1.69E-04
	PM10	N/A (pm10)	4245	175.1	g/h	69%	0.0486	1	3	0.027	1.30E-03	1.62E-04
	PM2.5	N/A (pm2.5)	4245	164.2	g/h	69%	0.0456	1	3	0.027	1.22E-03	1.52E-04
<u> </u>	CO HC	630-08-0	4245 4245	224.6 306.4	g/h	<u>69%</u> 69%	0.0624 0.0851	1	3	0.027	1.66E-03 2.27E-03	2.08E-04 2.84E-04
	SO ₂	N/A 7446-09-5	4245	0.0075	g/h g/bhp-h	69%	0.0851	1	3	0.027	2.27E-03 2.37E-04	2.84E-04 2.96E-05
	NO _x				÷ .			•	3			
;		10102-44-0	4245	13425.2	g/h	69%	3.7292	1	-	0.039	1.45E-01	1.81E-02
;	PM PM10	N/A (pm) N/A (pm10)	4245	<u>182.4</u> 175.1	g/h	<u>69%</u> 69%	0.0507 0.0486	1	3	0.039	1.97E-03 1.89E-03	2.46E-04 2.36E-04
	PM10 PM2.5	N/A (pm10) N/A (pm2.5)	4245	164.2	g/h	69%	0.0486	1	3	0.039	1.89E-03	2.36E-04 2.21E-04
·	CO	630-08-0	4245	224.6	g/h	69%	0.0624	1	3	0.039	2.42E-03	3.03E-04
	HC	N/A	4245	306.4	g/h	69%	0.0851	1	3	0.039	3.31E-03	4.13E-04
	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.051	3.13E-04	3.91E-05
	NO _x	10102-44-0	4245	13425.2	g/h	69%	3.7292	1	3	0.051	1.91E-01	2.39E-02
	PM	N/A (pm)	4245	182.4	g/h	69%	0.0507	1	3	0.051	2.60E-03	3.25E-04
	PM10	a ,	4245	175.1		69%	0.0486	1	3	0.051	2.50E-03	3.12E-04
	PM10 PM2.5	N/A (pm10)	4245	175.1	g/h	69%			3	0.051	2.50E-03 2.34E-03	3.12E-04 2.93E-04
	CO	N/A (pm2.5) 630-08-0	4245	224.6	g/h g/h	69%	0.0456 0.0624	1	3	0.051	2.34E-03 3.20E-03	2.93E-04 4.00E-04
	HC	N/A	4245	306.4	g/n	69%	0.0851	1	3	0.051	4.37E-03	4.00E-04 5.46E-04
	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	1	3	0.031	6.91E-05	8.64E-06
	NO _x		4245			69%					4.23E-02	
	PM	10102-44-0		13425.2	g/h		3.7292	1	3	0.011		5.29E-03
	PM PM10	N/A (pm) N/A (pm10)	4245 4245	182.4 175.1	g/h	<u>69%</u> 69%	0.0507 0.0486	<u> </u>	3	0.011	5.74E-04 5.52E-04	7.18E-05 6.89E-05
	PM10 PM2.5	N/A (pm10)	4245	164.2	g/h g/h	69%	0.0486	1	3	0.011	5.17E-04	6.46E-05
	CO	630-08-0	4245	224.6		69%	0.0624	1	3	0.011	7.07E-04	8.84E-05
		1-00 00 0			9/11		0.0024			0.011		0.012 00

Notes: (1) SO₂ emission factor is calculated in above table and based on the fuel sulphur content. Other emission factors were provided by Metrolinx. Tier 2 engines are conservatively used. (2) An average operating load of Notch 6 is assumed for train engines during travelling on rail way (not in full speed) and at steady state. An operating load of 50% is assumed for HEP engines as per the Draft Mx AQ Guide dated Noveber 2019. (3) Onsite travelling time is estimated based on the railway length assessed and the train travel speed.

(4) SO₂ entries are estimated based on the train passing time, emission factor, power rating and number of locomotives. Emission rates of other contaminants are from 201075-STANTEC-RFI-00014 - Locomotive Information_Attachment.pdf provided by Metrolinx.

(5) For PM emissions from the tailpipe of the equipment, based on US EPA AP-42 Appendix B.2 Generalized Particle Size Distributions for gasoline and diesel fuel combustion engines, PM10 = 96% PM; PM2.5 = 90% PM.

Key volatile organic compounds emissions from tailpipe exhausts are estimated based on the related reference emission factor data. These emission factors are listed below along with the emission calculations.

Source: Emissions from GM Diesel Trains During Operation

Emission Calculations - Key VOCs: Diesel Trains Travelling

-	C C				Number of Equipment				
Source ID	Contaminant	CAS#	Emission Factor ⁽¹⁾ (g/hr)	Peak Emission Rate per Equipment ⁽³⁾ (g/s)	per Hour	per Day	Travelling Time ⁽²⁾ (hour/train)	Hourly Emission Rate ⁽³⁾ (g/s)	Daily Average Emission Rate ⁽³⁾ (g/s)
CP0	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.012	5.65E-05	7.06E-06
CP0	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.012	1.94E-06	2.43E-07
CP0	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.012	1.95E-05	2.44E-06
CP0	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.012	1.09E-04	1.36E-05
CP0	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.012	3.05E-04	3.81E-05
CP0	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.012	4.15E-09	5.18E-10
GM1	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.032	1.48E-04	1.84E-05
GM1	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.032	5.07E-06	6.34E-07
GM1	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.032	5.10E-05	6.38E-06
GM1	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.032	2.84E-04	3.55E-05
GM1	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.032	7.97E-04	9.96E-05
GM1	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.032	1.08E-08	1.35E-09
GM2	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.032	1.48E-04	1.85E-05
GM2	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.032	5.08E-06	6.35E-07
GM2	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.032	5.10E-05	6.38E-06
GM2	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.032	2.84E-04	3.55E-05
GM2	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.032	7.97E-04	9.96E-05
GM2	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.032	1.08E-08	1.35E-09
CP1A	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.015	7.06E-05	8.83E-06
CP1A	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.015	2.43E-06	3.04E-07
CP1A	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.015	2.44E-05	3.05E-06
CP1A	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.015	1.36E-04	1.70E-05
CP1A	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.015	3.81E-04	4.77E-05
CP1A	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.015	5.18E-09	6.48E-10
CP1B	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.070	3.23E-04	4.04E-05
CP1B	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.070	1.11E-05	1.39E-06
CP1B	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.070	1.12E-04	1.40E-05
CP1B	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.070	6.22E-04	7.77E-05
CP1B	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.070	1.75E-03	2.18E-04
CP1B	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.070	2.37E-08	2.97E-09
CP2A	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.043	1.97E-04	2.46E-05
CP2A	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.043	6.77E-06	8.46E-07
CP2A	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.043	6.81E-05	8.51E-06
CP2A	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.043	3.79E-04	4.73E-05
CP2A	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.043	1.06E-03	1.33E-04
CP2A	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.043	1.45E-08	1.81E-09
CP2B	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.027	1.23E-04	1.54E-05
CP2B	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.027	4.22E-06	5.28E-07
CP2B	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.027	4.25E-05	5.31E-06
CP2B	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.027	2.36E-04	2.95E-05
CP2B	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.027	6.63E-04	8.29E-05
CP2B	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.027	9.02E-09	1.13E-09
CP2C	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.039	1.79E-04	2.24E-05
CP2C	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.039	6.15E-06	7.68E-07
CP2C	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.039	6.18E-05	7.73E-06
CP2C	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.039	3.44E-04	4.30E-05
CP2C	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.039	9.65E-04	1.21E-04
CP2C	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.039	1.31E-08	1.64E-09
CP3	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.051	2.36E-04	2.95E-05
CP3	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.051	8.13E-06	1.02E-06
CP3	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.051	8.17E-05	1.02E-05
CP3	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.051	4.54E-04	5.68E-05
CP3	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.051	1.28E-03	1.59E-04
CP3	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.051	1.73E-08	2.17E-09
CP4	Benzene	71-43-2	1.66E+01	4.60E-03	1	3	0.011	5.22E-05	6.53E-06
CP4	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	1	3	0.011	1.79E-06	2.24E-07
CP4	Acrolein	107-02-8	5.73E+00	1.59E-03	1	3	0.011	1.80E-05	2.26E-06
CP4	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	1	3	0.011	1.00E-04	1.25E-05
CP4	Formaldehyde	50-00-0	8.95E+01	2.49E-02	1	3	0.011	2.82E-04	3.52E-05
CP4	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	1	3	0.011	3.83E-09	4.79E-10
Notes:	20120(0)9310110	120 02 0	1.222 00	0.002 01			5.011	0.002 00	

Notes: (1) Key VOCs emission factors are calculated from the data in US EPA "Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015)". The emission rates of the VOC and PAH substances are estimated based on their fractions of VOC/PM and the related VOC and PM emission rates used in table above.

4.60E-03 g/s

5.65E-05 g/s

7.06E-06 g/s

(2) Onsite travelling time is estimated based on the modelled train travel length for a specific scenario and the train speed. (3) Emission rates are estimated based on the train onsite travel time, emission factor, power rating and number of locomotives.

 Reference: Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015), Tables 11 & 12

 Key VOCs and PAH

 VOC/PM (Tiers 2

 Note

 VOC/PM (Tiers 2
 Note

 8.3)
 Benzene
 0.054100
 VOC fraction

 1,3-Butadiene
 0.001860
 VOC fraction

 Acrolein
 0.018700
 VOC fraction

 Acrolein
 0.018700
 VOC fraction

 Acetaldehyde
 0.104000
 VOC fraction

 Formaldehyde
 0.292000
 VOC fraction

 Benzo(a)pyrene
 6.67E-06
 PM fraction

Peak emission rate of each locomotive (g/s) -	(The Z HC Engine EF (g/II) X Toxic Fraction of VOC (benzene) X Thour/3000 S –
Maximum hourly emission rate (g/s) =	peak emission rate of each engine (g/hr) x onsite traveling time (hour) x number of train engine/hour x 1hr/3600s =
Daily average emission rate (g/s) =	peak short-term emission rate (g/hr) x onsite traveling time (hour) x 1 day/24 hour x number of equipment/day x 1hour/3600s =

Sample Calculation - Benzene emissions from train engines

Peak emission rate of each locomotive (g/s) = Maximum hourly emission rate (g/s) =

Operating Condition, Individual Maximum Rates of Production: The emission rate calculation for this source group is based on the maximum number of equipment operating in the study area and reference exhaust emission standard. The calculated emission rate should be conservative.

(Tier 2 HC Engine EF (g/h) x Toxic Fraction of VOC (benzene) x 1 hour/3600 s =

3

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Operation Scenario - Baseline / Future No Build / Future Build

Source: Emissions from CP Diesel Trains During Operation

Source ID:

CP0, CP1A, CP1B, CP2A, CP2B, CP2C, CP3, CP4

Description:

Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet. The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station. The study area is divided into three model segments including the Oshawa, Courtice and Bowmanville segments to match the area of coverage specified by the MECP site specific meteorological data sets. It is assumed that GM and CP trains within the study area are only travelling / passing by at constant speed. There are no GO trains operating within the study area during the baseline and future no build scenario.

-

I he tra	ain	data	are	summarized	below.
Numb	ord	f Tr	aine		

Number of Trains			
CP trains	9	trains/day	Maximum daily trains provided by PM team (daytime 5 and nighttime 4)
CF trains	2	trains/hour	Assumed maximum hourly trains
Number of Engines per Locomotive			
CP locomotive	3	engines	Average three (3) locomotives and 85 cars
Total Number of Engines			
CP locomotive	27	engines /day	calculated
Power rating of locomotive	4245	hp/each	Train engine based on 201075-STANTEC-RFI-00017. Tier 2 engine data (notch 8).
Fuel type in locomotive	Diesel	-	-
Line volume source lengths in Oshawa segment			
CP0	1.09	km	EX/FNB/FB - CP and GM trains west of study area
CP1A	1.36	km	EX/FNB/FB - CP and GM trains along main railway corridor in Oshawa
CP1B	6.22	km	EX/FNB/FB - CP and GM trains along main railway corridor in Oshawa
Line volume source lengths in Courtice segment			
CP2A	3.79	km	EX/FNB/FB - CP and GM trains along main railway corridor in Courtice
CP2B	2.36	km	EX/FNB/FB - CP and GM trains along main railway corridor in Courtice
CP2C	3.44	km	EX/FNB/FB - CP and GM trains along main railway corridor in Courtice
Line volume source lengths in Bowmanville segment			
CP3	4.54	km	EX/FNB/FB - CP and GM trains along main railway corridor in Bowmanville
CP4	1.00	km	FB - GO trains idling at B4 Station
Travel Speeds			
Along main rail corridor	55	mph	Assumed 55 mph (88.5 km/h)

Contaminant(s) of Concern: NOx, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in locomotive engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in the assessment.

Methodology: Mass Balance (MB) and Emission Factor (EF) SO₂ emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the vehicle. SO₂ emission factor is calculated below.

- 2			- 2
SO2 Emission Factor Calculation:			
Data	Value	Unit	Reference
Sulphur content in diesel	15	ppm	Sulphur in Diesel Fuel Regulations, Environment and Climate Change Canada (ECCC)
Diesel Engine Efficiency	45%		"Just the basics: Diesel Energy". US department of energy
Lower Heating Value	128,450	BTU/gal	"Alternative Fuels Data Center – Fuel Properties Comparison " from the US Department of Energy
Unit Conversion	0.00029	kWh/BTU	-
	454	g/lb	-
Density of diesel	7.00	lb/gal	-
Energy output	16.94	kWh/gal	Calculated
SO ₂ / gallon of diesel	0.0953	g SO ₂ /gal	A factor of 2 is applied to convert sulfur to SO_{2} assuming all the sulfur will be oxidized to SO_{2} .
Emission Factor	0.0056	g/kWh	-

Note: Emissions are calculated based on sulphur content in diesel as per Sulphur in Diesel Fuel Regulations.

1

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Operation Scenario - Baseline / Future No Build / Future Build

Source: Emissions from CP Diesel Trains During Operation

NOx, PM, CO, and non-methane hydrocarbon (NMHC) emissions from onsite travelling train tailpipe exhausts are calculated based on the document "201075-STANTEC-RFI-00017" provided by Metrolinx. Tier 2 engine emission rates are conservatively used. These emission factors are listed below along with the emission calculations for both maximum hourly and daily emission rates.

Source D presentCataloneCataloneCataloneCataloneSourcePart </th <th>Emission Calculation</th> <th>ns - Criteria Contaminant</th> <th>ts: Diesel Trains Travelling</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Number o</th> <th>f Equipment</th> <th></th> <th></th> <th></th>	Emission Calculation	ns - Criteria Contaminant	ts: Diesel Trains Travelling							Number o	f Equipment			
SPNO.NO.4.NO.4.OPALOP	Source ID	Contaminant	CAS#				.	Rate per	per Hour	per Day	Time ⁽³⁾	Emission Rate	Daily Emiss (g/s)	
genbisb	CP0		SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	6	27	0.012	4.49E-04	8.
genbisb	CP0		NOx	10102-44-0	4245	13425.2	g/h	69%	3.7292	6	27	0.012	2.75E-01	5.
ginHugNa (19)AlsiHugHugSoAlsi	CP0		PM	N/A (pm)	4245		-	69%	0.0507	6	27	0.012	3.73E-03	6.
Pho OD Role of a bord of a bo														6.
PPDirNo.Adds<														6.
GPAMedioMedioMedioMedioMountM										-				8.
PhA No. 109-40 4460 136/20 ph 9% 3.700 6 7.70 1.065 1.465.01 PHA NA print 4450 111 ph 9% 0.800 6 27 0.016 4.465.31 PHA NA print 4450 111 ph 0%6 0.0800 6 27 0.016 4.465.31 PHA NA print AND 4.450 2.451 ph 0%6 0.0801 6 27 0.016 4.462.31 PHA NA print ALS5 2.454.31 ph 0%6 0.081.1 6 2.77 0.016 4.462.31 0.016 6 2.77 0.016 4.462.31 0.016														1.
GPAMMMMMMCA4AUBC 4UBC 4Oph <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.</td></th<>			-											1.
GPAM10M10M20M248T15gPM00M2088GM2M2M2088M2M2M2088M2M2088M2M2088M2M2088 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.</td></t<>														6.
GP1A PM25 NAS G436 184.8 gen 69% 0.0484 6 27 0.058 4.26C.3 GP1A O DAL DAL <thdal< th=""> DAL DAL <thd< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>8.</td></thd<></thdal<>										-				8.
girl A O Dialo 436 Z246 girl A 66% 0.5651 6 27 0.515 7.86.33 CPB A Dis Add 0.54 4246 0.007 oph b 65% 0.5651 6 27 0.515 7.86.33 CPB A Dis Add 0.007 oph b 65% 0.5671 6 27 0.517 7.86.33 CPB A Mix pm Add 0.007 oph b 65% 0.5677 6 27 0.507 2.95 CPB A Mix pm 10 Add 0 10.24 0.617 0.6451 6 277 0.507 2.95 CPB A Mix pm 10 Add 0 0.075 0.916 69% 0.9681 6 277 0.907 0.9562 CPB A Mix pm 10 Add 0 0.075 0.916 69% 0.9587 6 277 0.931 1.856.32 CPB A Mix pm 10 Add 0 0.9075 0.916 69% 0.9587 6										-				7.
PHANAVABOABOABOABOABOADOAPABE OBPGB0010024-0424500075gblp-0000.00110.001 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td>1.</td></td<>										<u> </u>				1.
prefs NQ 1002-44-0 4460 1942.9 nph 99% 3.722 6. 77 0.070 1.974-0 CP18 PH10 NA (pm1) 4245 175.1 oph 69% 0.557 6. 27 0.070 2.14.6.0 CP18 PH10 NA (pm1) 4245 175.1 oph 69% 0.0581 6. 0.72 0.070 2.04.6.0 CP18 C NA 4245 396.4 oph 69% 0.0851 6. 0.77 0.043 0.970 3.956.2 CP2A NA 4245 396.4 0.073 0.99% 0.99% 0.9851 6. 277 0.043 0.976-0 3.956.2 CP2A NA 4245 396.4 0.073 0.99% 0.99% 0.9981 6. 0.77 0.043 0.976-0 0.976 0.985 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976														1.
phi NA (pm) Q425 115.4 ph 96% 0.5697 6. 97 0.070 2.145.2 P18 NA (pm) NA (pm) C435 17.1 ph 69% 0.0587 6. 27 0.070 2.245.2 P18 NA (pm) C435 0.416 ph 69% 0.046 6 277 0.070 1.245.2 P18 NA (pm) C435 0.057 0.070 0.066 0.016 6 277 0.033 0.356.3 CP2A NA NA (pm) C435 0.057 0.070 0.066 0.027 0.0 0.033 0.356.3 CP2A NA (pm) C435 1345.2 ph 66% 0.0507 6 277 0.043 1356.3 CP2A NA (pm) C435 1345.2 ph 66% 0.0507 0.066 0.0577 0.061 0.06 277 0.043 1365.2 CP3A CO 359.490 C445 <td>CP1B</td> <td></td> <td>SO₂</td> <td>7446-09-5</td> <td>4245</td> <td>0.0075</td> <td></td> <td>69%</td> <td>0.0061</td> <td>6</td> <td>27</td> <td>0.070</td> <td>2.57E-03</td> <td>4.</td>	CP1B		SO ₂	7446-09-5	4245	0.0075		69%	0.0061	6	27	0.070	2.57E-03	4.
phi NA (pm) Q425 115.4 ph 96% 0.5697 6. 97 0.070 2.145.2 P18 NA (pm) NA (pm) C435 17.1 ph 69% 0.0587 6. 27 0.070 2.245.2 P18 NA (pm) C435 0.416 ph 69% 0.046 6 277 0.070 1.245.2 P18 NA (pm) C435 0.057 0.070 0.066 0.016 6 277 0.033 0.356.3 CP2A NA NA (pm) C435 0.057 0.070 0.066 0.027 0.0 0.033 0.356.3 CP2A NA (pm) C435 1345.2 ph 66% 0.0507 6 277 0.043 1356.3 CP2A NA (pm) C435 1345.2 ph 66% 0.0507 0.066 0.0577 0.061 0.06 277 0.043 1365.2 CP3A CO 359.490 C445 <td>CP1B</td> <td></td> <td>NO,</td> <td>10102-44-0</td> <td>4245</td> <td>13425.2</td> <td>a/h</td> <td>69%</td> <td>3.7292</td> <td>6</td> <td>27</td> <td>0.070</td> <td>1.57E+00</td> <td>2.</td>	CP1B		NO,	10102-44-0	4245	13425.2	a/h	69%	3.7292	6	27	0.070	1.57E+00	2.
CP18 PM10 NA (pm10) 4245 TY 1 ph PM1 PM10 LAG 2.08-02 CP18 CO 600-00 600-00 620-00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td>4.</td>										6				4.
cbris CO ess.59.0 4495 22.6 gh 69% 0.0524 6 27 0.070 2.58.42 CPB CO 246.59.5 244.59.5 244.59.5 0.0075 ghph 69% 0.051 6 27 0.070 3.58-62 CPA NO 0.024.40 244.55 1142.32 gh 69% 0.051 6 27 0.043 1.58-63 CPA NO NA (pm0) 245.5 11412.3 gh 69% 0.0466 6 27 0.043 1.58-63 CPA M10 NA (pm0) 245.5 164.18 gh 69% 0.0456 6 27 0.633 1.78-29 CPA CO 80.04.0 245.5 164.18 gh 69% 0.0456 6 27 0.643 1.78-29 CPA CO 80.04.0 245.5 164.16 gh 69% 0.0567 6 27 0.643 1.57-51 60%			PM10							6		0.070		3.
CH1B HC NA 4440 306.4 gh 60% 0.061 6.0 7.27 0.070 3.586-02 CPZA NO, 10102-44.0 4245 1325.2 gh 69% 0.0861 6.0 7.27 0.043 1.586-03 CPZA MI MA (m) 2435 1325.2 gh 69% 0.0861 6.0 2.77 0.043 1.586-03 CPZA MIA MA (m) 2435 1325.2 gh 69% 0.0861 6.0 2.77 0.043 1.386-03 CPZA MIA MA45 125.6 10.56 0.067 0.0681 0.0691 6.0 2.77 0.043 1.586-03 CPZA MIA A4245 0.057 0.95% 0.0561 6.0 2.77 0.043 1.586-03 CPZB MIA MIA0 A2455 1325.2 gh 0.95% 0.0591 6.0 2.77 0.043 1.586-03 CPZB MIA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>g/h</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.</td></t<>							g/h							3.
OPA No. 1040-04-0 4245 104075 9th 6th 0.001 6th 7th 0.014 9th OPA NA (pm) 4245 132.4 9th 6th 7th 0.014 9th 125.6 OPA NA (pm1) 4245 171.1 9th 6th 0.0168 6th 7th 0.048 0.0550 6th 7th 0.048 125.6 OPA NA (pm2) 4245 171.1 9th 6th 0.048 6th 7th 0.048 125.6 OPA NA (pm2) 4245 124.1 9th 6th 0.0161 6th 7th 0.043 125.6 OPB NA (pm1) 4245 1362.4 9th 6th 0.0161 6th 7th 0.043 125.6 OPB NA (pm2) 4245 1362.4 9th 6th 0.0161 6th 7th 0.043 125.6 OPB NA (pm1) 4245 1362.4														4.
OPA NO 1002-44.0 (445) 1342.5.2 (g)h										-				6.
PM MA (pm) 4246 192.4 nph 69% 0.0677 6 27 0.043 1.36E.62 PPAA PM2 5 MA (pm2) 4245 154.16 gh 69% 0.0450 6.0 27 0.043 1.35E.62 CPAA CO 630.650 4.245 124.6 gh 69% 0.0451 6.0 27 0.043 1.35E.62 CPAA HC NA 4.245 3.05.4 gh 69% 0.051 6.0 27 0.043 1.35E.62 CPAB NA 4.246.5 3.05.4 gh 69% 0.051 6.0 27 0.043 1.35E.62 CPB NA MA (pm1) 4.246 3.05.2 gh 69% 0.051 6 27 0.043 1.35E.62 CPB NA MA (pm1) 4.246 1.35E.2 gh 69% 0.051 6 27 0.043 1.35E.62 CPB NA MA 4.24							.			÷				2.
PM10 NA (pm10) 4455 175.1 gh 09% 0.0466 6 27 0.043 1.25E-92 CP2A CO 30.04.0 4245 124.6 gh 69% 0.0456 6 277 0.043 1.25E-92 CP2A CO 30.04.0 4245 30.64 gh 69% 0.051 6 277 0.043 1.25E-92 CP2A MA A4245 30.64 gh 69% 0.051 6 277 0.043 1.35E-92 CP2B NA, (10.24-4) 4245 1.32E-22 gh 69% 0.051 6 277 0.043 1.35E-92 CP2B NA (m10) 4245 1.32E-12 gh 69% 0.051 6 277 0.043 1.35E-92 CP2B NA (m10) 4245 1.32E-12 gh 69% 0.351 6 277 0.043 1.35E-92 CP2B CO 630-64-9 4245 1.32E-92 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.</td>							•							1.
PA2.5 NA (mc 3) 4245 194.16 gh 69% 0.0466 6 27 0.043 1.776-02 CP2A O NA 4245 224.6 gh 69% 0.0824 6 277 0.043 2.166-02 CP2A O NA 42455 300.4 gh 69% 0.081 6 277 0.043 2.166-02 CP2B NO, 10102-40 42455 13425.2 gh 69% 0.051 6 277 0.043 9.576-01 CP2B PM10 NA (m1) 4245 13425.2 gh 69% 0.0456 6 277 0.043 12.576-21 CP2B PM10 NA (m1) 4245 175.10 gh 69% 0.0456 6 277 0.043 12.576-21 CP2B PM10 NA (m2) 4245 0.0051 6% 0.0451 6 277 0.043 12.576-21 CP2B NA (m2.5 4245										<u> </u>				2.
CP2A CO 630.60-0 4245 224.6 ph 69% 0.0851 6.8 27 0.43 1.06C-22 CP2A NA 4245 30.64 ph-h 69% 0.0851 6.8 27 0.43 1.285-03 CP2B NO, 10102-440 4245 132452 ghh 69% 0.0851 6.8 27 0.43 1.285-03 CP2B MA NA(m1) 4245 132452 ghh 69% 0.0571 6.8 27 0.43 1.355-02 CP2B MA NA(m1) 4245 1824 gh 69% 0.0468 6 27 0.43 1.355-02 CP2B NA MA 4245 1824 gh 69% 0.0461 6 27 0.43 1.355-02 CP2B NA GA 69% 0.0571 6 27 0.43 1.355-02 CP2B NA GA 6425 0.0075 ghh <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>2.</td></th<>										•				2.
GP2A HC NA 4245 306.4 gh 69% 0.0851 6 27 0.043 1.816-02 GP2B NO, 101024-0 4245 13425.2 gh 69% 3.729 6 27 0.043 9.576-01 GP2B PM1 NA (pm1) 4245 182.4 gh 69% 0.067 6 27 0.043 1.956-02 GP2B PM10 NA (pm1) 4245 175.1 gh 69% 0.0467 6 27 0.043 1.256-02 GP2B OC 630-60 4245 224.6 gh 69% 0.0624 6 27 0.043 1.256-02 GP2B OC 630-60 4245 306.4 gh 69% 0.061 6 27 0.043 1.256-02 GP2B NA (pm1) 4245 306.4 gh 69% 0.061 6 27 0.043 1.356-02 GP2C PM4 NA (pm1)										-				2.
bp: Sp: 746-09-5 4266 0.0075 9thp 69% 0.0011 6 77 0.043 156E-03 CP3B NO, 10102-440 4265 1824 9th 69% 0.0571 6 77 0.043 135E-01 CP3B NO, N/4(m)10 4245 1824 9th 69% 0.0571 6 277 0.043 135E-01 CP3B NO, N/100 4245 1824 9th 69% 0.0571 6 277 0.043 135E-01 CP3D OO N/100 4246 196.6 9th 69% 0.051 6 277 0.043 125E-01 CP3D CO S30-05 4266 196.20 9th 69% 0.051 6 277 0.043 135E-01 CP3D 746-09-5 4246 30642 9th 69% 0.0507 6 277 0.043 135E-02 CP3C PM10 NA(pm										-				4.
OP28 NO, 10102-44-0 4245 13422.2 oph 69% 3.7292 6 27 0.043 9.1376-11 OP28 PM10 NA (pm10) 4245 1124.2 oph 69% 0.0466 6 27 0.043 13.05-62 OP28 PM10 NA (pm10) 4245 1161.6 oph 69% 0.0456 6 27 0.043 1.175-02 OP28 CO 630-08-0 4245 306.4 oph 69% 0.0651 6 27 0.043 1.175-02 OP28 CO NA 4245 306.4 oph 69% 0.0651 6 27 0.043 1.165-02 OP20 NQ 10102-44-0 4245 1342.2 oph 69% 0.0061 6 27 0.043 1.255-02 OP20 PM10 NA (pm10) 4245 1342.2 oph 69% 0.0071 6 27 0.043 1.255-02 OP20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>2.</td>										-				2.
Ph1 NA (pm) 4245 112.4 ph 96% 0.0507 6.6 2.7 0.043 1305-02 P28 PM10 NA (pm2) 4245 175.1 gh 69% 0.0486 6.6 2.7 0.043 11255-02 P28 PM2.5 NA (pm2.5) 4245 126.4 gh 69% 0.0486 6.6 2.7 0.043 11255-02 P28 DC0 630-06-0 4245 224.6 gh 69% 0.0681 6.6 2.7 0.043 1157-02 CP26 NA NA 4245 306.4 gh 69% 0.0681 6.6 2.7 0.043 2165-02 CP26 NA NA(pm3) 4445 1325.2 gh 69% 0.0567 6 2.7 0.043 1305-02 CP26 PM10 NA(pm3) 4445 1325.2 gh 69% 0.0567 6 2.7 0.043 1305-02 CP26 PM2.5														1.
CP28 PM10 NA (pm10) 4245 175.1 pm 69% 0.0486 6 27 0.043 1.25E-02 CP28 CO 630.08-0 4245 164.16 gh 69% 0.0486 6 27 0.043 1.15E-02 CP28 CO 630.08-0 4245 224.6 gh 69% 0.0681 6 27 0.043 1.15E-02 CP26 SO_2 7446-05 4245 0.0075 ghh 69% 0.0061 6 27 0.043 1.15E-02 CP2C No, 1010-44-0 4245 134252 gh 69% 0.0061 6 27 0.043 1.35E-02 CP2C PM NA (pm10) 4245 134252 gh 69% 0.0466 6 27 0.043 1.15E-02 CP2C PM10 NA (pm10) 4245 134252 gh 69% 0.0466 6 27 0.043 1.125E-02 CP2C							-							2.
P28 PM2.5 N/A (pm2.5) 4245 164.16 gh 69% 0.0456 6 27 0.043 1.17E-02 P28 CO 600-6-0 4245 306.4 gh 69% 0.0851 6 27 0.043 1.050-02 P28 N/A M/A 4245 306.4 gh 69% 0.0851 6 27 0.043 1.050-02 CP2C N/A 10102.44-0 4245 13425.2 gh 69% 0.0666 6 27 0.043 1.560-03 CP2C MA N/A (pm0) 4245 13425.2 gh 69% 0.0456 6 27 0.043 1.260-02 CP2C MA N/A (pm0) 4245 13425.2 gh 69% 0.0456 6 27 0.043 1.260-02 CP2C MA10 N/A (pm0.) 4245 13425.2 gh 69% 0.0824 6 27 0.043 1.176-02 CP2C														2.
CP28 CO 630-08-0 4245 22.4.6 gh 69% 0.0624 6.6 27 0.043 1.60-02 CP28 SO, 7446-05-5 4245 0.0075 glbhp-h 69% 0.0681 6.6 27 0.043 2.186-03 CP2C N0, 10102-44-0 4245 13425.2 glbhp-h 69% 0.0681 6.6 27 0.043 1.386-03 CP2C PM NA (pm) 4245 13425.2 glh 69% 0.0697 6 27 0.043 1.386-02 CP2C PM NA (pm1) 4245 175.1 g/h 69% 0.0486 6 27 0.043 1.386-02 CP2C NA (pm2.5) 4245 175.1 g/h 69% 0.0481 6 27 0.043 1.386-02 CP2C NG S0.3 7446-05 4245 224.6 g/h 69% 0.0624 6 27 0.043 1.587.03 0.043			PM2.5											2
CP2C SO2 7446-09-5 4245 0.0075 gbhp-h 69% 0.0061 6 27 0.043 1.56E-03 CP2C NO, 10102-44-0 4245 13425.2 gh 69% 3.7292 6 27 0.043 9.57E-01 CP2C PM10 N/A (pm1) 4245 1322.4 gh 69% 0.0567 6 27 0.043 1.32E-02 CP2C PM10 N/A (pm2.5) 4245 164.16 gh 69% 0.0466 6 27 0.043 1.32E-02 CP2C CO 630-08-0 4245 164.16 gh 69% 0.0624 6 27 0.043 1.32E-02 CP2C CO 630-08-0 4245 0.0075 gbhp-h 69% 0.0624 6 27 0.043 1.32E-02 CP3 O 10102-44-0 4245 0.0075 gbhp-h 69% 0.0614 6 27 0.061 1.38E-03				630-08-0			g/h		0.0624				1.60E-02	3.
CP2C NO, 10102-44-0 4245 13425.2 gh 69% 3.729.2 6 27.7 0.043 9.576-01 CP2C PM10 N/A (pm) 4245 182.4 gh 69% 0.0466 6 27 0.043 1.30E-02 CP2C PM10 N/A (pm2) 4245 175.1 gh 69% 0.0486 6 27 0.043 1.30E-02 CP2C PM2.5 N/A (pm2) 4245 164.16 gh 69% 0.0486 6 27 0.043 1.30E-02 CP2C CO 630-08-0 4245 224.6 gh 69% 0.0451 6 27 0.043 1.71E-02 CP3 O 746-09-5 4245 0.0075 ghp-h 69% 0.0624 6 27 0.043 1.15E-02 CP3 NO, 10102-44-0 4245 13425.2 gh 69% 0.051 6 27 0.051 1.15E-02 CP3 </td <td>CP2B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td>4.</td>	CP2B									6				4.
CP2C PM NA (pm) 4245 182.4 gh 69% 0.0647 6.6 27 0.043 1.326-02 CP2C PM10 NA (pm2) 4245 175.1 gh 69% 0.0466 6 27 0.043 1.326-02 CP2C PM2.5 NA (pm2.5) 4245 164.16 gh 69% 0.0456 6 27 0.043 1.17E-02 CP2C CO 630-80 4245 224.6 gh 69% 0.061 6 27 0.043 1.17E-02 CP2C CO 630-80 4245 306.4 gh 69% 0.0611 6 27 0.043 1.17E-02 CP3 NA 4245 306.4 gh 69% 0.0611 6.6 27 0.043 1.17E-02 CP3 NA 10102-44-0 4245 306.4 gh 69% 0.0851 6 27 0.051 1.18E-03 CP3 PM10 NA (p	CP2C		SO ₂	7446-09-5	4245	0.0075	g/bhp-h	69%	0.0061	6	27	0.043	1.56E-03	2.
CP2C PM10 NA (pm10) 4245 175.1 gh 69% 0.0466 6.6 27 0.043 1.25E-02 CP2C PM2.5 NA (pm2.5) 4245 164.16 gh 69% 0.0456 6.6 27 0.043 1.07E-02 CP2C CO 630.08-0 4245 224.6 gh 69% 0.0624 6.6 27 0.043 1.07E-02 CP2C MA MA 4245 306.4 gh 69% 0.061 6.6 27 0.043 2.18E-03 CP3 NA 4245 306.4 gh 69% 0.061 6.6 27 0.043 2.18E-03 CP3 NA 1010-44-0 4245 13425.2 gh 69% 0.061 6.6 27 0.051 1.58E-03 CP3 MA(pm10) 4245 13425.2 gh 69% 0.0468 6.6 27 0.051 1.58E-03 CP3 MA (pm2.5) A4245 <td>CP2C</td> <td></td> <td></td> <td>10102-44-0</td> <td>4245</td> <td>13425.2</td> <td>g/h</td> <td>69%</td> <td>3.7292</td> <td>6</td> <td>27</td> <td>0.043</td> <td>9.57E-01</td> <td>1.</td>	CP2C			10102-44-0	4245	13425.2	g/h	69%	3.7292	6	27	0.043	9.57E-01	1.
CP2C PM2.5 NA (pm2.5) 4245 164.16 g/h 69% 0.0456 6.6 27 0.043 1.16E-02 CP2C CO 630.08-0 4245 224.6 g/h 69% 0.0624 6.6 27 0.043 1.16E-02 CP2C HC NA 4245 306.4 g/h 69% 0.0651 6. 27 0.043 2.18E-02 CP3 So_2 7446-09-5 4245 0.0075 g/h 69% 0.0061 6.6 27 0.043 2.18E-03 CP3 NO, 10102.44-0 4245 13425.2 g/h 69% 0.0507 6 27 0.051 1.8E-03 CP3 PM10 NA (pm1) 4245 182.4 g/h 69% 0.0507 6 27 0.051 1.8E-03 CP3 PM2.5 NA (pm2.5) 4245 182.4 g/h 69% 0.0507 6 27 0.051 1.9E-02 CP3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>g/h</td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td>2.</td>							g/h			6				2.
CP2C CO 630.08-0 4245 224.6 g/h 69% 0.0624 6 27 0.043 1.60E-02 CP2C HC N/A 4245 306.4 g/h 69% 0.0851 6 27 0.043 2.188E-03 CP3 SO2 7446-09-5 4245 0.0075 g/b/h-h 69% 0.0061 6 27 0.043 2.188E-03 CP3 NOx 10102-44-0 4245 13425.2 g/h 69% 0.0507 6 27 0.051 1.15E+00 CP3 PM1 N/A (pm10) 4245 13425.2 g/h 69% 0.0507 6 27 0.051 1.5E-02 CP3 PM1 N/A (pm10) 4245 175.1 g/h 69% 0.0486 6 27 0.051 1.5E-02 CP3 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0486 6 27 0.051 1.49E-02 CP3<										-				2.
PC NA 4245 306.4 gh 69% 0.0851 6 27 0.043 2.18E-02 CP3 SO2 7446-09-5 4245 0.0075 g/hp-h 69% 0.0061 6 27 0.051 1.88E-03 CP3 NOx 0102-44-0 4245 13425.2 g/h 69% 0.0517 6 27 0.051 1.88E-03 CP3 MA MA 0102-44-0 4245 13425.2 g/h 69% 0.0507 6 27 0.051 1.58E-02 CP3 PM10 N/A (pm1) 4245 182.4 g/h 69% 0.0486 6 27 0.051 1.58E-02 CP3 PM10 N/A (pm2.5) 4245 162.4 g/h 69% 0.0486 6 27 0.051 1.58E-02 CP3 CO 63:08-0 4245 164.16 g/h 69% 0.0464 6 27 0.051 1.58E-02 CP3										•				2.
CP3 SO2 746-09-5 4245 0.0075 g/bhp-h 69% 0.0061 6 27 0.051 1.88E-03 CP3 PM N/A (m) 4245 13425.2 g/h 69% 3.7292 6 27 0.051 1.15E+00 CP3 PM N/A (m) 4245 182.4 g/h 69% 0.0507 6 27 0.051 1.56E-02 CP3 PM10 N/A (m0) 4245 175.1 g/h 69% 0.0486 6 27 0.051 1.56E-02 CP3 PM2.5 N/A (m2.5) 4245 175.1 g/h 69% 0.0486 6 27 0.051 1.56E-02 CP3 OL A/A (m2.5) 4245 175.1 g/h 69% 0.0456 6 27 0.051 1.40E-02 CP3 OL A/A (m2.5) 4245 306.4 g/h 69% 0.0624 6 27 0.051 4.10E-02 CP4										-				3.
NOx 10102-44-0 4245 13425.2 g/h 69% 3.7292 6 27 0.051 1.15E+00 CP3 PM N/A (pm) 4245 182.4 g/h 69% 0.0507 6 27 0.051 1.56E-02 CP3 PM10 N/A (pm10) 4245 175.1 g/h 69% 0.0486 6 27 0.051 1.56E-02 CP3 PM2.5 N/A (pm2.5) 4245 175.1 g/h 69% 0.0486 6 27 0.051 1.50E-02 CP3 OC 630-80-0 4245 164.16 g/h 69% 0.0486 6 27 0.051 1.50E-02 CP3 CO 630-80-0 4245 164.16 g/h 69% 0.0624 6 27 0.051 1.92E-02 1.92E-02 CP4 KA 4245 306.4 g/h 69% 0.0851 6 27 0.051 2.62E-02 1.92E-02 1.92E-02 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ů</td><td></td><td></td><td></td><td>4.</td></th<>										ů				4.
CP3 PM N/A (pm) 4245 182.4 g/h 69% 0.0507 6 27 0.051 1.56E-02 CP3 PM10 N/A (pm10) 4245 175.1 g/h 69% 0.0486 6 27 0.051 1.50E-02 CP3 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0486 6 27 0.051 1.50E-02 CP3 CO 630-08-0 4245 164.16 g/h 69% 0.0456 6 27 0.051 1.92E-02 CP3 CO 630-08-0 4245 306.4 g/h 69% 0.0624 6 27 0.051 1.92E-02 CP3 NA 4245 306.4 g/h 69% 0.0851 6 27 0.051 2.62E-02 CP4 NO _x 10102-44-0 4245 306.4 g/h 69% 0.0061 6 27 0.011 4.15E-04 CP4 NO _x	-		-				• •							2.
CP3 PM10 N/A (pm10) 4245 175.1 g/h 69% 0.0486 6 27 0.051 1.50E-02 CP3 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0456 6 27 0.051 1.40E-02 CP3 CO 630-08-0 4245 224.6 g/h 69% 0.0624 6 27 0.051 1.40E-02 CP3 CO 630-08-0 4245 224.6 g/h 69% 0.0624 6 27 0.051 1.20E-02 CP4 N/A 4245 306.4 g/h 69% 0.081 6 27 0.051 2.2E-02 CP4 SO2 7446-09-5 4245 306.4 g/h 69% 0.0061 6 27 0.011 4.15E-04 CP4 NO _x 10102-44-0 4245 13425.2 g/h 69% 0.0507 6 27 0.011 3.45E-03 CP4 PM10										-				2.
CP3 N/A (pm2.5) 4245 164.16 g/h 69% 0.0456 6 27 0.051 1.40E-02 CP3 CO 630-08-0 4245 224.6 g/h 69% 0.0624 6 27 0.051 1.92E-02 CP3 HC N/A 4245 224.6 g/h 69% 0.0624 6 27 0.051 1.92E-02 CP3 HC N/A 4245 306.4 g/h 69% 0.0851 6 27 0.051 1.92E-02 CP4 SO_2 7446-09-5 4245 306.4 g/h 69% 0.0851 6 27 0.011 2.62E-02 2.62E-														2.
CP3 CO 630-08-0 4245 224.6 g/h 68% 0.0624 6 27 0.051 1.92E-02 CP3 HC N/A 4245 306.4 g/h 68% 0.0851 6 27 0.051 2.62E-02 CP4 SO2 7446-09-5 4245 0.0075 g/bp-h 69% 0.0061 6 27 0.011 4.15E-04 CP4 NOx 10102-44-0 4245 13425.2 g/h 69% 0.0507 6 27 0.011 4.15E-04 CP4 NOx 10102-44-0 4245 13425.2 g/h 69% 0.0507 6 27 0.011 2.54E-01 CP4 PM N/A (pm) 4245 182.4 g/h 69% 0.0507 6 27 0.011 3.45E-03 CP4 PM10 N/A (pm2.5) 4245 175.1 g/h 69% 0.0456 6 27 0.011 3.16E-03 CP4														2.
CP3 HC N/A 4245 306.4 g/h 69% 0.0851 6 27 0.051 2.62E-02 CP4 SO2 746-09-5 4245 0.0075 g/hp-h 69% 0.0061 6 27 0.011 4.15E-04 CP4 NOx 10102-44-0 4245 13425.2 g/h 69% 0.0507 6 27 0.011 2.54E-01 CP4 PM N/A (pm) 4245 13425.2 g/h 69% 0.0507 6 27 0.011 3.45E-03 CP4 PM N/A (pm) 4245 182.4 g/h 69% 0.0507 6 27 0.011 3.45E-03 CP4 PM10 N/A (pm2) 4245 175.1 g/h 69% 0.0486 6 27 0.011 3.16E-03 2 CP4 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0456 6 27 0.011 3.16E-03										-				3.
CP4 SO2 746-09-5 4245 0.0075 g/hp-h 66% 0.0061 6 27 0.011 4.15E-04 CP4 NOx 10102-44-0 4245 13425.2 g/h 66% 3.7292 66 27 0.011 2.54E-01 CP4 PM N/A (pm) 4245 182.4 g/h 66% 0.057 66 27 0.011 3.45E-03 CP4 PM10 N/A (pm) 4245 175.1 g/h 66% 0.0507 66 27 0.011 3.45E-03 CP4 PM10 N/A (pm2) 4245 175.1 g/h 66% 0.0466 66 27 0.011 3.10E-03 3														4.
NOx 10102-44-0 4245 13425.2 g/h 69% 3.7292 6 27 0.011 2.54E-01 CP4 PM N/A (pm) 4245 182.4 g/h 69% 0.0507 6 27 0.011 3.45E-03 CP4 PM10 N/A (pm10) 4245 175.1 g/h 69% 0.0486 6 27 0.011 3.31E-03 CP4 PM2.5 N/A (pm2.5) 4245 175.1 g/h 69% 0.0486 6 27 0.011 3.31E-03 CP4 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0486 6 27 0.011 3.31E-03 CP4 CO 63-08-0 4245 164.16 g/h 69% 0.0486 6 27 0.011 3.31E-03 CP4 CO 63-08-0 4245 24.6 g/h 69% 0.0624 6 27 0.011 4.24E-03					-									7.
CP4 PM N/A (pm) 4245 182.4 g/h 69% 0.0507 6 27 0.011 3.45E-03 CP4 PM10 N/A (pm10) 4245 175.1 g/h 69% 0.0486 6 27 0.011 3.31E-03 CP4 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0456 6 27 0.011 3.31E-03 CP4 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0456 6 27 0.011 3.10E-03 CP4 CO 630-08-0 4245 224.6 g/h 69% 0.0624 6 27 0.011 4.24E-03			-							6				4.
CP4 PM10 N/A (pm10) 4245 175.1 g/h 69% 0.0486 6 27 0.011 3.31E-03 CP4 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0486 6 27 0.011 3.31E-03 CP4 CO 630-08-0 4245 164.16 g/h 69% 0.0456 6 27 0.011 3.10E-03 CP4 CO 630-08-0 4245 224.6 g/h 69% 0.0624 6 27 0.011 4.24E-03										-				6.
CP4 PM2.5 N/A (pm2.5) 4245 164.16 g/h 69% 0.0456 6 27 0.011 3.10E-03 CP4 CO 630-08-0 4245 224.6 g/h 69% 0.0624 6 27 0.011 4.24E-03										-				6.
	CP4		PM2.5		4245					6	27		3.10E-03	5.
CP4 HC N/A 4245 306.4 g/h 69% 0.0851 6 27 0.011 5.79E-03										•				7.
	CP4		HC	N/A	4245	306.4	g/h	69%	0.0851	6	27	0.011	5.79E-03	1.

Notes:

(1) SO₂ emission factor is calculated in above table and based on the fuel sulphur content. Other emission factors were provided by Metrolinx. Tier 2 engines are conservatively used.

(2) An average operating load of Notch 6 is assumed for train engines during travelling on rail way (not in full speed) and at steady state. An operating load of 50% is assumed for HEP engines as per the Draft Mx AQ Guide dated November 2019.

(3) Onsite travelling time is estimated based on the railway length assessed and the train travel speed.

(4) SO₂ emission rates are estimated based on the train passing time, emission factor, power rating and number of locomotives. Emission rates of other contaminants are from 201075-STANTEC-RFI-00014 - Locomotive Information_Attachment.pdf provided by Metrolinx. (5) For PM emissions from the tailpipe of the equipment, based on US EPA AP-42 Appendix B.2 Generalized Particle Size Distributions for gasoline and diesel fuel combustion engines, PM10 = 96% PM; PM2.5 = 90% PM.

Key volatile organic compounds emissions from tailpipe exhausts are estimated based on the related reference emission factor data. These emission factors are listed below along with the emission calculations.

Daily Average Emission Rate (g/s)
8.42E-05
5.15E-02
6.99E-04
6.72E-04
6.30E-04
8.61E-04
1.18E-03
1.05E-04
6.44E-02
8.74E-04
8.39E-04
7.87E-04
1.08E-03
1.47E-03
4.82E-04
2.95E-01
4.00E-03
3.84E-03
3.60E-03
4.93E-03
6.72E-03
2.93E-04
1.79E-01
2.44E-03
2.34E-03
2.19E-03 3.00E-03
4.10E-03
2.93E-04
1.79E-01
2.44E-03
2.34E-03
2.19E-03
3.00E-03
4.10E-03
2.93E-04
1.79E-01
2.44E-03
2.34E-03
2.19E-03
3.00E-03
4.10E-03
3.52E-04
2.15E-01
2.93E-03
2.93E-03 2.81E-03
2.63E-03
3.60E-03
4.91E-03
7.78E-05
4.76E-02
6.46E-04
6.20E-04 5.82E-04
7.96E-04
1.09E-03

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Operation Scenario - Baseline / Future No Build / Future Build

Source: Emissions from CP Diesel Trains During Operation

Emission Calculations - Key VOCs: Diesel Trains Travelling

···· · ···· · · · · · · · · · · · · ·				Γ	Number of E	quipment				
Source ID	Contaminant	CAS#	Emission Factor ⁽¹⁾ (g/hr)	Peak Emission Rate per Equipment ⁽³⁾ (g/s)	per Hour	per Day	Travelling Time ⁽²⁾ (hour/train)	Hourly Emission Rate ⁽³⁾ (g/s)	Daily Average Emission Rate ⁽³⁾ (g/s)	
CP0	Benzene	71-43-2	1.66E+01	4.60E-03	6	27	0.012	3.39E-04	6.36E-05	
CP0	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	6	27	0.012	1.17E-05	2.19E-06	
CP0	Acrolein	107-02-8	5.73E+00	1.59E-03	6	27	0.012	1.17E-04	2.20E-05	
CP0	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27	0.012	6.52E-04	1.22E-04	
CP0	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6	27	0.012	1.83E-03	3.43E-04	
CP0	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	6	27	0.012	2.49E-08	4.67E-09	
CP1A	Benzene	71-43-2	1.66E+01	4.60E-03	6	27	0.015	4.24E-04	7.95E-05	
CP1A	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	6	27	0.015	1.46E-05	2.73E-06	
CP1A	Acrolein	107-02-8	5.73E+00	1.59E-03	6	27	0.015	1.46E-04	2.75E-05	
CP1A	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27	0.015	8.15E-04	1.53E-04	
CP1A	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6	27	0.015	2.29E-03	4.29E-04	
CP1A	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	6	27	0.015	3.11E-08	5.83E-09	
CP1B	Benzene	71-43-2	1.66E+01	4.60E-03	6	27	0.070	1.94E-03	3.64E-04	
CP1B	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	6	27	0.070	6.67E-05	1.25E-05	
CP1B	Acrolein	107-02-8	5.73E+00	1.59E-03	6	27	0.070	6.71E-04	1.26E-04	
CP1B	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27	0.070	3.73E-03	6.99E-04	
CP1B	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6	27	0.070	1.05E-02	1.96E-03	
CP1B	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	6	27	0.070	1.42E-07	2.67E-08	
CP2A	Benzene	71-43-2	1.66E+01	4.60E-03	6	27	0.043	1.18E-03	2.22E-04	
CP2A	1.3-Butadiene	106-99-0	5.70E-01	1.58E-04	6	27	0.043	4.06E-05	7.62E-06	
CP2A	Acrolein	107-02-8	5.73E+00	1.59E-03	6	27	0.043	4.08E-04	7.66E-05	
CP2A	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27	0.043	2.27E-03	4.26E-04	
CP2A	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6	27	0.043	6.38E-03	1.20E-03	
CP2A	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	6	27	0.043	8.67E-08	1.63E-08	
CP2B	Benzene	71-43-2	1.66E+01	4.60E-03	6	27	0.043	1.18E-03	2.22E-04	
CP2B	1.3-Butadiene	106-99-0	5.70E-01	1.58E-04	6	27	0.043	4.06E-05	7.62E-04	
CP2B	Acrolein	107-02-8	5.73E+00	1.59E-03	6	27	0.043	4.08E-04	7.66E-05	
CP2B	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27	0.043	2.27E-03	4.26E-04	
CP2B	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6	27	0.043	6.38E-03	1.20E-04	
CP2B	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	6	27	0.043	8.67E-08	1.63E-08	
CP2C	Benzene	71-43-2	1.66E+01	4.60E-03	6	27	0.043	1.18E-03	2.22E-04	
CP2C	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	6	27	0.043	4.06E-05	7.62E-04	
CP2C	Acrolein	107-02-8	5.73E+00	1.59E-04	6	27	0.043	4.08E-04	7.66E-05	
CP2C	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27	0.043	2.27E-03	4.26E-04	
CP2C	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6	27	0.043	6.38E-03	1.20E-04	
CP2C CP2C	Benzo(a)pyrene	50-32-8	1.22E-03	2.49E-02 3.38E-07	6	27	0.043	8.67E-08	1.63E-08	
					6					
CP3 CP3	Benzene 1,3-Butadiene	71-43-2 106-99-0	1.66E+01 5.70E-01	4.60E-03 1.58E-04	6	27	0.051	1.42E-03 4.88E-05	2.66E-04 9.14E-06	
CP3	Acrolein	106-99-0	5.70E-01 5.73E+00	1.58E-04 1.59E-03	6	27	0.051	4.88E-05 4.90E-04	9.14E-06 9.19E-05	
CP3	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27 27	0.051	2.73E-03 7.65E-03	5.11E-04	
CP3	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6		0.051		1.44E-03 1.95E-08	
CP3	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	÷	27	0.051	1.04E-07		
CP4	Benzene	71-43-2	1.66E+01	4.60E-03	6	27	0.011	3.13E-04	5.87E-05	
CP4	1,3-Butadiene	106-99-0	5.70E-01	1.58E-04	6	27	0.011	1.08E-05	2.02E-06	
CP4	Acrolein	107-02-8	5.73E+00	1.59E-03	6	27	0.011	1.08E-04	2.03E-05	
CP4	Acetaldehyde	75-07-0	3.19E+01	8.85E-03	6	27	0.011	6.02E-04	1.13E-04	
CP4	Formaldehyde	50-00-0	8.95E+01	2.49E-02	6	27	0.011	1.69E-03	3.17E-04	
CP4	Benzo(a)pyrene	50-32-8	1.22E-03	3.38E-07	6	27	0.011	2.30E-08	4.31E-09	

 CP4
 Benzo(a)pyrene
 50-32-8
 1.22E-03
 3.38E-07
 6
 27
 0.011
 2.30E-08
 4.31E-09

 Notes:
 (1) Key VOCs emission factors are calculated from the data in US EPA "Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015)". The emission rates of the VOC and PAH substances are estimated based on their fractions of VOC/PM and the related VOC and PM emission rates used in table above.

 Speciated VOC estimation:
 Reference: Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015), Tables 11 & 12

	Toxic Fraction of	
Key VOCs and PAH	VOC/PM (Tiers 2 & 3)	Note
Benzene		VOC fraction
1,3-Butadiene		VOC fraction
Acrolein	0.018700	VOC fraction
Acetaldehyde	0.104000	VOC fraction
Formaldehyde	0.292000	VOC fraction
Benzo(a)pyrene	6.67E-06	PM fraction

(2) Onsite travelling time is estimated based on the modelled train travel length for a specific scenario and the train speed. (3) Emission rates are estimated based on the train onsite travel time, emission factor, power rating and number of locomotives.

Sample Calculation - Benzene emissions from train engines Peak emission rate of each locomotive (g/s) =

(Tier 2 HC Engine EF (g/h) x Toxic Fraction of VOC (benzene) x 1 hour/3600 s =	4.60E-03 g/s
peak emission rate of each engine (g/hr) x onsite traveling time (hour) x number of train engine/hour x 1hr/3600s =	3.39E-04 g/s
peak short-term emission rate (g/hr) x onsite traveling time (hour) x 1 day/24 hour x number of equipment/day x 1hour/3600s =	6.36E-05 g/s

Operating Condition, Individual Maximum Rates of Production: The emission rate calculation for this source group is based on the maximum number of equipment operating in the study area and reference exhaust emission standard. The calculated emission rate should be conservative.

Maximum hourly emission rate (g/s) = Daily average emission rate (g/s) =

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Operation Scenario - Future Build

Source: Emissions from Diesel GO Trains During Operation

Source ID: GO1, GO2A, GO2B, GO3A, GO3B, GO4A and GO4B GO_IDLE_B1, GO_IDLE_B2, GO_IDLE_B3, GO_IDLE_B4

Description: Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet.

The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station. The study area is divided into three model segments including the Oshawa, Courtice and Bowmanville segments that match the area of coverage specified by the MECP site specific meteorological data sets. GO trains are operational during the future build scenario. Within the study area, they are either travelling at steady state, decelerating/accelerating and idling at the 4 proposed stations. It is assumed that the GO trains do not stop at the crossings.

١

The train data are summarized below.

Number of Trains			
	54	trains/day	email from Metrolinx November 24, 2021
GO trains	3	trains/hour	Assumed maximum hourly trains (half-hourly trains in peak direction and hourly trains in counter-peak direction)
Number of locomotives per train			
GO locomotive	2	locomotives	Two locomotives per train 201075-STANTEC-RFI-00017
Number of Engines per Locomotive			
One GO locomotive consists of:	1	MP 40 engine	One (1) line haul locomotive for traction.
One GO locomotive consists of.	1	HEP engine	One (1) engine for Head End Power (HEP).
Total Number of Engines			
Number of GO line haul locomotive engines	108	engines /day	calculated
Number of GO HEP engines	108	engines /day	calculated
	4245	hp/each	Train engine based on 201075-STANTEC-RFI-00017. Tier 2 engine data (notch 8).
Power rating of locomotive	4317	hp/each	Train engine based on 201075-STANTEC-RFI-00017. Tier 3 engine data (notch 8).
	1105	hp/each	Train engine based on 201075-STANTEC-RFI-00017. HEP data (100% load).
Fuel use in locomotive	Diesel	-	-
Line volume source lengths in Oshawa segment			
G01	2.86	km	FB - GO Trains from Oshawa GO Station to main railway corridor in Oshawa
G02A	2.00	km	FB - GO Trains along main railway corridor in Oshawa
GO2B	5.58	km	FB - GO Trains along main railway corridor in Oshawa
Line volume source lengths in Courtice segment			
GO3A	6.15	km	FB - GO trains along main railway corridor in Courtice
GO3B	3.45	km	FB - GO trains along main railway corridor in Courtice
Line volume source lengths in Bowmanville segment			
GO4A	3.99	km	FB - GO trains along main railway corridor in Bowmanville
GO4B	0.55	km	FB - GO trains along main railway corridor in Bowmanville
Travel Speeds			
Travel speed along main corridor	55	mph	Assumed 55 mph (88.5 km/h) along the corridor
Adjusted average speed along main corridor	51	mph	Stantec assumed a weighted average travel speed which considers acceleration and deceleration of the GO Trains at the 4 stations.
Travel speed for the connecting line between CP and CN	25	mph	Assumed 25 mph (40 km/h) along the north/south corridor
Idling Time at Stations	1.5	minutes	Assumed GO train idling time to pick up/drop off passengers at each proposed station

Contaminant(s) of Concern: NOx, PM, CO, hydrocarbons, and SO₂ emissions are the contaminants of concern from fuel combustions in locomotive engines. Primary speciated VOCs and a key PAH (Benzo(a) pyrene) are also included in the assessment.

Methodology: Mass Balance (MB) and Emission Factor (EF)

SO2 emission is based on the maximum allowable sulfur content in diesel and fuel consumption of the vehicle. SO2 emission factor is calculated below.

SO2 Emission Factor Calculation:

Data	Value	Unit	Reference
Sulphur content in diesel	15	ppm	Sulphur in Diesel Fuel Regulations, Environment and Climate Change Canada (ECCC)
Diesel Engine Efficiency	45%		"Just the basics: Diesel Energy". US department of energy
Lower Heating Value	128,450	BTU/gal	"Alternative Fuels Data Center - Fuel Properties Comparison " from the US Department
Unit Conversion	0.00029	kWh/BTU	-
Unit Conversion	454	g/lb	-
Density of diesel	7.00	lb/gal	-
Energy output	16.94	kWh/gal	Calculated
SO ₂ / gallon of diesel	0.0953	g SO ₂ /gal	A factor of 2 is applied to convert sulfur to SO ₂ , assuming all the sulfur will be oxidized to SO ₂ .
Emission Factor	0.0056	g/kWh	-
Note: Emissions are calculated based on culphur content in	diagol on por Sulphus	in Diagol Eucl Roy	aulations.

Note: Emissions are calculated based on sulphur content in diesel as per Sulphur in Diesel Fuel Regulations.

1

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Operation Scenario - Future Build

Source: Emissions from Diesel GO Trains During Operation

Source ID: GO1, GO2A, GO2B, GO3A, GO3B, GO4A and GO4B GO_IDLE_B1, GO_IDLE_B2, GO_IDLE_B3, GO_IDLE_B4

Description: Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet. The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station. NOx, PM, CO, and non-methane hydrocarbon (NMHC) emissions from onsite travelling train tailpipe exhausts are calculated based on the document "201075-STANTEC-RFI-00017" provided by Metrolinx. Tier 2 engine emission rates are conservatively used for GM and CP. These emission factors are listed below along with the emission calculations for both maximum hou

Emission Ca	alculations	Diesel	Trains	Travelling	- CACs
-------------	-------------	--------	--------	------------	--------

Source Group	ACs Source ID	Contaminant	CAS#	Tier 2 Engine Maximum	Tier 2 Engine Emi	ssion Factor ⁽¹⁾	% Tier 2 (1)	Tier 2 Operating	g Tier 3 Engine	Tier 3 Engine Er	nission Factor ⁽¹⁾	% Tier 3 (1)	Tier 3	Peak Emission		Equipment			
				Power Rating (hp each)	ŗ			Load ⁽²⁾	Maximum Power Rating (hp each)	-			Operating Load ⁽²⁾	Rate per Equipment ⁽⁴⁾ (g/s)	per Hour	per Day	Onsite Travelling Time ⁽³⁾ (hour/train)	Hourly Emission Rate (g/s)	Daily Average Emissio (g/s)
	GO1	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	70%	69%	4317	0.0075	g/bhp-h	30%	56%	0.0058	6	108	0.071	2.47E-03	1.85E-03
	GO1	NO _x	10102-44-0	4245	13425.2	g/h	70%	69%	4317	11193.0	g/h	30%	56%	3.5432	6	108	0.071	1.51E+00	1.13E+00
	GO1		N/A (pm)	4245	182.4	g/h	70%	69%	4317	104.5	g/h	30%	56%	0.0442	6	108	0.071	1.89E-02	1.41E-02
	G01	PM10	N/A (pm10)	4245	175.1	g/h	70%	69%	4317	100.3	g/h	30%	56%	0.0424	6	108	0.071	1.81E-02	1.36E-02
	GO1 GO1		N/A (pm2.5) 630-08-0	4245 4245	164.16 224.6	g/h g/h	70%	69% 69%	4317 4317	94.05 123.6	g/h g/h	<u>30%</u> 30%	56% 56%	0.0398 0.0540	6	108 108	0.071	1.70E-02 2.30E-02	1.27E-02 1.73E-02
	G01		N/A	4245	306.4	g/h	70%	69%	4317	241.9	g/h	30%	56%	0.0340	6	108	0.071	3.40E-02	2.55E-02
	GO2A	-	7446-09-5	4245	0.0075	g/bhp-h	70%	69%	4317	0.0075	g/bhp-h	30%	56%	0.0058	6	108	0.024	8.42E-04	6.32E-04
	GO2A		10102-44-0	4245	13425.2	g/h	70%	69%	4317	11193.0	g/h	30%	56%	3.5432	6	108	0.024	5.16E-01	3.87E-01
	GO2A		N/A (pm)	4245	182.4	g/h	70%	69%	4317	104.5	g/h	30%	56%	0.0442	6	108	0.024	6.43E-03	4.82E-03
	GO2A		N/A (pm10)	4245	175.1	g/h	70%	69%	4317	100.3	g/h	30%	56%	0.0424	6	108	0.024	6.17E-03	4.63E-03
	GO2A		N/A (pm2.5)	4245	164.16	g/h	70%	69%	4317	94.05	g/h	30%	56%	0.0398	6	108	0.024	5.79E-03	4.34E-03
	GO2A		630-08-0	4245	224.6	g/h	70%	69%	4317	123.6	g/h	30%	56%	0.0540	6	108	0.024	7.85E-03	5.89E-03
	GO2A GO2B	HC SO ₂	N/A 7446-09-5	4245	<u>306.4</u> 0.0075	g/h g/bhp-h	70% 70%	69% 69%	4317 4317	241.9 0.0075	g/h g/bhp-h	30% 30%	56% 56%	0.0797 0.0058	6	108	0.024	1.16E-02 2.36E-03	8.70E-03 1.77E-03
	GO2B GO2B	-	10102-44-0	4245	13425.2		70%		4317			30%			-		0.068	1.44E+00	1.08E+00
	GO2B GO2B	NO _x PM		4245	13425.2	g/h g/h	70%	69% 69%	4317	11193.0 104.5	g/h g/h	30%	56% 56%	3.5432 0.0442	6	108	0.068	1.80E-02	1.35E-02
	GO2B GO2B		N/A (pm) N/A (pm10)	4245	175.1	g/h	70%	69%	4317	104.3	g/h	30%	56%	0.0442	6	108	0.068	1.73E-02	1.33E-02
	GO2B		N/A (pm2.5)	4245	164.16	g/h	70%	69%	4317	94.05	g/h	30%	56%	0.0398	6	108	0.068	1.62E-02	1.21E-02
	GO2B		630-08-0	4245	224.6	g/h	70%	69%	4317	123.6	g/h	30%	56%	0.0540	6	108	0.068	2.20E-02	1.65E-02
	GO2B		N/A	4245	306.4	g/h	70%	69%	4317	241.9	g/h	30%	56%	0.0797	6	108	0.068	3.25E-02	2.43E-02
	GO3A	-	7446-09-5	4245	0.0075	g/bhp-h	70%	69%	4317	0.0075	g/bhp-h	30%	56%	0.0058	6	108	0.075	2.60E-03	1.95E-03
	GO3A	NO _x	10102-44-0	4245	13425.2	g/h	70%	69%	4317	11193.0	g/h	30%	56%	3.5432	6	108	0.075	1.59E+00	1.19E+00
GO line haul engines	GO3A GO3A		N/A (pm) N/A (pm10)	4245	182.4 175.1	g/h	70%	69% 69%	4317 4317	104.5 100.3	g/h g/h	30%	56% 56%	0.0442 0.0424	6	108 108	0.075	1.98E-02 1.90E-02	1.49E-02 1.43E-02
	GO3A GO3A		N/A (pm2.5)	4245	164.16	g/h g/h	70% 70%	69%	4317	94.05	g/h	30% 30%	56%	0.0398	6	108	0.075	1.78E-02	1.34E-02
	GO3A		630-08-0	4245	224.6	g/h	70%	69%	4317	123.6	g/h	30%	56%	0.0540	6	108	0.075	2.42E-02	1.82E-02
	GO3A	HC	N/A	4245	306.4	g/h	70%	69%	4317	241.9	g/h	30%	56%	0.0797	6	108	0.075	3.58E-02	2.68E-02
	GO3B	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	70%	69%	4317	0.0075	g/bhp-h	30%	56%	0.0058	6	108	0.042	1.46E-03	1.09E-03
	GO3B	NO _x	10102-44-0	4245	13425.2	g/h	70%	69%	4317	11193.0	g/h	30%	56%	3.5432	6	108	0.042	8.91E-01	6.68E-01
	GO3B		N/A (pm)	4245	182.4	g/h	70%	69%	4317	104.5	g/h	30%	56%	0.0442	6	108	0.042	1.11E-02	8.33E-03
	GO3B		N/A (pm10)	4245	<u>175.1</u> 164.16	g/h	70%	69%	4317 4317	100.3	g/h	30%	56% 56%	0.0424	6	108	0.042	1.07E-02 1.00E-02	8.00E-03 7.50E-03
	GO3B GO3B	CO	N/A (pm2.5) 630-08-0	4245	224.6	g/h g/h	70% 70%	69% 69%	4317	94.05 123.6	g/h g/h	30% 30%	56%	0.0398	6	108	0.042	1.36E-02	1.02E-03
	GO3B		N/A	4245	306.4	g/h	70%	69%	4317	241.9	g/h	30%	56%	0.0797	6	108	0.042	2.00E-02	1.50E-02
	GO4A	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	70%	69%	4317	0.0075	g/bhp-h	30%	56%	0.0058	6	108	0.048	1.68E-03	1.26E-03
	GO4A	NO _x	10102-44-0	4245	13425.2	g/h	70%	69%	4317	11193.0	g/h	30%	56%	3.5432	6	108	0.048	1.03E+00	7.73E-01
	GO4A		N/A (pm)	4245	182.4	g/h	70%	69%	4317	104.5	g/h	30%	56%	0.0442	6	108	0.048	1.28E-02	9.64E-03
	GO4A		N/A (pm10)	4245	175.1	g/h	70%	69%	4317	100.3	g/h	30%	56%	0.0424	6	108	0.048	1.23E-02	9.25E-03
	GO4A		N/A (pm2.5)	4245	164.16	g/h	70%	69%	4317	94.05	g/h	30%	56%	0.0398	6	108	0.048	1.16E-02	8.67E-03
	GO4A GO4A		630-08-0 N/A	4245	224.6 306.4	g/h	70%	69% 69%	4317 4317	123.6 241.9	g/h g/h	30%	56% 56%	0.0540	6	108 108	0.048	1.57E-02 2.32E-02	1.18E-02 1.74E-02
	GO4A GO4B		7446-09-5	4245	0.0075	g/h g/bhp-h	70% 70%	69%	4317	0.0075	g/bhp-h	30% 30%	56%	0.0058	6	108	0.007	2.33E-02	1.74E-02
	GO4B GO4B	NO _x	10102-44-0	4245	13425.2	g/blip-li	70%	69%	4317	11193.0	g/h	30%	56%	3.5432	6	108	0.007	1.42E-01	1.07E-01
	GO4B GO4B		N/A (pm)	4245	182.4	g/h	70%	69%	4317	104.5	g/h	30%	56%	0.0442	6	108	0.007	1.77E-03	1.33E-03
	GO4B		N/A (pm10)	4245	175.1	g/h	70%	69%	4317	100.3	g/h	30%	56%	0.0424	6	108	0.007	1.70E-03	1.28E-03
	GO4B		N/A (pm2.5)	4245	164.16	g/h	70%	69%	4317	94.05	g/h	30%	56%	0.0398	6	108	0.007	1.60E-03	1.20E-03
	GO4B	CO	630-08-0	4245	224.6	g/h	70%	69%	4317	123.6	g/h	30%	56%	0.0540	6	108	0.007	2.17E-03	1.63E-03
	GO4B		N/A	4245	306.4	g/h	70%	69%	4317	241.9	g/h	30%	56%	0.0797	6	108	0.007	3.20E-03	2.40E-03
	G01	-	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.0012	6	108	0.071	4.94E-04	3.70E-04
	G01		10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.7375	6	108	0.071	3.15E-01	2.36E-01
	GO1 GO1		N/A (pm) N/A (pm10)	1105 1105	92.1 88.4	g/h g/h	100%	-	-	-	-	-	-	0.0256 0.0246	6	108 108	0.071	1.09E-02 1.05E-02	8.19E-03 7.86E-03
	G01		N/A (pm2.5)	1105	82.89	g/h	100%		-		-		-	0.0240	6	108	0.071	9.83E-03	7.37E-03
	G01		630-08-0	1105	616.0	g/h	100%	-	-	-	-	-	-	0.1711	6	108	0.071	7.30E-02	5.48E-02
	GO1	HC	N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.0244	6	108	0.071	1.04E-02	7.82E-03
	GO2A	SO ₂	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.0012	6	108	0.024	1.68E-04	1.26E-04
	GO2A	NO _x	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.7375	6	108	0.024	1.07E-01	8.05E-02
	GO2A		N/A (pm)	1105	92.1	g/h	100%	-	-	-	-	-	-	0.0256	6	108	0.024	3.72E-03	2.79E-03
	GO2A		N/A (pm10) N/A (pm2.5)	1105 1105	88.4 82.89	g/h	100%	-	-	-	-	-	-	0.0246	6	108 108	0.024	3.57E-03 3.35E-03	2.68E-03 2.51E-03
	GO2A GO2A		630-08-0	1105	616.0	g/h g/h	100%	-	-	-	-		-	0.0230	6	108	0.024	2.49E-02	1.87E-02
	GO2A		N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.0244	6	108	0.024	3.56E-03	2.67E-03
	GO2B	SO ₂	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.0012	6	108	0.068	4.71E-04	3.53E-04
	GO2B		10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.7375	6	108	0.068	3.00E-01	2.25E-01
	GO2B		N/A (pm)	1105	92.1	g/h	100%	-	-	-	-	-	-	0.0256	6	108	0.068	1.04E-02	7.81E-03
	GO2B		N/A (pm10)	1105	88.4	g/h	100%	-	-	-	-	-	-	0.0246	6	108	0.068	1.00E-02	7.50E-03
	GO2B		N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.0230	6	108	0.068	9.37E-03	7.03E-03
	GO2B GO2B		630-08-0 N/A	1105 1105	616.0 88.0	g/h	100%	-	-	-	-	-	-	0.1711 0.0244	6	108 108	0.068	6.97E-02 9.95E-03	5.22E-02 7.46E-03
	GO2B GO3A		7446-09-5	1105	0.0075	g/h g/bhp-h	100%	50%	-	-	-	-	-	0.0244	6	108	0.068	9.95E-03 5.19E-04	7.46E-03 3.89E-04
	GO3A		10102-44-0	1105	2655.0		100%		-	-	-	-	-	0.7375	6	108	0.075	3.31E-01	2.48E-01
	GO3A GO3A		N/A (pm)	1105	92.1	g/h g/h	100%	-	-	-	-	-	-	0.7375	6	108	0.075	1.15E-02	2.48E-01 8.60E-03
GO HEP engines	GO3A GO3A		N/A (pm10)	1105	88.4	g/h	100%	-	-	-	-	-	-	0.0236	6	108	0.075	1.10E-02	8.26E-03
	GO3A	PM2.5	N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.0230	6	108	0.075	1.03E-02	7.74E-03
	GO3A	CO	630-08-0	1105	616.0	g/h	100%	-	-	-	-	-	-	0.1711	6	108	0.075	7.67E-02	5.75E-02
	GO3A		N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.0244	6	108	0.075	1.10E-02	8.22E-03
	GO3B	-	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.0012	6	108	0.042	2.91E-04	2.18E-04
	GO3B	NOx	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.7375	6	108	0.042	1.85E-01	1.39E-01

nourly	and	daily	emission	rates

2

Source: Emissions from Diesel GO Trains During Operation

Source ID: GO1, GO2A, GO2B, GO3A, GO3B, GO4A and GO4B GO_IDLE_B1, GO_IDLE_B2, GO_IDLE_B3, GO_IDLE_B4

Description: Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet. The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station.

station and the propose	a future D4 Downland	nie GO station.																
GO3B	PM	N/A (pm)	1105	92.1	g/h	100%	-	-	-	-	-	-	0.0256	6	108	0.042	6.43E-03	4.82E-03
GO3B	PM10	N/A (pm10)	1105	88.4	g/h	100%	-	-	-	-	-	-	0.0246	6	108	0.042	6.18E-03	4.63E-03
GO3B	PM2.5	N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.0230	6	108	0.042	5.79E-03	4.34E-03
GO3B	CO	630-08-0	1105	616.0	g/h	100%	-	-	-	-	-	-	0.1711	6	108	0.042	4.30E-02	3.23E-02
GO3B	HC	N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.0244	6	108	0.042	6.15E-03	4.61E-03
GO4A	SO ₂	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.0012	6	108	0.048	3.36E-04	2.52E-04
GO4A	NOx	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.7375	6	108	0.048	2.15E-01	1.61E-01
GO4A	PM	N/A (pm)	1105	92.1	g/h	100%	-	-	-	-	-	-	0.0256	6	108	0.048	7.44E-03	5.58E-03
GO4A	PM10	N/A (pm10)	1105	88.4	g/h	100%	-	-	-	-	-	-	0.0246	6	108	0.048	7.14E-03	5.36E-03
GO4A	PM2.5	N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.0230	6	108	0.048	6.70E-03	5.02E-03
GO4A	CO	630-08-0	1105	616.0	g/h	100%	-	-	-	-	-	-	0.1711	6	108	0.048	4.98E-02	3.73E-02
GO4A	HC	N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.0244	6	108	0.048	7.11E-03	5.33E-03
GO4B	SO ₂	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.0012	6	108	0.007	4.65E-05	3.49E-05
GO4B	NO _x	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.7375	6	108	0.007	2.96E-02	2.22E-02
GO4B	PM	N/A (pm)	1105	92.1	g/h	100%	-	-	-	-	-	-	0.0256	6	108	0.007	1.03E-03	7.71E-04
GO4B	PM10	N/A (pm10)	1105	88.4	g/h	100%	-	-	-	-	-	-	0.0246	6	108	0.007	9.87E-04	7.40E-04
GO4B	PM2.5	N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.0230	6	108	0.007	9.25E-04	6.94E-04
GO4B	CO	630-08-0	1105	616.0	g/h	100%	-	-	-	-	-	-	0.1711	6	108	0.007		5.16E-03
GO4B	HC	N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.0244	6	108	0.007	9.82E-04	7.37E-04
	G038 G038 G038 G038 G038 G04A G04A G04A G04A G04A G04A G04A G04A	G038 PM G038 PM10 G038 PM2.5 G038 PM2.5 G038 PM2.5 G038 HC G04A SO2 G04A PM2.5 G04A PM2.5 G04A PM2.5 G04A PM2.5 G04A PM2.5 G04A HC G04A HC G04A HC G04B N0x G04B N0x G04B PM10 G04B PM2.5 G04B PM2.5 G04B PM2.5 G04B CO	G03B PM10 N/A (pm10) G03B PM2.5 N/A (pm2.5) G03B CO 630-08-0 G03B HC N/A G04A SO2 7446-09-5 G04A NO2 10102-44-0 G04A PM N/A (pm10) G04A PM10 N/A (pm10) G04A PM2.5 N/A (pm10) G04A PM2.5 N/A (pm2.5) G04A CO 630-08-0 G04B SO2 7446-09-5 G04B NO2 10102-44-0 G04B PM2.5 N/A (pm2.5) G04A PM0 N/A (pm2.5) G04B NO2 10102-44-0 G04B NO2 10102-44-0 G04B NO3 10102-44-0 G04B NO4 10102-44-0 G04B NO3 10102-44-0 G04B NO4 10102-44-0 G04B PM10 N/A (pm10) G04B PM10 N	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	G038 PM N/A (pm) 1105 92.1 G038 PM10 N/A (pm10) 1105 88.4 G038 PM2.5 N/A (pm2.5) 1105 82.89 G038 CO 630-08-0 1105 82.89 G038 HC N/A 1105 88.0 G04A SO2 7446-09-5 1105 0.0075 G04A NO2 10102-44-0 1105 2655.0 G04A PM N/A (pm10) 1105 88.4 G04A PM2.5 N/A (pm10) 1105 88.4 G04A PM2.5 N/A (pm10) 1105 88.4 G04A PM2.5 N/A (pm2.5) 1105 88.4 G04A CO 630-08-0 1105 616.0 G04A PM2.5 N/A (pm2.5) 1105 88.4 G04B SO2 7446-09-5 1105 0.0075 G04B NO3 10102-44-0 1105 88.0 G04B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	GO3B PM N/A (pm) 1105 92.1 g/h 100% GO3B PM10 N/A (pm10) 1105 88.4 g/h 100% GO3B PM2.5 N/A (pm2.5) 1105 88.4 g/h 100% GO3B CO 630-08-0 1105 616.0 g/h 100% GO3B HC N/A 1105 616.0 g/h 100% GO3B HC N/A 1105 88.0 g/h 100% GO4A SO2 7446-09-5 1105 0.0075 g/h 100% GO4A NO2 10102-44-0 1105 2655.0 g/h 100% GO4A PM N/A (pm10) 1105 88.4 g/h 100% GO4A PM10 N/A (pm2.5) 1105 88.4 g/h 100% GO4A PM2.5 N/A (pm2.5) 1105 616.0 g/h 100% GO4A CO 630-08-0 1105	G038 PM N/A (pm) 1105 92.1 g/h 100% - G038 PM10 N/A (pm10) 1105 88.4 g/h 100% - G038 PM2.5 N/A (pm2.5) 1105 82.89 g/h 100% - G038 CO 630-08-0 1105 86.0 g/h 100% - G038 HC N/A 1105 88.0 g/h 100% - G038 HC N/A 1105 88.0 g/h 100% - G038 HC N/A 1105 0.0075 g/bhp-h 100% - G04A SO2 7446-09-5 1105 0.0075 g/h 100% - G04A NOx 10102-44-0 1105 2655.0 g/h 100% - G04A PM10 N/A (pm10) 1105 88.4 g/h 100% - G04A PM2.5 N/A (pm2.5) 1105	G038 PM N/A (pm) 1105 92.1 g/h 100% - - G038 PM10 N/A (pm10) 1105 88.4 g/h 100% - - G038 PM2.5 N/A (pm2.5) 1105 82.89 g/h 100% - - G038 CO 630-08-0 1105 82.89 g/h 100% - - G038 HC N/A 1105 88.0 g/h 100% - - G038 HC N/A 1105 0.075 g/b/h 100% - - G04A SO2 7446-09-5 1105 0.0075 g/h 100% - - G04A NOx 10102-44-0 1105 2655.0 g/h 100% - - G04A PM1 N/A (pm10) 1105 88.4 g/h 100% - - G04A PM2.5 N/A (pm2.5) 1105 61	G038 PM N/A (pm) 1105 92.1 g/h 100% - - - G038 PM10 N/A (pm10) 1105 88.4 g/h 100% - - - G038 PM2.5 N/A (pm2.5) 1105 82.89 g/h 100% - - - G038 CO 630-08-0 1105 616.0 g/h 100% - - - G038 HC N/A 1105 810.0 g/h 100% - - - G04A SO2 7446-09-5 1105 0.0075 g/h 100% - - - G04A NO, 10102-44-0 1105 2655.0 g/h 100% - - - G04A PM N/A (pm10) 1105 88.4 g/h 100% - - - G04A PM2.5 N/A (pm2.5) 1105 616.0 g/h 100%	G038 PM N/A (pm) 1105 92.1 g/h 100% -	G038 PM N/A (pm) 1105 92.1 g/h 100% -	G038 PM NA(pm) 1105 92.1 gh 100%	GO3B PM N/A (pm) 1105 92.1 gh 100% - - - - - - 0.0256 GO3B PM10 N/A (pm10) 1105 88.4 gh 100% - - - - - 0.0256 GO3B PM2.5 N/A (pm2.5) 11105 82.49 gh 100% - - - - 0.0230 GO3B CO 630-08-0 1105 616.0 g/h 100% - - - - 0.0244 GO3B HC N/A 11105 88.0 g/h 100% - - - - 0.0274 GO4A SO2 7446-09-5 1105 0.0075 g/h 100% - - - - 0.0276 GO4A PM N/A (pm10) 1105 82.4 g/h 100% - - - - 0.0230 GO4A PM10	GO3B PM N/A (pm) 1105 92.1 gh 100% - - - - 0.026 6 GO3B PM10 N/A (pm2,5) 1105 88.4 gh 100% - - - - - 0.0266 6 GO3B PM2.5 N/A (pm2,5) 1105 82.49 gh 100% - - - - 0.0266 6 GO3B PM2.5 N/A (pm2,5) 1105 82.49 gh 100% - - - - 0.0266 6 GO3B CO 630-08-0 9fh 100% - - - - - 0.0256 6 GO4A SO2 7446-08-5 1105 0.0075 g/h 100% - - - - - 0.012 6 GO4A PM N/A (pm1) 1105 82.4 g/h 100% - - - - 0.0	GO3B PM NA (pm) 1105 92.1 gh 100% - - - - 0.0256 6 108 GO3B PM2.5 NA (pm2.5) 1105 88.4 gh 100% - - - - 0.0256 6 108 GO3B PM2.5 NA (pm2.5) 1105 82.49 gh 100% - - - - 0.0256 6 108 GO3B CO 630.80-0 1105 82.49 gh 100% - - - - 0.0256 6 108 GO3B CO 630.80-0 gh 100% - - - - 0.0256 6 108 GO4A NA MIO 105 88.0 gh 100% - - - - - 0.0256 6 108 GO4A PM NA (pm1) 1105 82.49 gh 100% -	GO3B PM NA (pm) 1105 92.1 gh 100% 0.0256 6 108 0.042 GO3B PM10 NA (pm10) 1105 88.4 gh 100% 0.0266 6 108 0.042 GO3B PM2.5 NA (pm2.5) 1105 82.89 gh 100% 0.0230 6 108 0.042 GO3B CO 630-8-0 1105 82.89 gh 100% 0.0230 6 108 0.042 GO3B LC NA 1105 88.0 gh 100% 0.0214 6 108 0.042 GO4A NQ. 10102-4-0 1105 88.0 gh 100% 0.0214 6 108 0.048	GO38 PM N/A (pm1) 1105 92.1 g/h 100% - - - - - 0.026 6 108 0.042 6.45E-03 GO38 PM2.5 N/A (pm2.5) 1105 82.89 g/h 100% - - - - 0.0246 6 108 0.042 6.45E-03 GO38 PM2.5 N/A (pm2.5) 1105 82.89 g/h 100% - - - - 0.0246 6 108 0.042 6.57E-03 GO38 CO 63.08-0 g/h 100% - - - - 0.0244 6 108 0.042 6.57E-03 GO4A S0_2 744-09-5 1105 0.075 g/h 100% - - - - 0.0244 6 108 0.042 6.57E-03 GO4A PM N/A (pm1) 1105 88.0 g/h 100% - - - -

Source: Emissions from Diesel GO Trains During Operation

Source ID: GO1, GO2A, GO2B, GO3A, GO3B, GO4A and GO4B GO_IDLE_B1, GO_IDLE_B2, GO_IDLE_B3, GO_IDLE_B4

Description: Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet. The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station.

0	CACs	0		The OFfice of the t		(1)		T1	T		(4)		T A	Deals D. S. S.	Number of	Equipment	(2)	I I south a Part I and	Delle A
Source Group	Source ID	Contaminant	CAS#	Tier 2 Engine Maximum Power Rating (hp each)	Tier 2 Engine Em	ission Factor ⁽¹⁾	% Tier 2 ⁽¹⁾	Tier 2 Operating Load ⁽²⁾	g Tier 3 Engine Maximum Power Rating (hp each)	Tier 3 Engine Er	nission Factor ⁽¹⁾	% Tier 3 ⁽¹⁾	Tier 3 Operating Load ⁽²⁾	Peak Emission Rate per Equipment ⁽⁴⁾ (g/s)	per Hour	per Day	Idling Time ⁽³⁾ (hour/train)	Hourly Emission Rate (g/s)	Daily Average E (g/s
	GO_IDLEB1	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	70%	0.4%	4317	0.0075	g/bhp-h	30%	0.4%	0.00003	6	108	0.025	5.03E-06	3.77E
	GO_IDLEB1	NO _x	10102-44-0	4245	1203.9	g/h	70%	0.4%	4317	1199.6	g/h	30%	0.4%	0.33406	6	108	0.025	5.01E-02	3.76E
	GO_IDLEB1	PM	N/A (pm)	4245	26.7	g/h	70%	0.4%	4317	9.3	g/h	30%	0.4%	0.00597	6	108	0.025	8.95E-04	6.71
	GO_IDLEB1	PM10	N/A (pm10)	4245	25.6	g/h	70%	0.4%	4317	8.9	g/h	30%	0.4%	0.00573	6	108	0.025	8.59E-04	6.44
	GO_IDLEB1	PM2.5 CO	N/A (pm2.5) 630-08-0	4245	24.03 76.8	g/h	70%	0.4%	4317 4317	8.37 67.5	g/h g/h	30%	0.4%	0.00537 0.02056	6	108 108	0.025	8.06E-04 3.08E-03	6.04 2.31
	GO_IDLEB1 GO_IDLEB1	НС	N/A	4245	59.0	g/h g/h	70%	0.4%	4317	71.4	g/h g/h	<u>30%</u> 30%	0.4%	0.02050	6	108	0.025	2.61E-03	2.3
	GO IDLEB2	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	70%	0.4%	4317	0.0075	g/bhp-h	30%	0.4%	0.00003	6	108	0.025	5.03E-06	3.77
	GO IDLEB2	NO _v	10102-44-0	4245	1203.9	g/h	70%	0.4%	4317	1199.6	g/h	30%	0.4%	0.33406	6	108	0.025	5.01E-02	3.76
	GO IDLEB2	PM	N/A (pm)	4245	26.7		70%	0.4%	4317	9.3	g/h	30%	0.4%	0.00597	6	108	0.025	8.95E-04	6.7
	GO_IDLEB2	PM10	N/A (pm10)	4245	25.6	g/h	70%	0.4%	4317	8.9	g/h	30%	0.4%	0.00573	6	108	0.025	8.59E-04	6.44
	GO_IDLEB2	PM2.5	N/A (pm2.5)	4245	24.0	g/h	70%	0.4%	4317	8.4	g/h	30%	0.4%	0.00537	6	108	0.025	8.06E-04	6.04
	GO_IDLEB2	CO	630-08-0	4245	76.8	g/h	70%	0.4%	4317	67.5	g/h	30%	0.4%	0.02056	6	108	0.025	3.08E-03	2.31
GO line haul engines	GO_IDLEB2	HC	N/A	4245	59.0	g/h	70%	0.4%	4317	71.4	g/h	30%	0.4%	0.01742	6	108	0.025	2.61E-03	1.96
So me nau engines	GO_IDLEB3	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	70%	0.4%	4317	0.0075	g/bhp-h	30%	0.4%	0.00003	6	108	0.025	5.03E-06	3.77
	GO_IDLEB3	NO _x	10102-44-0	4245	1203.9	g/h	70%	0.4%	4317	1199.6	g/h	30%	0.4%	0.33406	6	108	0.025	5.01E-02	3.76
	GO_IDLEB3	PM	N/A (pm)	4245	26.7	g/h	70%	0.4%	4317	9.3	g/h	30%	0.4%	0.00597	6	108	0.025	8.95E-04	6.71
	GO_IDLEB3	PM10	N/A (pm10)	4245	25.6	g/h	70%	0.4%	4317	8.9	g/h	30%	0.4%	0.00573	6	108	0.025	8.59E-04	6.44
	GO_IDLEB3	PM2.5	N/A (pm2.5)	4245	24.0	g/h	70%	0.4%	4317	8.4	g/h	30%	0.4%	0.00537	6	108	0.025	8.06E-04	6.04
	GO_IDLEB3	CO	630-08-0	4245	76.8	g/h	70%	0.4%	4317	67.5	g/h	30%	0.4%	0.02056	6	108	0.025	3.08E-03	2.3
	GO_IDLEB3	HC	N/A	4245	59.0	g/h	70%	0.4%	4317	71.4	g/h	30%	0.4%	0.01742	6	108	0.025	2.61E-03	1.9
	GO_IDLEB4	SO ₂	7446-09-5	4245	0.0075	g/bhp-h	70%	0.4%	4317	0.0075	g/bhp-h	30%	0.4%	0.00003	6	108	0.025	5.03E-06	3.7
	GO_IDLEB4	NO _x	10102-44-0	4245	1203.9	g/h	70%	0.4%	4317	1199.6	g/h	30%	0.4%	0.33406	6	108	0.025	5.01E-02	3.7
	GO_IDLEB4	PM	N/A (pm)	4245	26.7	g/h	70%	0.4%	4317	9.3	g/h	30%	0.4%	0.00597	6	108	0.025	8.95E-04	6.7
	GO_IDLEB4	PM10 PM2.5	N/A (pm10)	4245 4245	25.6 24.0	g/h	70%	0.4%	4317 4317	8.9 8.4	g/h	30%	0.4%	0.00573 0.00537	6	108 108	0.025	8.59E-04 8.06E-04	6.4 6.0
	GO_IDLEB4 GO_IDLEB4	CO	N/A (pm2.5) 630-08-0	4245	76.8	g/h g/h	70%	0.4%	4317	67.5	g/h g/h	30% 30%	0.4%	0.02056	6	108	0.025	3.08E-03	2.3
	GO IDLEB4	НС	N/A	4245	59.0	g/h	70%	0.4%	4317	71.4	a/h	30%	0.4%	0.01742	6	108	0.025	2.61E-03	1.9
	GO IDLEB1	SO ₂	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.00116	6	108	0.025	1.74E-04	1.30
	GO IDLEB1	NO _v	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.73750	6	108	0.025	1.11E-01	8.30
	GO IDLEB1	PM	N/A (pm)	1105	92.1	g/h	100%	-	-	-	-	-	-	0.02558	6	108	0.025	3.84E-03	2.88
	GO_IDLEB1	PM10	N/A (pm10)	1105	88.4	g/h	100%	-	-	-	-	-	-	0.02456	6	108	0.025	3.68E-03	2.76
	GO_IDLEB1	PM2.5	N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.02303	6	108	0.025	3.45E-03	2.59
	GO_IDLEB1	CO	630-08-0	1105	616.0	g/h	100%	-	-	-	-	-	-	0.17111	6	108	0.025	2.57E-02	1.9
	GO_IDLEB1	HC	N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.02444	6	108	0.025	3.67E-03	2.75
	GO_IDLEB2	SO ₂	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.00116	6	108	0.025	1.74E-04	1.3
	GO_IDLEB2	NOx	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.73750	6	108	0.025	1.11E-01	8.3
	GO_IDLEB2 GO IDLEB2	PM PM10	N/A (pm) N/A (pm10)	1105	92.1 88.4	g/h g/h	100%		-		-	-	-	0.02558	6	108 108	0.025	3.84E-03 3.68E-03	2.8
	GO_IDLEB2	PM10 PM2.5	N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.02456	6	108	0.025	3.45E-03	2.70
	GO IDLEB2	CO	630-08-0	1105	616.0	g/h	100%		_	-	-	-	-	0.17111	6	108	0.025	2.57E-02	1.93
	GO_IDLEB2	НС	N/A	1105	88.0	g/h	100%		-		-			0.02444	6	108	0.025	3.67E-02	2.75
GO HEP engines		-	7446-09-5	1105	0.0075		100%								-			1.74E-04	1.30
	GO_IDLEB3	SO ₂				g/bhp-h		50%	-	-	-	-	-	0.00116	6	108	0.025		
	GO_IDLEB3	NO _x	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.73750	6	108	0.025	1.11E-01	8.3
	GO_IDLEB3	PM	N/A (pm)	1105	92.1	g/h	100%	-	-	-	-	-	-	0.02558	6	108	0.025	3.84E-03	2.88
	GO_IDLEB3	PM10	N/A (pm10)	1105	88.4	g/h	100%	-	-	-	-	-	-	0.02456	6	108	0.025	3.68E-03	2.76
	GO_IDLEB3	PM2.5	N/A (pm2.5)	1105	82.89	g/h	100%	-	-	-	-	-	-	0.02303	6	108	0.025	3.45E-03	2.59
	GO_IDLEB3	CO	630-08-0	1105	616.0	g/h	100%	-	-	-	-	-	-	0.17111	6	108	0.025	2.57E-02	1.93
	GO_IDLEB3	HC	N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.02444	6	108	0.025	3.67E-03	2.7
	GO_IDLEB4	SO ₂	7446-09-5	1105	0.0075	g/bhp-h	100%	50%	-	-	-	-	-	0.00116	6	108	0.025	1.74E-04	-
	GO_IDLEB4	NO _x	10102-44-0	1105	2655.0	g/h	100%	-	-	-	-	-	-	0.73750	6	108	0.025	1.11E-01 3.84E-03	8.3
	GO_IDLEB4 GO IDLEB4	PM PM10	N/A (pm) N/A (pm10)	1105	92.1 88.4	g/h a/h	100%	-	-	-	-	-	-	0.02558	6	108 108	0.025	3.84E-03 3.68E-03	2.88
	GO IDLEB4	PM10 PM2.5	N/A (pm10)	1105	82.89	g/h	100%		-	-	-	-	-	0.02456	6	108	0.025	3.45E-03	2.76
	GO IDLEB4	CO	630-08-0	1105	616.0	g/h	100%	-	-		-		-	0.17111	6	108	0.025	2.57E-02	1.93
	GO IDLEB4	HC	N/A	1105	88.0	g/h	100%	-	-	-	-	-	-	0.02444	6	108	0.025	3.67E-03	2.75

Notes: (1) SO₂ emission factor is calculated in above table and based on the fuel sulphur content. Other emission factors are provided by Metrolinx.

(2) An average operating load of Notch 6 is assumed for train engines during travelling on rail way (not in full speed) and at steady state. 50% load for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines at this load are used in the emission (2) An average operating load of Notch 6 is assumed for train engines during travelling on rail way (not in full speed) and at steady state. 50% load for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the Draft Metrolinx Air Quality Environmental Guide (November 2019). Emission data for HEP engines is assumed based on the train passing or idling time, emission factor, power rating and number of locomotives. Emission rates are estimated based on the train passing or idling time, emission factor, power rating and number of locomotives. Emission rates of other contaminants are from 201075-STANTEC-RFI-00014 - Locomotive Information_Attachment.pdf provided by Metrolinx.
(5) For PM emissions from the tailpipe of the equipment, based on US EPA AP-42 Appendix B.2 Generalized Particle Size Distributions for gasoline and diesel fuel combustion engines, PM10 = 96% PM; PM2.5 = 90% PM.

Key volatile organic compounds emissions from tailpipe exhausts are estimated based on the related reference emission factor data. These emission factors are listed below along with the emission calculations.

Source: Emissions from Diesel GO Trains During Operation

Source ID: GO1, GO2A, GO2B, GO3A, GO3B, GO4A and GO4B GO_IDLE_B1, GO_IDLE_B2, GO_IDLE_B3, GO_IDLE_B4

Description: Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet. The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station.

Emission Calculations Diesel Trains Passing - Key VOCs

Source Group	Source ID	Contaminant	CAS#	Emission Factor ⁽¹⁾ (g/hr)	Peak Emission Rate per Equipment ⁽³⁾ (g/s)	Number of Equipment per Hour	Number of Equipment per Day	Onsite Travelli Time ⁽²⁾ (hour/train)	ng Hourly Emissio Rate ⁽³⁾ (g/s)	n Daily Averag Emission Ra (g/s)
	GO1	Benzene	71-43-2	1.55E+01	4.31E-03	6	108	0.071	1.84E-03	1.38E-03
	G01	1,3-Butadiene	106-99-0	5.34E-01	1.48E-04	6	108	0.071	6.33E-05	4.75E-05
	GO1 GO1	Acrolein Acetaldehyde	107-02-8 75-07-0	5.37E+00 2.99E+01	1.49E-03 8.29E-03	6	108 108	0.071	6.36E-04 3.54E-03	4.77E-04 2.65E-03
	G01	Formaldehyde	50-00-0	8.38E+01	2.33E-02	6	108	0.071	9.94E-03	7.45E-03
	G01	Benzo(a)pyrene	50-32-8	1.06E-03	2.95E-07	6	108	0.071	1.26E-07	9.43E-08
	GO2A	Benzene	71-43-2	1.55E+01	4.31E-03	6	108	0.024	6.28E-04	4.71E-04
	GO2A	1,3-Butadiene	106-99-0	5.34E-01	1.48E-04	6	108	0.024	2.16E-05	1.62E-05
	GO2A	Acrolein	107-02-8	5.37E+00	1.49E-03 8.29E-03	6	108 108	0.024	2.17E-04 1.21E-03	1.63E-04 9.05E-04
	GO2A GO2A	Acetaldehyde Formaldehyde	75-07-0 50-00-0	2.99E+01 8.38E+01	2.33E-02	6	108	0.024	3.39E-03	2.54E-03
	GO2A GO2A	Benzo(a)pyrene	50-32-8	1.06E-03	2.95E-07	6	108	0.024	4.29E-08	3.22E-08
	GO2B	Benzene	71-43-2	1.55E+01	4.31E-03	6	108	0.068	1.76E-03	1.32E-0
	GO2B	1,3-Butadiene	106-99-0	5.34E-01	1.48E-04	6	108	0.068	6.04E-05	4.53E-0
	GO2B	Acrolein	107-02-8	5.37E+00	1.49E-03	6	108	0.068	6.07E-04	4.55E-0
	GO2B	Acetaldehyde	75-07-0	2.99E+01	8.29E-03	6	108	0.068	3.38E-03	2.53E-0
	GO2B	Formaldehyde	50-00-0 50-32-8	8.38E+01 1.06E-03	2.33E-02 2.95E-07	6	108 108	0.068	9.48E-03 1.20E-07	7.11E-0 9.00E-0
	GO2B GO3A	Benzo(a)pyrene Benzene	71-43-2	1.55E+01	4.31E-03	6	108	0.068	1.93E-03	9.00E-0 1.45E-0
	GO3A	1,3-Butadiene	106-99-0	5.34E-01	1.48E-04	6	108	0.075	6.65E-05	4.99E-0
	GO3A	Acrolein	107-02-8	5.37E+00	1.49E-03	6	108	0.075	6.69E-04	5.01E-0
GO line haul engines	GO3A	Acetaldehyde	75-07-0	2.99E+01	8.29E-03	6	108	0.075	3.72E-03	2.79E-0
	GO3A	Formaldehyde	50-00-0	8.38E+01	2.33E-02	6	108	0.075	1.04E-02	7.83E-0
	GO3A	Benzo(a)pyrene	50-32-8	1.06E-03	2.95E-07	6	108	0.075	1.32E-07	9.91E-0
	GO3B	Benzene	71-43-2	1.55E+01	4.31E-03	6	108	0.042	1.08E-03	8.13E-
	GO3B	1,3-Butadiene	106-99-0	5.34E-01	1.48E-04	6	108	0.042	3.73E-05	2.80E-
	GO3B GO3B	Acrolein Acetaldebyde	107-02-8 75-07-0	5.37E+00 2.99E+01	1.49E-03 8.29E-03	6	108 108	0.042	3.75E-04 2.09E-03	2.81E- 1.56E-
	GO3B GO3B	Acetaldehyde Formaldehyde	50-00-0	8.38E+01	8.29E-03 2.33E-02	6	108	0.042	5.85E-03	4.39E-
	GO3B GO3B	Benzo(a)pyrene	50-32-8	1.06E-03	2.95E-07	6	108	0.042	7.41E-08	5.56E-
	GO4A	Benzene	71-43-2	1.55E+01	4.31E-03	6	108	0.048	1.25E-03	9.41E-
	GO4A	1,3-Butadiene	106-99-0	5.34E-01	1.48E-04	6	108	0.048	4.31E-05	3.24E-
	GO4A	Acrolein	107-02-8	5.37E+00	1.49E-03	6	108	0.048	4.34E-04	3.25E-
	GO4A	Acetaldehyde	75-07-0	2.99E+01	8.29E-03	6	108	0.048	2.41E-03	1.81E-
	GO4A	Formaldehyde	50-00-0	8.38E+01	2.33E-02	6	108	0.048	6.77E-03	5.08E-
	GO4A	Benzo(a)pyrene	50-32-8	1.06E-03	2.95E-07	6	108	0.048	8.57E-08	6.43E-
	GO4B	Benzene 1,3-Butadiene	71-43-2 106-99-0	1.55E+01 5.34E-01	4.31E-03 1.48E-04	6	108 108	0.007	1.73E-04 5.96E-06	1.30E- 4.47E-
	GO4B GO4B	Acrolein	107-02-8	5.37E+00	1.48E-04 1.49E-03	6	108	0.007	5.99E-05	4.47E-
	GO4B	Acetaldehyde	75-07-0	2.99E+01	8.29E-03	6	108	0.007	3.33E-04	2.50E-
	GO4B	Formaldehyde	50-00-0	8.38E+01	2.33E-02	6	108	0.007	9.35E-04	7.02E-
	GO4B	Benzo(a)pyrene	50-32-8	1.06E-03	2.95E-07	6	108	0.007	1.18E-08	8.88E-0
	GO1	Benzene	71-43-2	4.76E+00	1.32E-03	6	108	0.071	5.64E-04	4.23E-
	GO1	1,3-Butadiene	106-99-0	1.64E-01	4.55E-05	6	108	0.071	1.94E-05	1.46E-
	G01	Acrolein	107-02-8	1.65E+00	4.57E-04	6	108	0.071	1.95E-04	1.46E-
	G01	Acetaldehyde	75-07-0	9.15E+00	2.54E-03 7.14E-03	6	108 108	0.071	1.08E-03	8.14E-
	GO1 GO1	Formaldehyde Benzo(a)pyrene	50-00-0 50-32-8	2.57E+01 6.14E-04	1.71E-07	6	108	0.071	3.05E-03 7.28E-08	2.28E- 5.46E-
	GO2A	Benzene	71-43-2	4.76E+00	1.32E-03	6	108	0.024	1.92E-04	1.44E-
	GO2A	1,3-Butadiene	106-99-0	1.64E-01	4.55E-05	6	108	0.024	6.62E-06	4.96E-
	GO2A	Acrolein	107-02-8	1.65E+00	4.57E-04	6	108	0.024	6.65E-05	4.99E-
	GO2A	Acetaldehyde	75-07-0	9.15E+00	2.54E-03	6	108	0.024	3.70E-04	2.77E-
	GO2A	Formaldehyde	50-00-0	2.57E+01	7.14E-03	6	108	0.024	1.04E-03	7.79E-
	GO2A	Benzo(a)pyrene	50-32-8	6.14E-04	1.71E-07	6	108	0.024	2.48E-08	1.86E-
	GO2B	Benzene	71-43-2	4.76E+00	1.32E-03	6	108	0.068	5.38E-04	4.04E-
	GO2B	1,3-Butadiene Acrolein	106-99-0 107-02-8	1.64E-01 1.65E+00	4.55E-05 4.57E-04	6	108 108	0.068	1.85E-05 1.86E-04	1.39E- 1.40E-
	GO2B GO2B	Acetaldehyde	75-07-0	9.15E+00	2.54E-03	6	108	0.068	1.03E-04	7.76E-
	GO2B GO2B	Formaldehyde	50-00-0	2.57E+01	7.14E-03	6	108	0.068	2.91E-03	2.18E-
	GO2B	Benzo(a)pyrene	50-32-8	6.14E-04	1.71E-07	6	108	0.068	6.95E-08	5.21E-
	GO3A	Benzene	71-43-2	4.76E+00	1.32E-03	6	108	0.075	5.93E-04	4.45E-
	GO3A	1,3-Butadiene	106-99-0	1.64E-01	4.55E-05	6	108	0.075	2.04E-05	1.53E-
GO HEP engines	GO3A	Acrolein	107-02-8	1.65E+00	4.57E-04	6	108	0.075	2.05E-04	1.54E-
	GO3A	Acetaldehyde	75-07-0	9.15E+00	2.54E-03	6	108	0.075	1.14E-03	8.55E- 2.40E-
	GO3A GO3A	Formaldehyde Benzo(a)pyrene	50-00-0 50-32-8	2.57E+01 6.14E-04	7.14E-03 1.71E-07	6	108	0.075	3.20E-03 7.65E-08	6 7 1 5
	GO3A GO3B	Benzo(a)pyrene Benzene	50-32-8 71-43-2	6.14E-04 4.76E+00	1.71E-07 1.32E-03	6	108	0.075	7.65E-08 3.33E-04	5.74E- 2.49E-
	GO3B	1,3-Butadiene	106-99-0	1.64E-01	4.55E-05	6	108	0.042	1.14E-05	8.57E-
	GO3B	Acrolein	107-02-8	1.65E+00	4.57E-04	6	108	0.042	1.15E-04	8.62E-
	GO3B	Acetaldehyde	75-07-0	9.15E+00	2.54E-03	6	108	0.042	6.39E-04	4.79E-
	GO3B	Formaldehyde	50-00-0	2.57E+01	7.14E-03	6	108	0.042	1.79E-03	1.35E-
	GO3B	Benzo(a)pyrene	50-32-8	6.14E-04	1.71E-07	6	108	0.042	4.29E-08	3.22E-
	GO4A	Benzene	71-43-2	4.76E+00	1.32E-03	6	108	0.048	3.85E-04	2.88E-
	GO4A	1,3-Butadiene	106-99-0	1.64E-01	4.55E-05	6	108	0.048	1.32E-05	9.92E-
	GO4A	Acrolein	107-02-8	1.65E+00	4.57E-04	6	108	0.048	1.33E-04	9.97E-
	GO4A	Acetaldehyde Formaldehyde	75-07-0	9.15E+00	2.54E-03	6	108	0.048	7.39E-04	5.55E-
	GO4A GO4A	Benzo(a)pyrene	50-00-0 50-32-8	2.57E+01 6.14E-04	7.14E-03 1.71E-07	6	108 108	0.048	2.08E-03 4.96E-08	1.56E- 3.72E-
	GO4A GO4B	Benzene	71-43-2	4.76E+00	1.32E-03	6	108	0.048	5.31E-05	3.99E-
	GO4B GO4B	1,3-Butadiene	106-99-0	1.64E-01	4.55E-05	6	108	0.007	1.83E-06	1.37E-
	GO4B	Acrolein	107-02-8	1.65E+00	4.57E-04	6	108	0.007	1.84E-05	1.38E-
	GO4B	Acetaldehyde	75-07-0	9.15E+00	2.54E-03	6	108	0.007	1.02E-04	7.66E-0
	GO4B	Formaldehyde	50-00-0	2.57E+01	7.14E-03	6	108	0.007	2.87E-04	2.15E-
	GO4B	Benzo(a)pyrene	50-32-8	6.14E-04	1.71E-07	6	108	0.007	6.86E-09	5.14E-

5

Source: Emissions from Diesel GO Trains During Operation

Source ID: GO1, GO2A, GO2B, GO3A, GO3B, GO4A and GO4B GO_IDLE_B1, GO_IDLE_B2, GO_IDLE_B3, GO_IDLE_B4

Description: Tailpipe emissions from locomotives travelling through the study area during operation are estimated in this sheet. The study area is between the existing Oshawa GO station and the proposed future B4 Bowmanville GO station.

Emission Calculations Diesel Trains Idling - Key VOCs

Source Group	Source ID	Contaminant	CAS#	Emission Factor ⁽¹⁾ (g/hr)	Idling Time ⁽²⁾ (hour/train)	Peak Emission Rate per Equipment ⁽³⁾ (g/s)	Number of Equipment per Hour	Number of Equipment per Day	Hourly Emission Rate ⁽³⁾ (g/s)	Daily Average Emission Rate ⁽³ (g/s)
	GO_IDLEB1	Benzene	71-43-2	3.39E+00	0.025	9.43E-04	6	108	1.41E-04	1.06E-04
	GO_IDLEB1	1,3-Butadiene	106-99-0	1.17E-01	0.025	3.24E-05	6	108	4.86E-06	3.65E-06
	GO_IDLEB1	Acrolein	107-02-8	1.17E+00	0.025	3.26E-04	6	108	4.89E-05	3.67E-05
	GO_IDLEB1	Acetaldehyde	75-07-0	6.52E+00	0.025	1.81E-03	6	108	2.72E-04	2.04E-04
	GO_IDLEB1	Formaldehyde	50-00-0	1.83E+01	0.025	5.09E-03	6	108	7.63E-04	5.72E-04
	GO_IDLEB1	Benzo(a)pyrene	50-32-8	1.43E-04	0.025	3.98E-08	6	108	5.97E-09	4.48E-09
	GO_IDLEB2	Benzene	71-43-2	3.39E+00	0.025	9.43E-04	6	108	1.41E-04	1.06E-04
	GO_IDLEB2	1,3-Butadiene	106-99-0	1.17E-01	0.025	3.24E-05	6	108	4.86E-06	3.65E-06
	GO_IDLEB2	Acrolein	107-02-8	1.17E+00	0.025	3.26E-04	6	108	4.89E-05	3.67E-05
	GO_IDLEB2	Acetaldehyde	75-07-0	6.52E+00	0.025	1.81E-03	6	108	2.72E-04	2.04E-04
	GO_IDLEB2	Formaldehyde	50-00-0	1.83E+01	0.025	5.09E-03	6	108	7.63E-04	5.72E-04
CO line have anning	GO_IDLEB2	Benzo(a)pyrene	50-32-8	1.43E-04	0.025	3.98E-08	6	108	5.97E-09	4.48E-09
GO line haul engines	GO_IDLEB3	Benzene	71-43-2	3.39E+00	0.025	9.43E-04	6	108	1.41E-04	1.06E-04
	GO_IDLEB3	1,3-Butadiene	106-99-0	1.17E-01	0.025	3.24E-05	6	108	4.86E-06	3.65E-06
	GO_IDLEB3	Acrolein	107-02-8	1.17E+00	0.025	3.26E-04	6	108	4.89E-05	3.67E-05
	GO_IDLEB3	Acetaldehyde	75-07-0	6.52E+00	0.025	1.81E-03	6	108	2.72E-04	2.04E-04
	GO IDLEB3	Formaldehyde	50-00-0	1.83E+01	0.025	5.09E-03	6	108	7.63E-04	5.72E-04
	GO IDLEB3	Benzo(a)pyrene	50-32-8	1.43E-04	0.025	3.98E-08	6	108	5.97E-09	4.48E-09
	GO IDLEB4	Benzene	71-43-2	3.39E+00	0.025	9.43E-04	6	108	1.41E-04	1.06E-04
	GO IDLEB4	1,3-Butadiene	106-99-0	1.17E-01	0.025	3.24E-05	6	108	4.86E-06	3.65E-06
	GO IDLEB4	Acrolein	107-02-8	1.17E+00	0.025	3.26E-04	6	108	4.89E-05	3.67E-05
	GO IDLEB4	Acetaldehyde	75-07-0	6.52E+00	0.025	1.81E-03	6	108	2.72E-04	2.04E-04
	GO IDLEB4	Formaldehyde	50-00-0	1.83E+01	0.025	5.09E-03	6	108	7.63E-04	5.72E-04
	GO IDLEB4	Benzo(a)pyrene	50-32-8	1.43E-04	0.025	3.98E-08	6	108	5.97E-09	4.48E-09
	GO IDLEB1	Benzene	71-43-2	4.76E+00	0.025	1.32E-03	6	108	1.98E-04	1.49E-04
	GO IDLEB1	1,3-Butadiene	106-99-0	1.64E-01	0.025	4.55E-05	6	108	6.82E-06	5.12E-06
	GO IDLEB1	Acrolein	107-02-8	1.65E+00	0.025	4.57E-04	6	108	6.86E-05	5.14E-05
	GO IDLEB1	Acetaldehyde	75-07-0	9.15E+00	0.025	2.54E-03	6	108	3.81E-04	2.86E-04
	GO IDLEB1	Formaldehyde	50-00-0	2.57E+01	0.025	7.14E-03	6	108	1.07E-03	8.03E-04
	GO_IDLEB1	Benzo(a)pyrene	50-32-8	6.14E-04	0.025	1.71E-07	6	108	2.56E-08	1.92E-08
	GO IDLEB2	Benzene	71-43-2	4.76E+00	0.025	1.32E-03	6	108	1.98E-04	1.49E-04
	GO IDLEB2	1,3-Butadiene	106-99-0	1.64E-01	0.025	4.55E-05	6	108	6.82E-06	5.12E-06
	GO IDLEB2	Acrolein	107-02-8	1.65E+00	0.025	4.57E-04	6	108	6.86E-05	5.14E-05
	GO IDLEB2	Acetaldehyde	75-07-0	9.15E+00	0.025	2.54E-03	6	108	3.81E-04	2.86E-04
	GO IDLEB2	Formaldehvde	50-00-0	2.57E+01	0.025	7.14E-03	6	108	1.07E-03	8.03E-04
	GO IDLEB2	Benzo(a)pyrene	50-32-8	6.14E-04	0.025	1.71E-07	6	108	2.56E-08	1.92E-08
GO HEP engines	GO IDLEB3	Benzene	71-43-2	4.76E+00	0.025	1.32E-03	6	108	1.98E-04	1.49E-04
	GO IDLEB3	1,3-Butadiene	106-99-0	1.64E-01	0.025	4.55E-05	6	108	6.82E-06	5.12E-06
	GO IDLEB3	Acrolein	107-02-8	1.65E+00	0.025	4.57E-04	6	108	6.86E-05	5.14E-05
	GO IDLEB3	Acetaldehyde	75-07-0	9.15E+00	0.025	2.54E-03	6	108	3.81E-04	2.86E-04
	GO_IDLEB3	Formaldehyde	50-00-0	2.57E+01	0.025	7.14E-03	6	108	1.07E-03	8.03E-04
	GO IDLEB3	Benzo(a)pyrene	50-32-8	6.14E-04	0.025	1.71E-07	6	108	2.56E-08	1.92E-08
	GO IDLEB4	Benzene	71-43-2	4.76E+00	0.025	1.32E-03	6	108	1.98E-04	1.49E-04
	GO IDLEB4	1,3-Butadiene	106-99-0	1.64E-01	0.025	4.55E-05	6	108	6.82E-06	5.12E-06
	GO IDLEB4	Acrolein	107-02-8	1.65E+00	0.025	4.57E-04	6	108	6.86E-05	5.14E-05
	GO IDLEB4	Acetaldehvde	75-07-0	9.15E+00	0.025	2.54E-03	6	108	3.81E-04	2.86E-04
	GO IDLEB4	Formaldehyde	50-00-0	2.57E+01	0.025	7.14E-03	6	108	1.07E-03	8.03E-04
	GO IDLEB4	Benzo(a)pyrene	50-32-8	6.14E-04	0.025	1.71E-07	6	108	2.56E-08	1.92E-04

Notes: (1) Key VOCs emission factors are calculated from the data in US EPA "Speciation Profiles and Toxic Emission Factors for Nonroad Engines (Nov 2015)". The emission rates of the VOC and PAH substances are estimated based on their fractions of VOC/PM and the related VOC and PM emission rates used in table above. (1) rev vous emission reacts are careful and the second se

Reference: Speciation Profiles and Toxic Emission Factors for	or Nonroad Engines (N	lov 2015), Tables 1
Key VOCs and PAH	Toxic Fraction of VOC/PM (Tiers 2 &	Note
	3)	
Benzene	0.054100	VOC fraction
1,3-Butadiene	0.001860	VOC fraction
Acrolein	0.018700	VOC fraction
Acetaldehyde	0.104000	VOC fraction
Formaldehyde	0.292000	VOC fraction
Benzo(a)pyrene	6.67E-06	PM fraction

(2) Onsite travelling time is estimated based on the modelled train travel length for a specific scenario and the train speed. On-site idling time is based on 1.5 minute stop at each station to pick up and drop off passengers. (3) Emission rates are estimated based on the train passing or idling time, emission factor, power rating and number of locomotives.

Sample Calculation - Benzene emissions from train engines idling		
Peak emission rate of each locomotive (g/s) =	(Tier 2 HC Engine EF (g/h) x 70% Tier 2 fleet + Tier 3 HC Engine EF (g/h) x 30% Tier 3 fleet) x Toxic Fraction of VOC (benzene) x 1 hour/3600 s	9.43E-04 g/s
Maximum hourly emission rate (g/s) =	peak emission rate of each engine (g/hr) x onsite traveling time (hour) x number of train engine/hour x 1/3600s =	1.41E-04 g/s
Daily average emission rate (g/s) =	peak short-term emission rate (g/hr) x onsite traveling time (hour) x 1 day/24 hour x number of equipment/day x 1hour/3600s =	1.41E-04 g/s

Operating Condition, Individual Maximum Rates of Production: The emission rate calculation for this source group is based on the maximum number of equipment operating onsite and reference exhaust emission standard. The calculated emission rate should be conservative.

6

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B1 TOC Operation

Source: Passenger Vehicle Tailpipe Emissions in Parking Lot - Future Build Scenario

Source ID:

B1_PPUDO

Description:

Vehicle tailpipe (travelling and idling) emission estimation for the future build passenger pick up and drop off area. Emission rates are based on the estimation tool U.S. EPA Motor Vehicle Emission Simulator (MOVES3). Emissions calculated here only accounts for vehicular traffic within the future B1 station. Assumptions used in the calculation are detailed below.

Contaminant(s) of Concern:

NO2, SO2, PM2.5, PM10, CO, acetaldehyde, acrolein, benzene, 1,3-butadiene, benzo(a) pyrene , formaldehyde are included in the estimations.

Emission Calculations - Parameters Used:

Parameter		Input							
Future Build									
Vehicle idling time in PPUDO	10	minutes	Stantec assumption is that the total time that each spot is occupied for each train arrival is 10						
Future Build PPUDO	19	spots	Based on concept design figure for B1						
Vehicle travelling speed in PPUDO	20	km/hour	Stantec assumption, typically low travelling speeds in parking lots						
Vehicle travelling distance	0.24	miles	travel distance from PPUDO entrance to PPUDO area x 2 (loop)						
GO Trains per Hour	3	two way	Based on information provided by Metrolinx						
GO Trains per Day	44	two way	Based on information provided by Metrolinx - total train passes per day minus 10 equipment moves which occur during nighttime hours.						
PPUDO Vehicles during Peak Hour	57	per hour	Stantec assumption is that 100% of the PPUDO spots are filled during worst case peak hour (19 spots x 3 trains)						
PPUDO Vehicles per Day	836	per day	Calculated assuming all PPUDO spots are full with every GO train (19 spots x 44 train trips).						

Emission Calculation for Vehicles Travelling in the PPUDO area:

			Passen	ger Vehicles @ 12.4	4 mph		
Contaminant	CAS#	Emission Factor (1)	Hourly Emis	sion Rate ⁽²⁾	Daily Emission Rate ⁽³⁾		
		g/VMT	g/hour	g/s	g/day	g/s	
NOx	10102-44-0	1.9E-02	2.6E-01	7.3E-05	3.8E+00	4.4E-05	
NO2	10102-44-0	3.1E-03	4.2E-02	1.2E-05	6.2E-01	7.1E-06	
CO	630-08-0	2.9E+00	4.0E+01	1.1E-02	5.9E+02	6.8E-03	
PM2.5	N/A	1.4E-02	1.9E-01	5.2E-05	2.8E+00	3.2E-05	
PM10	N/A	9.5E-02	1.3E+00	3.6E-04	1.9E+01	2.2E-04	
PM	N/A	9.5E-02	1.3E+00	3.6E-04	1.9E+01	2.2E-04	
SO ₂	7446-09-5	2.6E-03	3.5E-02	9.7E-06	5.1E-01	5.9E-06	
Benzene	71-43-2	6.0E-04	8.2E-03	2.3E-06	1.2E-01	1.4E-06	
Acetaldehyde	75-07-0	1.3E-04	1.8E-03	5.0E-07	2.6E-02	3.1E-07	
Acrolein	107-02-8	1.1E-05	1.6E-04	4.3E-08	2.3E-03	2.6E-08	
Benzo(a)pyrene	50-32-8	4.7E-07	6.4E-06	1.8E-09	9.4E-05	1.1E-09	
1,3-Butadiene	106-99-0	4.7E-08	6.4E-07	1.8E-10	9.3E-06	1.1E-10	
Formaldehyde	50-00-0	2.5E-04	3.4E-03	9.3E-07	4.9E-02	5.7E-07	

Emission Calculation for Vehicles Idling in PPUDO area:

			Passen	ger Vehicles @ 0.5	i mph		
Contaminant	CAS#	Emission Factor (1)	Hourly Emis	sion Rate (2)	Daily Emission Rate ⁽³⁾		
		g/VMT	g/hour	g/s	g/day	g/s	
NOx	10102-44-0	1.1E-01	5.4E-01	1.5E-04	8.0E+00	9.2E-05	
NO2	10102-44-0	1.8E-02	8.7E-02	2.4E-05	1.3E+00	1.5E-05	
СО	630-08-0	3.3E+01	1.5E+02	4.3E-02	2.3E+03	2.6E-02	
PM2.5	N/A	2.9E-02	1.4E-01	3.8E-05	2.0E+00	2.3E-05	
PM10	N/A	3.2E-02	1.5E-01	4.3E-05	2.3E+00	2.6E-05	
PM	N/A	3.2E-02	1.5E-01	4.3E-05	2.3E+00	2.6E-05	
SO ₂	7446-09-5	4.3E-02	2.0E-01	5.6E-05	3.0E+00	3.5E-05	
Benzene	71-43-2	7.0E-03	3.3E-02	9.3E-06	4.9E-01	5.7E-06	
Acetaldehyde	75-07-0	1.5E-03	7.2E-03	2.0E-06	1.1E-01	1.2E-06	
Acrolein	107-02-8	1.3E-04	6.2E-04	1.7E-07	9.1E-03	1.1E-07	
Benzo(a)pyrene	50-32-8	7.0E-06	3.3E-05	9.3E-09	4.9E-04	5.7E-09	
1,3-Butadiene	106-99-0	5.4E-07	2.5E-06	7.1E-10	3.7E-05	4.3E-10	
Formaldehyde	50-00-0	2.8E-03	1.3E-02	3.7E-06	2.0E-01	2.3E-06	

Notes:

(1) Emission rates are based on MOVES outputs for year 2031. The more conservative emission rates (higher) between January and July are used in the estimation. The idling emission factor is based on a MOVES modelled travel speed of 0.5 mph.

The emission rate is therefore calculated based on the car in the PPUDO travelling 0.08 miles in a span of 10-minutes or 0.17 hours.

(2) Hourly emission rates are based on an assumed maximum number of vehicles arriving or leaving the PPUDO within a 1 hour period.

(3) Daily emission rates are not used in the model, as a variable hourly emission scenario is used in the modelling.

Sample Calculation - Vehicle Travelling

Hourly Emission Rate = Emission Factor (g/VMT) x miles travelled (miles) x Number of vehicles (V/hour) x 1 hour/3600 s Daily Emission Rate = Emission Factor (g/VMT) x miles travelled (miles) x Number of vehicles (V/day) x 1day/24 hr x 1 hour/3600 s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the assumed number of vehicles using the parking lot based on proposed future train schedule, and proposed parking lot capacity.

Summary of Emissions

Source Group	Contaminant	CAS#	Hourly Emission	Daily Emission
Source Group	Contaminant	CA3#	Rate	Rate
			g/s	g/s
	NOx	10102-44-0	2.2E-04	1.4E-04
	NO2	10102-44-0	3.6E-05	2.2E-05
	CO	630-08-0	5.4E-02	3.3E-02
	PM2.5	N/A	9.0E-05	5.5E-05
	PM10	N/A	4.0E-04	2.5E-04
	PM	N/A	4.0E-04	2.5E-04
B1_PPUDO	SO ₂	7446-09-5	6.6E-05	4.0E-05
	Benzene	71-43-2	1.2E-05	7.1E-06
	Acetaldehyde	75-07-0	2.5E-06	1.5E-06
	Acrolein	107-02-8	2.2E-07	1.3E-07
	Benzo(a)pyrene	50-32-8	1.1E-08	6.7E-09
	1,3-Butadiene	106-99-0	8.8E-10	5.4E-10
	Formaldehyde	50-00-0	4.7E-06	2.9E-06

Appendix E: Summary of Air Dispersion Modelling Inputs Location: B1, B2, B3 and B4 TOC

Source: On-Road Vehicle Emissions

MOVES ID	Description	Travel Speed (km/hr)
1	100% passenger cars	Start up
2	100% passenger cars	Idle
3	100% passenger cars	20
4	100% transit bus	Start up
5	100% transit bus	Idle
6	100% transit bus	20

Note: Idle emission factors for passenger cars and buses were modelled using a low travel speed of 0.5 mph.

Key Input Data to MOVES3

Parameter	Input Description
Modelling Scale	Project level
Contaminants	CO, NOx, SO ₂ , PM, PM10, PM2.5, Acetaldehyde, Formaldehyde, 1,3-Butadiene, Benzene, Acrolein,
Contaminants	Benzo(a)pyrene and CO2eq
Construction Year	2021, 2031
Evaluation Month and Time	January or July 6AM-9AM - the higher emission factors out of the two months are conservatively used
	Canadian Climate Normals, 1981-2010 for Oshawa WPCP
	Daily Average temperatures:
	January -4.8 degrees C
Meteorology (ambient temp., relative humidity)	July 20.6 degrees C
ineteorology (ambient temp., relative numidity)	Canadian Climate Normals, 1981-2021 for Toronto Buttonville Airport
	Average relative humidity:
	January 79.6% (AM) and 69.6% (PM)
	July 82.5% (AM) and 53.4% (PM)
Road Type	All Urban Unrestricted Access
Fuel Type	Assumed gasoline for cars and diesel for transit bus
Fuel Data	Ontario
Traffic Volume	See calculation tabs
Traffic Speed	Start up, Idle and 20 km/hr
Vehicle Age Distribution	U.S. EPA default for the modelling year

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B2 TOC Operation

Source: Passenger Vehicle Tailpipe Emissions in PPUDO Areas and Parking Lot - Future Build Scenario

Source ID:

B2_LOT, B2_PPUDO1, B2_PPUDO2

Description:

Vehicle tailpipe (travelling, idling and start up) emission estimation for the future build passenger pick up and drop off area and parking lot. Emission rates are based on the estimation tool U.S. EPA Motor Vehicle Emission Simulator (MOVES3). Emissions calculated here only accounts for vehicular traffic within the future B2 station. Assumptions used in the calculation are detailed below.

Contaminant(s) of Concern:

NO2, SO2, PM2.5, PM10, CO, acetaldehyde, acrolein, benzene, 1,3-butadiene, benzo(a) pyrene , formaldehyde are included in the estimations.

Emission Calculations - Parameters Used:

Parameter			Input
Future Build			
Vehicle idling time in parking lot	1.5	minutes	Based on information provided by Metrolinx
Maximum number of vehicles in lot during rush hour	298	per hour	Stantec assumption is that 1/3 of the parking lot is filled during worst case peak hour
Parking lot capacity	893	spots	Based on concept design figure and includes standard parking spots & AODA
PPUDO Area 1	21	spots	Stantec assumption is that 100% of the PPUDO spots are filled during worst case peak hour, half in area 1 (north of tracks)
PPUDO Area 2	21	spots	Stantec assumption is that 100% of the PPUDO spots are filled during worst case peak hour, half in area 2 (south of tracks)
Vehicle travelling speed in parking lot	20	km/hour	Stantec assumption, typically low speeds travelling in parking lots
Vehicle travelling distance in lot	0.13	miles	measured travel distance from entrance to the parking lot to the middle of the lot
Vehicle travelling distance in PPUDO areas	0.08	miles	travel distance from PPUDO entrance to PPUDO area x 2 (loop)
GO Trains per Hour	3	two way	Based on information provide by Metrolinx
GO Trains per Day	44	two way	Based on information provided by Metrolinx - total train passes per day minus 10 equipment moves which occur during nighttime hours.
PPUDO Vehicles during Peak Hour	126	per hour	Stantec assumption is that 100% of the PPUDO spots are filled during worst case peak hour (42 spots x 3 trains)
PPUDO Vehicles per Day	1848	per day	Calculated assuming all PPUDO spots are full with every GO train (42 spots x 44 train trips).
Vehicle idling time in PPUDO	10	minutes	Stantec assumption is that the total time that each spot is occupied for each train arrival is 10 minutes.

Emission Calculation for Vehicles Travelling in Parking Lot:

			Passenger Vehicles @ 12.4 mph							
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emiss	sion Rate (2)	Daily Emission Rate ⁽³⁾					
		g/VMT	g/hour	g/s	g/day	g/s				
NOx	10102-44-0	1.9E-02	7.4E-01	2.1E-04	4.4E+00	5.1E-05				
NO2	10102-44-0	3.1E-03	1.2E-01	3.3E-05	7.1E-01	8.3E-06				
CO	630-08-0	2.9E+00	1.1E+02	3.1E-02	6.8E+02	7.9E-03				
PM2.5	N/A	1.4E-02	5.3E-01	1.5E-04	3.2E+00	3.7E-05				
PM10	N/A	9.5E-02	3.7E+00	1.0E-03	2.2E+01	2.5E-04				
PM	N/A	9.5E-02	3.7E+00	1.0E-03	2.2E+01	2.5E-04				
SO ₂	7446-09-5	2.6E-03	9.9E-02	2.8E-05	5.9E-01	6.9E-06				
Benzene	71-43-2	6.0E-04	2.3E-02	6.5E-06	1.4E-01	1.6E-06				
Acetaldehyde	75-07-0	1.3E-04	5.1E-03	1.4E-06	3.1E-02	3.5E-07				
Acrolein	107-02-8	1.1E-05	4.4E-04	1.2E-07	2.6E-03	3.1E-08				
Benzo(a)pyrene	50-32-8	4.7E-07	1.8E-05	5.0E-09	1.1E-04	1.3E-09				
1,3-Butadiene	106-99-0	4.7E-08	1.8E-06	5.0E-10	1.1E-05	1.3E-10				
Formaldehyde	50-00-0	2.5E-04	9.5E-03	2.6E-06	5.7E-02	6.6E-07				

Emission Calculation for Vehicles Idling in Parking Lot:

			Passenger Vehicles @ 0.5 mph							
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emiss	ion Rate (2)	Daily Emission Rate ⁽³⁾					
		g/VMT	g/hour	g/s	g/day	g/s				
NOx	10102-44-0	1.1E-01	4.2E-01	1.2E-04	1.3E+00	1.5E-05				
NO2	10102-44-0	1.8E-02	6.8E-02	1.9E-05	2.1E-01	2.4E-06				
CO	630-08-0	3.3E+01	1.2E+02	3.4E-02	3.6E+02	4.2E-03				
PM2.5	N/A	2.9E-02	1.1E-01	3.0E-05	3.2E-01	3.7E-06				
PM10	N/A	3.2E-02	1.2E-01	3.3E-05	3.6E-01	4.2E-06				
PM	N/A	3.2E-02	1.2E-01	3.3E-05	3.6E-01	4.2E-06				
SO ₂	7446-09-5	4.3E-02	1.6E-01	4.4E-05	4.8E-01	5.5E-06				
Benzene	71-43-2	7.0E-03	2.6E-02	7.3E-06	7.8E-02	9.1E-07				
Acetaldehyde	75-07-0	1.5E-03	5.6E-03	1.6E-06	1.7E-02	2.0E-07				
Acrolein	107-02-8	1.3E-04	4.9E-04	1.4E-07	1.5E-03	1.7E-08				
Benzo(a)pyrene	50-32-8	7.0E-06	2.6E-05	7.2E-09	7.8E-05	9.1E-10				
1,3-Butadiene	106-99-0	5.4E-07	2.0E-06	5.5E-10	6.0E-06	6.9E-11				
Formaldehyde	50-00-0	2.8E-03	1.1E-02	2.9E-06	3.2E-02	3.7E-07				

Emission Calculation for Vehicles - Start-up Emissions in Parking Lot:

			Pas	ssenger Vehicles @ Sta	irt Up	
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emiss	sion Rate (2)	Daily Emission Rate ⁽³⁾	
		g/V-start	g/hour	g/s	g/day	g/s
NOx	10102-44-0	7.5E-02	2.2E+01	6.2E-03	6.7E+01	7.8E-04
NO2	10102-44-0	3.1E-03	9.3E-01	2.6E-04	2.8E+00	3.2E-05
СО	630-08-0	5.6E-01	1.7E+02	4.6E-02	5.0E+02	5.7E-03
PM2.5	N/A	1.3E-02	3.7E+00	1.0E-03	1.1E+01	1.3E-04
PM10	N/A	1.4E-02	4.2E+00	1.2E-03	1.3E+01	1.5E-04
PM	N/A	1.4E-02	4.2E+00	1.2E-03	1.3E+01	1.5E-04
SO ₂	7446-09-5	3.8E-05	1.1E-02	3.2E-06	3.4E-02	3.9E-07
Benzene	71-43-2	4.5E-03	1.3E+00	3.7E-04	4.0E+00	4.7E-05
Acetaldehyde	75-07-0	2.0E-03	5.9E-01	1.6E-04	1.8E+00	2.1E-05
Acrolein	107-02-8	1.3E-04	3.8E-02	1.1E-05	1.1E-01	1.3E-06
Benzo(a)pyrene	50-32-8	3.6E-06	1.1E-03	2.9E-07	3.2E-03	3.7E-08
1,3-Butadiene	106-99-0	5.8E-04	1.7E-01	4.8E-05	5.1E-01	5.9E-06
Formaldehyde	50-00-0	9.8E-04	2.9E-01	8.1E-05	8.8E-01	1.0E-05

Emission Calculation for Vehicles Travelling in B2_PPUD01 or B2_PPUD02:

			Passenger Vehicles @ 12.4 mph							
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emiss	ion Rate (2)	Daily Emission Rate ⁽³⁾					
		g/VMT	g/hour	g/s	g/day	g/s				
NOx	10102-44-0	1.9E-02	1.9E-01	5.3E-05	2.8E+00	3.3E-05				
NO2	10102-44-0	3.1E-03	3.1E-02	8.6E-06	4.5E-01	5.3E-06				
CO	630-08-0	2.9E+00	2.9E+01	8.2E-03	4.3E+02	5.0E-03				
PM2.5	N/A	1.4E-02	1.4E-01	3.9E-05	2.0E+00	2.4E-05				
PM10	N/A	9.5E-02	9.5E-01	2.6E-04	1.4E+01	1.6E-04				
PM	N/A	9.5E-02	9.5E-01	2.6E-04	1.4E+01	1.6E-04				
SO ₂	7446-09-5	2.6E-03	2.6E-02	7.2E-06	3.8E-01	4.4E-06				
Benzene	71-43-2	6.0E-04	6.1E-03	1.7E-06	8.9E-02	1.0E-06				
Acetaldehyde	75-07-0	1.3E-04	1.3E-03	3.7E-07	1.9E-02	2.2E-07				
Acrolein	107-02-8	1.1E-05	1.2E-04	3.2E-08	1.7E-03	2.0E-08				
Benzo(a)pyrene	50-32-8	4.7E-07	4.7E-06	1.3E-09	6.9E-05	8.0E-10				
1,3-Butadiene	106-99-0	4.7E-08	4.7E-07	1.3E-10	6.9E-06	8.0E-11				
Formaldehyde	50-00-0	2.5E-04	2.5E-03	6.9E-07	3.6E-02	4.2E-07				

Emission Calculation for Vehicles Idling in B2_PPUDO1 or B2_PPUDO2:

Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emis	Hourly Emission Rate ⁽²⁾		ion Rate ⁽³⁾
		g/VMT	g/hour	g/s	g/day	g/s
NOx	10102-44-0	1.1E-01	1.2E+00	3.3E-04	1.8E+01	2.0E-04
NO2	10102-44-0	1.8E-02	1.9E-01	5.4E-05	2.8E+00	3.3E-05
CO	630-08-0	3.3E+01	3.4E+02	9.5E-02	5.0E+03	5.8E-02
PM2.5	N/A	2.9E-02	3.0E-01	8.4E-05	4.4E+00	5.1E-05
PM10	N/A	3.2E-02	3.4E-01	9.5E-05	5.0E+00	5.8E-05
PM	N/A	3.2E-02	3.4E-01	9.5E-05	5.0E+00	5.8E-05
SO ₂	7446-09-5	4.3E-02	4.5E-01	1.2E-04	6.6E+00	7.6E-05
Benzene	71-43-2	7.0E-03	7.4E-02	2.0E-05	1.1E+00	1.3E-05
Acetaldehyde	75-07-0	1.5E-03	1.6E-02	4.4E-06	2.3E-01	2.7E-06
Acrolein	107-02-8	1.3E-04	1.4E-03	3.8E-07	2.0E-02	2.3E-07
Benzo(a)pyrene	50-32-8	7.0E-06	7.4E-05	2.0E-08	1.1E-03	1.3E-08
1,3-Butadiene	106-99-0	5.4E-07	5.6E-06	1.6E-09	8.2E-05	9.5E-10
Formaldehyde	50-00-0	2.8E-03	3.0E-02	8.3E-06	4.4E-01	5.0E-06

Notes:

(1) Emission rates are based on MOVES run outputs for year 2031. The more conservative emission rates (higher) between January and July are used in the estimation.

The idling emission factor is based on a MOVES modelled travel speed of 0.5 mph.

The emission rate is therefore calculated based on: a) the car in the lot travelling 0.0125 miles in a span of 1.5-minutes or 0.025 hours or

b) the car in the PPUDO travelling 0.08 miles in a span of 10-minutes or 0.17 hours.

(2) Hourly emission rates are based on assumed maximum number of vehicles arriving or leaving the parking lot and PPUDO areas within a 1 hour period.

(3) Daily emission rates are not used in the model, as a variable hourly emission scenario is used in the modelling.

Sample Calculation - Vehicle Travelling in B2_LOT

Hourly Emission Rate = Emission Factor (g/VMT) x one way miles travelled (miles) x Number of vehicles (V/hour) x 1 hour/3600 s Emission Factor (g/VMT) x two way miles travelled (miles) x Number of vehicles (V/day) x 1day/24 hr x 1 hour/3600 s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on an assumed number of vehicles using the parking lot and PPUDO areas.

Summary of Emissions

-			Morning R	ush Hour	Evening Ru	ush Hour	Total Daily
ource Group	Contaminant	CAS#	Hourly Emission Rate	(entering)	Hourly Emission Rate	Daily Emission Rate (leaving)	Daily Emission Rate
			g/s	g/s	g/s	g/s	g/s
	NOx	10102-44-0	2.1E-04				
	NO2	10102-44-0	3.3E-05				
	CO	630-08-0	3.1E-02			1.8E-02	
	PM2.5	N/A	1.5E-04				
	PM10	N/A	1.0E-03				
	PM	N/A	1.0E-03				6.6E-(
B2_LOT ⁽¹⁾	SO ₂	7446-09-5	2.8E-05				
	Benzene	71-43-2	6.5E-06			4.9E-05	5.1E-
	Acetaldehyde	75-07-0	1.4E-06		1.7E-04	2.1E-05	2.2E-(
	Acrolein	107-02-8	1.2E-07				
	Benzo(a)pyrene	50-32-8	5.0E-09				
	1,3-Butadiene	106-99-0	5.0E-10				
	Formaldehyde	50-00-0	2.6E-06	6.6E-07	8.7E-05	1.1E-05	1.2E-
	NOx	10102-44-0	3.9E-04				
	NO2	10102-44-0	6.2E-05				
	CO	630-08-0	1.0E-01	6.3E-02		6.3E-02	
	PM2.5	N/A	1.2E-04				
	PM10	N/A	3.6E-04				
	PM	N/A	3.6E-04	2.2E-04	3.6E-04	2.2E-04	4.4E-
B2_PPUDO1 ⁽²⁾	SO ₂	7446-09-5	1.3E-04	8.1E-05	1.3E-04	8.1E-05	1.6E-
	Benzene	71-43-2	2.2E-05	1.4E-05	2.2E-05	1.4E-05	2.7E-
	Acetaldehyde	75-07-0	4.8E-06	2.9E-06	4.8E-06	2.9E-06	5.8E-
	Acrolein	107-02-8	4.1E-07			2.5E-07	5.1E-
	Benzo(a)pyrene	50-32-8	2.2E-08	1.3E-08	2.2E-08	1.3E-08	2.7E-
	1,3-Butadiene	106-99-0	1.7E-09	1.0E-09	1.7E-09	1.0E-09	2.1E-
	Formaldehyde	50-00-0	8.9E-06	5.5E-06	8.9E-06	5.5E-06	1.1E-
	NOx	10102-44-0	3.9E-04	2.4E-04	3.9E-04	2.4E-04	4.7E-
	NO2	10102-44-0	6.2E-05	3.8E-05	6.2E-05	3.8E-05	7.6E-
	CO	630-08-0	1.0E-01	6.3E-02	1.0E-01	6.3E-02	1.3E-
	PM2.5	N/A	1.2E-04	7.5E-05	1.2E-04	7.5E-05	1.5E-
	PM10	N/A	3.6E-04	2.2E-04	3.6E-04	2.2E-04	4.4E-
	PM	N/A	3.6E-04	2.2E-04	3.6E-04	2.2E-04	4.4E-
B2_PPUDO2 (2)	SO ₂	7446-09-5	1.3E-04	8.1E-05	1.3E-04	8.1E-05	1.6E-
-	Benzene	71-43-2	2.2E-05	1.4E-05	2.2E-05	1.4E-05	2.7E-
	Acetaldehyde	75-07-0	4.8E-06				
	Acrolein	107-02-8	4.1E-07				5.1E-
	Benzo(a)pyrene	50-32-8	2.2E-08				
	1,3-Butadiene	106-99-0	1.7E-09				
	Formaldehyde	50-00-0	8.9E-06				

Notes:

(1) For vehicles in parking lot:

morning rush hour - assume vehicles entering to park = travelling emissions only

evening - assume vehicles are leaving parking lot = startup + idling + travelling emissions

total daily emissions = emissions in parking lot during morning rush hour + emissions during evening rush hour

(2) For vehicles in PPUDO:

morning rush hour and evening rush hour = travelling emissions + idling emissions

total daily emissions = emissions in PPUDO during morning rush hour + emissions during evening rush hour

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B3 TOC Operation

Source: Passenger Vehicle Tailpipe Emissions in PPUDO Area and Parking Lot - Existing / Future No Build / Future Build Scenario

Source ID:

EX_LOT1, B3_LOT

Description:

Vehicle tailpipe (travelling, idling and start up) emission estimation for the existing and future build passenger pick up and drop off area and parking lot. Emission rates are based on the estimation tool U.S. EPA Motor Vehicle Emission Simulator (MOVES3). Emissions calculated here only accounts for vehicular traffic within the future B3 station. Assumptions used in the calculation are detailed below.

Contaminant(s) of Concern:

NO2, SO2, PM2.5, PM10, CO, acetaldehyde, acrolein, benzene, 1,3-butadiene, benzo(a) pyrene, formaldehyde are included in the estimations.

Emission Calculations - Parameters Used:

Parameter			Input
Existing / Future No Build			
Vehicle idling time in parking lot	1.5	minutes	Based on information provided by Metrolinx
Existing Parking lot capacity	106	spots	Based on counts from Google Earth satellite imagery in 2021.
Maximum number of vehicles per hour during existing rush hour	35	per hour	Stantec assumption is that 1/3 of the parking lot is filled during worst case peak
Vehicle travelling speed in parking lot	20	km/hour	Stantec assumption, typically low speeds travelling in parking lots
Vehicle travelling distance	0.16	miles	measured travel distance from entrance to the parking lot to the middle of the lot
Future Build			
Vehicle idling time in parking lot	1.5	minutes	Based on information provided by Metrolinx
Euture Build Derking let conseity	716	anata	Based on concept design figure and includes proposed AODA, standard parking
Future Build Parking lot capacity	716	spots	spots and existing parking spots.
Maximum number of vehicles per hour during future rush hour	239	per hour	Stantec assumption is that 1/3 of the parking lot is filled during worst case peak
Vehicle travelling speed in parking lot	20	km/hour	Stantec assumption, typically low speeds travelling in parking lots
Vehicle travelling distance	0.25	miles	Stantec assumption
Future Build PPUDO capacity	12	spots	Based on concept design figure
Future Build PPUDO vehicle travelling distance	0.44	miles	travel distance from PPUDO entrance to PPUDO area x 2 (loop)
GO Trains per Hour	3	two way	Based on information provide by Metrolinx
GO Trains per Day	44	two way	Based on information provided by Metrolinx. Total train passes per day minus 10 equipment moves which occur during nighttime hours.
PPUDO Vehicles during Peak Hour	36	per hour	Stantec assumption is that 100% of the PPUDO spots are filled during worst case peak hour (12 spots x 3 trains)
PPUDO Vehicles per Day	528	per day	Calculated assuming all PPUDO spots are full with every GO train (12 spots x 44 train trips).
Vehicle idling time in PPUDO	10	minutes	Stantec assumption is that the total time that each spot is occupied for each train arrival is 10 minutes.

Emission Calculation for Vehicles Travelling in Existing Parking Lot:

			Passenger Vehicles @ 12.4 mph						
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emis	ssion Rate ⁽²⁾	Daily Emission Rate ⁽³⁾				
		g/VMT	g/hour	g/s	g/day	g/s			
NOx	10102-44-0	1.6E-01	8.8E-01	2.5E-04	5.3E+00	6.1E-05			
NO2	10102-44-0	1.8E-02	1.0E-01	2.9E-05	6.2E-01	7.2E-06			
СО	630-08-0	6.0E+00	3.4E+01	9.5E-03	2.0E+02	2.4E-03			
PM2.5	N/A	1.5E-02	8.6E-02	2.4E-05	5.1E-01	5.9E-06			
PM10	N/A	9.6E-02	5.4E-01	1.5E-04	3.3E+00	3.8E-05			
PM	N/A	9.6E-02	5.4E-01	1.5E-04	3.3E+00	3.8E-05			
SO ₂	7446-09-5	3.3E-03	1.9E-02	5.2E-06	1.1E-01	1.3E-06			
Benzene	71-43-2	2.0E-03	1.1E-02	3.1E-06	6.7E-02	7.7E-07			
Acetaldehyde	75-07-0	7.0E-04	4.0E-03	1.1E-06	2.4E-02	2.8E-07			
Acrolein	107-02-8	4.5E-05	2.6E-04	7.1E-08	1.5E-03	1.8E-08			
Benzo(a)pyrene	50-32-8	1.5E-06	8.2E-06	2.3E-09	4.9E-05	5.7E-10			
1,3-Butadiene	106-99-0	1.5E-04	8.6E-04	2.4E-07	5.1E-03	5.9E-08			
Formaldehyde	50-00-0	8.1E-04	4.6E-03	1.3E-06	2.8E-02	3.2E-07			

Emission Calculation for Vehicles Idling in Existing Parking Lot:

		Passenger Vehicles @ 0.5 mph						
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emis	sion Rate (2)	Daily Emission Rate ⁽³⁾			
		g/VMT	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	8.7E-01	3.9E-01	1.1E-04	1.2E+00	1.3E-05		
NO2	10102-44-0	9.6E-02	4.3E-02	1.2E-05	1.3E-01	1.5E-06		
CO	630-08-0	6.7E+01	3.0E+01	8.2E-03	8.9E+01	1.0E-03		
PM2.5	N/A	4.1E-02	1.8E-02	5.1E-06	5.5E-02	6.3E-07		
PM10	N/A	4.7E-02	2.1E-02	5.7E-06	6.2E-02	7.2E-07		
PM	N/A	4.7E-02	2.1E-02	5.7E-06	6.2E-02	7.2E-07		
SO ₂	7446-09-5	5.6E-02	2.5E-02	6.8E-06	7.4E-02	8.5E-07		
Benzene	71-43-2	2.5E-02	1.1E-02	3.0E-06	3.3E-02	3.8E-07		
Acetaldehyde	75-07-0	9.0E-03	4.0E-03	1.1E-06	1.2E-02	1.4E-07		
Acrolein	107-02-8	5.7E-04	2.5E-04	7.0E-08	7.6E-04	8.8E-09		
Benzo(a)pyrene	50-32-8	1.8E-05	7.7E-06	2.2E-09	2.3E-05	2.7E-10		
1,3-Butadiene	106-99-0	2.0E-03	8.9E-04	2.5E-07	2.7E-03	3.1E-08		
Formaldehyde	50-00-0	1.0E-02	4.5E-03	1.2E-06	1.3E-02	1.6E-07		

Emission Calculation for Vehicles - Start-up Emissions in Existing Parking Lot:

		Passenger Vehicles @ Start Up						
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emis	sion Rate ⁽²⁾	Daily Emission Rate ⁽³⁾			
		g/V-start	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	1.0E-01	3.5E+00	9.8E-04	1.1E+01	1.2E-04		
NO2	10102-44-0	4.0E-03	1.4E-01	4.0E-05	4.3E-01	5.0E-06		
CO	630-08-0	9.8E-01	3.4E+01	9.6E-03	1.0E+02	1.2E-03		
PM2.5	N/A	1.1E-02	3.9E-01	1.1E-04	1.2E+00	1.4E-05		
PM10	N/A	1.2E-02	4.4E-01	1.2E-04	1.3E+00	1.5E-05		
PM	N/A	1.2E-02	4.4E-01	1.2E-04	1.3E+00	1.5E-05		
SO ₂	7446-09-5	4.1E-05	1.5E-03	4.1E-07	4.4E-03	5.1E-08		
Benzene	71-43-2	6.2E-03	2.2E-01	6.0E-05	6.5E-01	7.5E-06		
Acetaldehyde	75-07-0	2.6E-03	9.0E-02	2.5E-05	2.7E-01	3.1E-06		
Acrolein	107-02-8	1.7E-04	6.0E-03	1.7E-06	1.8E-02	2.1E-07		
Benzo(a)pyrene	50-32-8	4.2E-06	1.5E-04	4.1E-08	4.4E-04	5.1E-09		
1,3-Butadiene	106-99-0	7.9E-04	2.8E-02	7.8E-06	8.4E-02	9.7E-07		
Formaldehyde	50-00-0	1.6E-03	5.7E-02	1.6E-05	1.7E-01	2.0E-06		

Emission Calculation for Vehicles Travelling in Future Parking Lot:

		Passenger Vehicles @ 12.4 mph						
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emis	sion Rate ⁽²⁾	Daily Emission Rate ⁽³⁾			
		g/VMT	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	1.9E-02	1.1E+00	3.2E-04	6.8E+00	7.9E-05		
NO2	10102-44-0	3.1E-03	1.8E-01	5.1E-05	1.1E+00	1.3E-05		
СО	630-08-0	2.9E+00	1.7E+02	4.8E-02	1.0E+03	1.2E-02		
PM2.5	N/A	1.4E-02	8.2E-01	2.3E-04	4.9E+00	5.7E-05		
PM10	N/A	9.5E-02	5.6E+00	1.6E-03	3.4E+01	3.9E-04		
PM	N/A	9.5E-02	5.6E+00	1.6E-03	3.4E+01	3.9E-04		
SO ₂	7446-09-5	2.6E-03	1.5E-01	4.2E-05	9.2E-01	1.1E-05		
Benzene	71-43-2	6.0E-04	3.6E-02	1.0E-05	2.2E-01	2.5E-06		
Acetaldehyde	75-07-0	1.3E-04	7.8E-03	2.2E-06	4.7E-02	5.4E-07		
Acrolein	107-02-8	1.1E-05	6.8E-04	1.9E-07	4.1E-03	4.7E-08		
Benzo(a)pyrene	50-32-8	4.7E-07	2.8E-05	7.8E-09	1.7E-04	1.9E-09		
1,3-Butadiene	106-99-0	4.7E-08	2.8E-06	7.7E-10	1.7E-05	1.9E-10		
Formaldehyde	50-00-0	2.5E-04	1.5E-02	4.1E-06	8.8E-02	1.0E-06		

			Passenger Vehicles @ 0.5 mph							
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emi	ssion Rate ⁽²⁾	Daily Emission Rate ⁽³⁾					
		g/VMT	g/hour	g/s	g/day	g/s				
NOx	10102-44-0	1.1E-01	3.4E-01	9.5E-05	1.0E+00	1.2E-05				
NO2	10102-44-0	1.8E-02	5.5E-02	1.5E-05	1.6E-01	1.9E-06				
СО	630-08-0	3.3E+01	9.7E+01	2.7E-02	2.9E+02	3.4E-03				
PM2.5	N/A	2.9E-02	8.6E-02	2.4E-05	2.6E-01	3.0E-06				
PM10	N/A	3.2E-02	9.7E-02	2.7E-05	2.9E-01	3.4E-06				
PM	N/A	3.2E-02	9.7E-02	2.7E-05	2.9E-01	3.4E-06				
SO ₂	7446-09-5	4.3E-02	1.3E-01	3.5E-05	3.8E-01	4.4E-06				
Benzene	71-43-2	7.0E-03	2.1E-02	5.8E-06	6.3E-02	7.3E-07				
Acetaldehyde	75-07-0	1.5E-03	4.5E-03	1.3E-06	1.4E-02	1.6E-07				
Acrolein	107-02-8	1.3E-04	3.9E-04	1.1E-07	1.2E-03	1.4E-08				
Benzo(a)pyrene	50-32-8	7.0E-06	2.1E-05	5.8E-09	6.3E-05	7.3E-10				
1,3-Butadiene	106-99-0	5.4E-07	1.6E-06	4.4E-10	4.8E-06	5.5E-11				
Formaldehyde	50-00-0	2.8E-03	8.4E-03	2.3E-06	2.5E-02	2.9E-07				

Emission Calculation for Vehicles Idling in Future Parking Lot:

Emission Calculation for Vehicles - Start-up Emissions in Future Parking Lot:

			Passeng	er Vehicles @ Start	Up	
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emis	sion Rate ⁽²⁾	Daily Emission Rate ⁽³⁾	
		g/V-start	g/hour	g/s	g/day	g/s
NOx	10102-44-0	7.5E-02	1.8E+01	5.0E-03	5.4E+01	6.2E-04
NO2	10102-44-0	3.1E-03	7.5E-01	2.1E-04	2.2E+00	2.6E-05
СО	630-08-0	5.6E-01	1.3E+02	3.7E-02	4.0E+02	4.6E-03
PM2.5	N/A	1.3E-02	3.0E+00	8.3E-04	9.0E+00	1.0E-04
PM10	N/A	1.4E-02	3.4E+00	9.4E-04	1.0E+01	1.2E-04
PM	N/A	1.4E-02	3.4E+00	9.4E-04	1.0E+01	1.2E-04
SO ₂	7446-09-5	3.8E-05	9.1E-03	2.5E-06	2.7E-02	3.2E-07
Benzene	71-43-2	4.5E-03	1.1E+00	3.0E-04	3.2E+00	3.7E-05
Acetaldehyde	75-07-0	2.0E-03	4.8E-01	1.3E-04	1.4E+00	1.7E-05
Acrolein	107-02-8	1.3E-04	3.1E-02	8.5E-06	9.2E-02	1.1E-06
Benzo(a)pyrene	50-32-8	3.6E-06	8.5E-04	2.4E-07	2.5E-03	2.9E-08
1,3-Butadiene	106-99-0	5.8E-04	1.4E-01	3.8E-05	4.1E-01	4.8E-06
Formaldehyde	50-00-0	9.8E-04	2.3E-01	6.5E-05	7.0E-01	8.1E-06

Emission Calculation for Vehicles Travelling in PPUDO Area:

	_		Passeng	er Vehicles @ 12.4 n	nph	
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emission Rate ⁽²⁾		Daily Emission Rate ⁽³⁾	
		g/VMT	g/hour	g/s	g/day	g/s
NOx	10102-44-0	1.9E-02	3.0E-01	8.4E-05	4.4E+00	5.1E-05
NO2	10102-44-0	3.1E-03	4.9E-02	1.4E-05	7.1E-01	8.3E-06
CO	630-08-0	2.9E+00	4.6E+01	1.3E-02	6.8E+02	7.9E-03
PM2.5	N/A	1.4E-02	2.2E-01	6.1E-05	3.2E+00	3.7E-05
PM10	N/A	9.5E-02	1.5E+00	4.2E-04	2.2E+01	2.5E-04
TSP	N/A	9.5E-02	1.5E+00	4.2E-04	2.2E+01	2.5E-04
SO ₂	7446-09-5	2.6E-03	4.1E-02	1.1E-05	5.9E-01	6.9E-06
Benzene	71-43-2	6.0E-04	9.5E-03	2.6E-06	1.4E-01	1.6E-06
Acetaldehyde	75-07-0	1.3E-04	2.1E-03	5.8E-07	3.1E-02	3.5E-07
Acrolein	107-02-8	1.1E-05	1.8E-04	5.0E-08	2.7E-03	3.1E-08
Benzo(a)pyrene	50-32-8	4.7E-07	7.4E-06	2.1E-09	1.1E-04	1.3E-09
1,3-Butadiene	106-99-0	4.7E-08	7.4E-07	2.0E-10	1.1E-05	1.3E-10
Formaldehyde	50-00-0	2.5E-04	3.9E-03	1.1E-06	5.7E-02	6.6E-07

Emission Calculation for Vehicles Idling in Future Build PPUDO Area:

			Passenger Vehicles @ 0.5 mph							
Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Emis	ssion Rate ⁽²⁾	Daily Emission Rate ⁽³⁾					
		g/VMT	g/hour	g/s	g/day	g/s				
NOx	10102-44-0	1.1E-01	3.4E-01	9.5E-05	5.0E+00	5.8E-05				
NO2	10102-44-0	1.8E-02	5.5E-02	1.5E-05	8.1E-01	9.4E-06				
CO	630-08-0	3.3E+01	9.8E+01	2.7E-02	1.4E+03	1.7E-02				
PM2.5	N/A	2.9E-02	8.6E-02	2.4E-05	1.3E+00	1.5E-05				
PM10	N/A	3.2E-02	9.7E-02	2.7E-05	1.4E+00	1.7E-05				
TSP	N/A	3.2E-02	9.7E-02	2.7E-05	1.4E+00	1.7E-05				
SO ₂	7446-09-5	4.3E-02	1.3E-01	3.6E-05	1.9E+00	2.2E-05				
Benzene	71-43-2	7.0E-03	2.1E-02	5.8E-06	3.1E-01	3.6E-06				
Acetaldehyde	75-07-0	1.5E-03	4.5E-03	1.3E-06	6.7E-02	7.7E-07				
Acrolein	107-02-8	1.3E-04	3.9E-04	1.1E-07	5.8E-03	6.7E-08				
Benzo(a)pyrene	50-32-8	7.0E-06	2.1E-05	5.8E-09	3.1E-04	3.6E-09				
1,3-Butadiene	106-99-0	5.4E-07	1.6E-06	4.5E-10	2.4E-05	2.7E-10				
Formaldehyde	50-00-0	2.8E-03	8.5E-03	2.4E-06	1.2E-01	1.4E-06				

Notes:

(1) Emission rates are based on MOVES outputs for years 2021 and 2031. The more conservative emission rates (higher) between January and July are used in the estimation.

The idling emission factor is based on a MOVES modelled travel speed of 0.5 mph.

The emission rate is therefore calculated based on: a) the car in the lot travelling 0.0125 miles in a span of 1.5-minutes or 0.025 hours or

b) the car in the PPUDO travelling 0.08 miles in a span of 10-minutes or 0.17 hours.

(2) Hourly emission rates are based on assumed maximum number of vehicles arriving or leaving the parking lot within a 1 hour period.

(3) Daily emission rates are not used in the model, as a variable hourly emission scenario is used in the modelling.

Sample Calculation - Vehicle Travelling

Hourly Emission Rate = Emission Factor (g/VMT) x one way miles travelled (miles) x Number of vehicles (V/hour) x 1 hour/3600 s Daily Emission Rate = Emission Factor (g/VMT) x two way miles travelled (miles) x Number of vehicles (V/day) x 1 day/24 hr x 1 hour/3600 s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the assumed number of vehicles using the parking lot based on proposed future train schedule, and proposed parking lot capacity.

Summary of Emissions

				Rush Hour		Rush Hour	Total Daily	
Source Group	Contaminant	CAS#	Hourly Emission Rate	Daily Emission Rate (entering)		Daily Emission Rate (leaving)	Daily Emission Rate	
		•	g/s	g/s	g/s	g/s	g/s	
	NOx	10102-44-0	2.5E-04	6.1E-05	1.34E-03	1.98E-04	2.59E-0-	
	NO2	10102-44-0	2.9E-05	7.2E-06	8.0E-05	1.4E-05	2.08E-0	
	CO	630-08-0	9.5E-03	2.4E-03	2.73E-02	4.60E-03	6.97E-0	
	PM2.5	N/A	2.4E-05			2.01E-05		
	PM10	N/A	1.5E-04	3.8E-05		5.37E-05		
	PM	N/A	1.5E-04	3.8E-05	2.79E-04	5.37E-05	9.15E-0	
EX_LOT1	SO ₂	7446-09-5	5.2E-06	1.3E-06	1.25E-05	2.21E-06	3.52E-0	
	Benzene	71-43-2	3.1E-06	7.7E-07	6.65E-05	8.70E-06	9.47E-0	
	Acetaldehyde	75-07-0	1.1E-06	2.8E-07	2.73E-05	3.55E-06	3.83E-0	
	Acrolein	107-02-8	7.1E-08	1.8E-08	1.81E-06	2.36E-07	2.54E-0	
	Benzo(a)pyrene	50-32-8	2.3E-09			5.95E-09	6.52E-0	
	1,3-Butadiene	106-99-0	2.4E-07	5.9E-08	8.28E-06	1.07E-06	1.12E-0	
	Formaldehyde	50-00-0	1.3E-06	3.2E-07	1.83E-05	2.45E-06	2.77E-0	
	NOx	10102-44-0	3.2E-04	7.9E-05	5.4E-03	7.1E-04	7.9E-0	
	NO2	10102-44-0	5.1E-05	1.3E-05	2.7E-04	4.1E-05	5.3E-0	
	CO	630-08-0	4.8E-02		1.1E-01	2.0E-02	3.2E-0	
	PM2.5	N/A	2.3E-04			1.6E-04	2.2E-0	
	PM10	N/A	1.6E-03	3.9E-04	2.5E-03	5.1E-04	9.0E-0	
	PM	N/A	1.6E-03	3.9E-04	2.5E-03	5.1E-04	9.0E-0	
B3_LOT	SO ₂	7446-09-5	4.2E-05	1.1E-05	8.0E-05	1.5E-05	2.6E-0	
	Benzene	71-43-2	1.0E-05	2.5E-06	3.2E-04	4.1E-05	4.3E-0	
	Acetaldehyde	75-07-0	2.2E-06			1.7E-05		
	Acrolein	107-02-8	1.9E-07			1.1E-06		
	Benzo(a)pyrene	50-32-8	7.8E-09	1.9E-09	2.5E-07	3.2E-08	3.4E-0	
	1,3-Butadiene	106-99-0	7.7E-10	1.9E-10	3.8E-05	4.8E-06	4.8E-0	
	Formaldehyde	50-00-0	4.1E-06	1.0E-06	7.2E-05	9.5E-06	1.0E-0	
	NOx	10102-44-0	1.8E-04	1.1E-04	1.8E-04	1.1E-04	2.2E-0	
	NO2	10102-44-0	2.9E-05	1.8E-05	2.9E-05	1.8E-05	3.5E-0	
	CO	630-08-0	4.0E-02	2.4E-02	4.0E-02	2.4E-02		
	PM2.5	N/A	8.4E-05	5.2E-05	8.4E-05	5.2E-05	1.0E-0	
	PM10	N/A	4.4E-04	2.7E-04		2.7E-04	5.4E-0	
	PM	N/A	4.4E-04	2.7E-04	4.4E-04	2.7E-04	5.4E-0	
B3_PPUDO	SO ₂	7446-09-5	4.7E-05	2.9E-05	4.7E-05	2.9E-05	5.7E-0	
	Benzene	71-43-2	8.5E-06	5.2E-06	8.5E-06	5.2E-06	1.0E-0	
	Acetaldehyde	75-07-0	1.8E-06			1.1E-06		
	Acrolein	107-02-8	1.6E-07	9.8E-08	1.6E-07	9.8E-08	2.0E-0	
	Benzo(a)pyrene	50-32-8	7.9E-09	4.8E-09	7.9E-09	4.8E-09	9.7E-0	
	1,3-Butadiene	106-99-0	6.5E-10			4.0E-10	8.0E-1	
	Formaldehyde	50-00-0	3.4E-06			2.1E-06		

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B4 TOC Operation

Source: Passenger Vehicle Tailpipe Emissions in Parking Lot - Existing / Future No Build / Future Build Scenario

Source ID:

EX_LOT2, B4_LOT, B4_PPUDO

Description:

Vehicle tailpipe (travelling, idling and start up) emission estimation for the existing and future build passenger pick up and drop off area and parking lot. Emission rates are based on the estimation tool U.S. EPA Motor Vehicle Emission Simulator (MOVES3). Emissions calculated here only accounts for vehicular traffic within the future B4 station. Assumptions used in the calculation are detailed below.

Contaminant(s) of Concern:

NO2, SO2, PM2.5, PM10, CO, acetaldehyde, acrolein, benzene, 1,3-butadiene, benzo(a) pyrene, formaldehyde are included in the estimations.

Emission Calculations - Parameters Used:

Parameter			Input
Existing / Future No Build			
Vehicle idling time in parking lot	1.5	minutes	Based on information provided by Metrolinx
Existing Parking lot capacity	87	spots	Based on counts from Google Earth satellite imagery in 2021.
Maximum number of vehicles per hour during existing rush hour	29	per hour	Stantec assumption is that 1/3 of the parking lot is filled during worst case peak hour
Vehicle travelling speed in parking lot	20	km/hour	Stantec assumption, typically low speeds travelling in parking lots
Existing Lot vehicle travelling distance	0.04	miles	measured travel distance from entrance to the parking lot to the middle of the lot
Future Build			
Vehicle idling time in parking lot	1.5	minutes	Based on information provided by Metrolinx
Future Build Parking lot capacity	824	spots	Based on concept design figure and includes proposed AODA and standard parking spots
Maximum number of vehicles per hour during future build rush hour	275	per hour	Stantec assumption is that 1/3 of the parking lot is filled during worst case peak hour
Future Build Lot vehicle travelling distance	0.20	miles	measured travel distance from entrance to the parking lot to the middle of the lot
Future Build PPUDO capacity	36	spots	Based on concept design figure
Future Build PPUDO vehicle travelling distance	0.06	miles	travel distance from PPUDO entrance to PPUDO area x 2 (loop)
GO Trains per Hour	3	two way	Based on information provied by Metrolinx
GO Trains per Day	44	two way	Based on information provided by Metrolinx. Total train passes per day minus 10 equipment moves which occur during nighttime hours.
PPUDO Vehicles during Peak Hour	108	per hour	Stantec assumption is that 100% of the PPUDO spots are filled during worst case peak hour (19 spots x 3 trains)
PPUDO Vehicles per Day	1584	per day	Calculated assuming all PPUDO spots are full with every GO train (36 spots x 44 train trips).
Vehicle idling time in PPUDO	10	minutes	Stantec assumption is that the total time that each spot is occupied for each train arrival is 10 minutes.

Emission Calculation for Vehicles Travelling in Existing Parking Lot:

		Passenger Vehicles @ 12.4 mph						
Contaminant	CAS#	Emission Factor ⁽¹⁾ Hourly Emission Rate ⁽²⁾		nission Rate ⁽²⁾	Daily Emis	sion Rate ⁽³⁾		
		g/VMT	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	1.6E-01	1.8E-01	5.0E-05	1.1E+00	1.3E-05		
NO2	10102-44-0	1.8E-02	2.1E-02	5.9E-06	1.3E-01	1.5E-06		
CO	630-08-0	6.0E+00	7.0E+00	1.9E-03	4.2E+01	4.9E-04		
PM2.5	N/A	1.5E-02	1.8E-02	4.9E-06	1.1E-01	1.2E-06		
PM10	N/A	9.6E-02	1.1E-01	3.1E-05	6.7E-01	7.7E-06		
TSP	N/A	9.6E-02	1.1E-01	3.1E-05	6.7E-01	7.7E-06		
SO ₂	7446-09-5	3.3E-03	3.9E-03	1.1E-06	2.3E-02	2.7E-07		
Benzene	71-43-2	2.0E-03	2.3E-03	6.3E-07	1.4E-02	1.6E-07		
Acetaldehyde	75-07-0	7.0E-04	8.2E-04	2.3E-07	4.9E-03	5.7E-08		
Acrolein	107-02-8	4.5E-05	5.3E-05	1.5E-08	3.2E-04	3.7E-09		
Benzo(a)pyrene	50-32-8	1.5E-06	1.7E-06	4.7E-10	1.0E-05	1.2E-10		
1,3-Butadiene	106-99-0	1.5E-04	1.8E-04	4.9E-08	1.1E-03	1.2E-08		
Formaldehyde	50-00-0	8.1E-04	9.4E-04	2.6E-07	5.7E-03	6.6E-08		

Emission Calculation for Vehicles Idling in Existing Parking Lot:

		Passenger Vehicles @ 0.5 mph						
Contaminant	CAS#	Emission Factor ⁽¹⁾ Hourly Emission Rate ⁽²⁾		Daily Emiss	sion Rate ⁽³⁾			
		g/VMT	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	8.7E-01	3.2E-01	8.8E-05	9.5E-01	1.1E-05		
NO2	10102-44-0	9.6E-02	3.5E-02	9.7E-06	1.0E-01	1.2E-06		
CO	630-08-0	6.7E+01	2.4E+01	6.8E-03	7.3E+01	8.5E-04		
PM2.5	N/A	4.1E-02	1.5E-02	4.2E-06	4.5E-02	5.2E-07		
PM10	N/A	4.7E-02	1.7E-02	4.7E-06	5.1E-02	5.9E-07		
TSP	N/A	4.7E-02	1.7E-02	4.7E-06	5.1E-02	5.9E-07		
SO ₂	7446-09-5	5.6E-02	2.0E-02	5.6E-06	6.0E-02	7.0E-07		
Benzene	71-43-2	2.5E-02	8.9E-03	2.5E-06	2.7E-02	3.1E-07		
Acetaldehyde	75-07-0	9.0E-03	3.3E-03	9.1E-07	9.8E-03	1.1E-07		
Acrolein	107-02-8	5.7E-04	2.1E-04	5.8E-08	6.2E-04	7.2E-09		
Benzo(a)pyrene	50-32-8	1.8E-05	6.4E-06	1.8E-09	1.9E-05	2.2E-10		
1,3-Butadiene	106-99-0	2.0E-03	7.3E-04	2.0E-07	2.2E-03	2.5E-08		
Formaldehyde	50-00-0	1.0E-02	3.7E-03	1.0E-06	1.1E-02	1.3E-07		

			Passenger Vehicles @ Start Up						
Contaminant	CAS#	Emission Factor ⁽¹⁾	tor ⁽¹⁾ Hourly Emission Rate ⁽²⁾		Daily Emission Rate ⁽³⁾				
		g/V-start	g/hour	g/s	g/day	g/s			
NOx	10102-44-0	1.0E-01	2.9E+00	8.1E-04	8.7E+00	1.0E-04			
NO2	10102-44-0	4.0E-03	1.2E-01	3.3E-05	3.5E-01	4.1E-06			
CO	630-08-0	9.8E-01	2.8E+01	7.9E-03	8.5E+01	9.8E-04			
PM2.5	N/A	1.1E-02	3.2E-01	8.9E-05	9.6E-01	1.1E-05			
PM10	N/A	1.2E-02	3.6E-01	1.0E-04	1.1E+00	1.3E-05			
TSP	N/A	1.2E-02	3.6E-01	1.0E-04	1.1E+00	1.3E-05			
SO ₂	7446-09-5	4.1E-05	1.2E-03	3.3E-07	3.6E-03	4.2E-08			
Benzene	71-43-2	6.2E-03	1.8E-01	5.0E-05	5.4E-01	6.2E-06			
Acetaldehyde	75-07-0	2.6E-03	7.4E-02	2.1E-05	2.2E-01	2.6E-06			
Acrolein	107-02-8	1.7E-04	4.9E-03	1.4E-06	1.5E-02	1.7E-07			
Benzo(a)pyrene	50-32-8	4.2E-06	1.2E-04	3.4E-08	3.6E-04	4.2E-09			
1,3-Butadiene	106-99-0	7.9E-04	2.3E-02	6.4E-06	6.9E-02	8.0E-07			
Formaldehyde	50-00-0	1.6E-03	4.7E-02	1.3E-05	1.4E-01	1.6E-06			

Emission Calculation for Vehicles - Start-up Emissions in Existing Parking Lot:

Emission Calculation for Vehicles Travelling in Future Build Parking Lot:

			Passenger Vehicles @ 12.4 mph						
Contaminant	CAS#	Emission Factor ⁽¹⁾ Hourly Emission Rate ⁽²⁾		nission Rate (2)	Daily Emission Rate (3)				
		g/VMT	g/hour	g/s	g/day	g/s			
NOx	10102-44-0	1.9E-02	1.0E+00	2.9E-04	6.3E+00	7.3E-05			
NO2	10102-44-0	3.1E-03	1.7E-01	4.7E-05	1.0E+00	1.2E-05			
СО	630-08-0	2.9E+00	1.6E+02	4.5E-02	9.6E+02	1.1E-02			
PM2.5	N/A	1.4E-02	7.6E-01	2.1E-04	4.5E+00	5.2E-05			
PM10	N/A	9.5E-02	5.2E+00	1.4E-03	3.1E+01	3.6E-04			
TSP	N/A	9.5E-02	5.2E+00	1.4E-03	3.1E+01	3.6E-04			
SO ₂	7446-09-5	2.6E-03	1.4E-01	3.9E-05	8.4E-01	9.8E-06			
Benzene	71-43-2	6.0E-04	3.3E-02	9.2E-06	2.0E-01	2.3E-06			
Acetaldehyde	75-07-0	1.3E-04	7.2E-03	2.0E-06	4.3E-02	5.0E-07			
Acrolein	107-02-8	1.1E-05	6.3E-04	1.7E-07	3.8E-03	4.4E-08			
Benzo(a)pyrene	50-32-8	4.7E-07	2.6E-05	7.2E-09	1.5E-04	1.8E-09			
1,3-Butadiene	106-99-0	4.7E-08	2.6E-06	7.1E-10	1.5E-05	1.8E-10			
Formaldehyde	50-00-0	2.5E-04	1.4E-02	3.8E-06	8.1E-02	9.4E-07			

Emission Calculation for Vehicles Idling in Future Build Parking Lot:

			Passenger Vehicles @ 0.5 mph					
Contaminant	CAS#	Emission Factor ⁽¹⁾	Emission Factor ⁽¹⁾ Hourly Emission Rate ⁽²⁾		Daily Emis	sion Rate ⁽³⁾		
		g/VMT	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	1.1E-01	3.9E-01	1.1E-04	1.2E+00	1.4E-05		
NO2	10102-44-0	1.8E-02	6.3E-02	1.8E-05	1.9E-01	2.2E-06		
CO	630-08-0	3.3E+01	1.1E+02	3.1E-02	3.4E+02	3.9E-03		
PM2.5	N/A	2.9E-02	9.9E-02	2.7E-05	3.0E-01	3.4E-06		
PM10	N/A	3.2E-02	1.1E-01	3.1E-05	3.3E-01	3.9E-06		
TSP	N/A	3.2E-02	1.1E-01	3.1E-05	3.3E-01	3.9E-06		
SO ₂	7446-09-5	4.3E-02	1.5E-01	4.1E-05	4.4E-01	5.1E-06		
Benzene	71-43-2	7.0E-03	2.4E-02	6.7E-06	7.2E-02	8.4E-07		
Acetaldehyde	75-07-0	1.5E-03	5.2E-03	1.4E-06	1.6E-02	1.8E-07		
Acrolein	107-02-8	1.3E-04	4.5E-04	1.3E-07	1.4E-03	1.6E-08		
Benzo(a)pyrene	50-32-8	7.0E-06	2.4E-05	6.7E-09	7.2E-05	8.4E-10		
1,3-Butadiene	106-99-0	5.4E-07	1.8E-06	5.1E-10	5.5E-06	6.4E-11		
Formaldehyde	50-00-0	2.8E-03	9.7E-03	2.7E-06	2.9E-02	3.4E-07		

Emission Calculation for Vehicles - Start-up Emissions in Future Build Parking Lot:

		Passenger Vehicles @ Start Up						
Contaminant	CAS#	Emission Factor ⁽¹⁾ Hourly Emission Rate ⁽²⁾		nission Rate ⁽²⁾	Daily Emis	sion Rate ⁽³⁾		
		g/V-start	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	7.5E-02	2.1E+01	5.7E-03	6.2E+01	7.2E-04		
NO2	10102-44-0	3.1E-03	8.6E-01	2.4E-04	2.6E+00	3.0E-05		
CO	630-08-0	5.6E-01	1.5E+02	4.2E-02	4.6E+02	5.3E-03		
PM2.5	N/A	1.3E-02	3.4E+00	9.6E-04	1.0E+01	1.2E-04		
PM10	N/A	1.4E-02	3.9E+00	1.1E-03	1.2E+01	1.4E-04		
TSP	N/A	1.4E-02	3.9E+00	1.1E-03	1.2E+01	1.4E-04		
SO ₂	7446-09-5	3.8E-05	1.0E-02	2.9E-06	3.1E-02	3.6E-07		
Benzene	71-43-2	4.5E-03	1.2E+00	3.4E-04	3.7E+00	4.3E-05		
Acetaldehyde	75-07-0	2.0E-03	5.5E-01	1.5E-04	1.6E+00	1.9E-05		
Acrolein	107-02-8	1.3E-04	3.5E-02	9.8E-06	1.1E-01	1.2E-06		
Benzo(a)pyrene	50-32-8	3.6E-06	9.8E-04	2.7E-07	2.9E-03	3.4E-08		
1,3-Butadiene	106-99-0	5.8E-04	1.6E-01	4.4E-05	4.7E-01	5.5E-06		
Formaldehyde	50-00-0	9.8E-04	2.7E-01	7.5E-05	8.1E-01	9.4E-06		

Emission Calculation for Vehicles Travelling in PPUDO Area:

			Pa	assenger Vehicles @ 12	2.4 mph	
Contaminant	CAS#	Emission Factor ⁽¹⁾	Emission Factor ⁽¹⁾ Hourly Emission Rate ⁽²⁾		Daily Emission Rate ⁽³⁾	
		g/VMT	g/hour	g/s	g/day	g/s
NOx	10102-44-0	1.9E-02	1.2E-01	3.4E-05	1.8E+00	2.1E-05
NO2	10102-44-0	3.1E-03	2.0E-02	5.5E-06	2.9E-01	3.4E-06
CO	630-08-0	2.9E+00	1.9E+01	5.3E-03	2.8E+02	3.2E-03
PM2.5	N/A	1.4E-02	8.9E-02	2.5E-05	1.3E+00	1.5E-05
PM10	N/A	9.5E-02	6.1E-01	1.7E-04	9.0E+00	1.0E-04
TSP	N/A	9.5E-02	6.1E-01	1.7E-04	9.0E+00	1.0E-04
SO ₂	7446-09-5	2.6E-03	1.7E-02	4.6E-06	2.4E-01	2.8E-06
Benzene	71-43-2	6.0E-04	3.9E-03	1.1E-06	5.7E-02	6.6E-07
Acetaldehyde	75-07-0	1.3E-04	8.5E-04	2.4E-07	1.2E-02	1.4E-07
Acrolein	107-02-8	1.1E-05	7.4E-05	2.1E-08	1.1E-03	1.3E-08
Benzo(a)pyrene	50-32-8	4.7E-07	3.0E-06	8.4E-10	4.5E-05	5.2E-10
1,3-Butadiene	106-99-0	4.7E-08	3.0E-07	8.4E-11	4.4E-06	5.1E-11
Formaldehyde	50-00-0	2.5E-04	1.6E-03	4.4E-07	2.3E-02	2.7E-07

Emission Calculation for Vehicles Idling in Future Build PPUDO Area:

		Passenger Vehicles @ 0.5 mph						
Contaminant	CAS#	Emission Factor ⁽¹⁾ Hourly Emission Rate		nission Rate ⁽²⁾	te ⁽²⁾ Daily Emission Rate ⁽³⁾			
		g/VMT	g/hour	g/s	g/day	g/s		
NOx	10102-44-0	1.1E-01	1.0E+00	2.9E-04	1.5E+01	1.7E-04		
NO2	10102-44-0	1.8E-02	1.7E-01	4.6E-05	2.4E+00	2.8E-05		
CO	630-08-0	3.3E+01	2.9E+02	8.1E-02	4.3E+03	5.0E-02		
PM2.5	N/A	2.9E-02	2.6E-01	7.2E-05	3.8E+00	4.4E-05		
PM10	N/A	3.2E-02	2.9E-01	8.1E-05	4.3E+00	5.0E-05		
TSP	N/A	3.2E-02	2.9E-01	8.1E-05	4.3E+00	5.0E-05		
SO ₂	7446-09-5	4.3E-02	3.9E-01	1.1E-04	5.7E+00	6.5E-05		
Benzene	71-43-2	7.0E-03	6.3E-02	1.8E-05	9.3E-01	1.1E-05		
Acetaldehyde	75-07-0	1.5E-03	1.4E-02	3.8E-06	2.0E-01	2.3E-06		
Acrolein	107-02-8	1.3E-04	1.2E-03	3.3E-07	1.7E-02	2.0E-07		
Benzo(a)pyrene	50-32-8	7.0E-06	6.3E-05	1.8E-08	9.3E-04	1.1E-08		
1,3-Butadiene	106-99-0	5.4E-07	4.8E-06	1.3E-09	7.1E-05	8.2E-10		
Formaldehyde	50-00-0	2.8E-03	2.5E-02	7.1E-06	3.7E-01	4.3E-06		

Notes:

(1) Emission rates are based on MOVES run outputs for years 2021 and 2031. The more conservative emission rates (higher) between January and July are used in the estimation. The idling emission factor is based on a MOVES modelled travel speed of 0.5 mph.

The emission rate is therefore calculated based on: a) the car in the lot travelling 0.0125 miles in a span of 1.5-minutes or 0.025 hours or

b) the car in the PPUDO travelling 0.08 miles in a span of 10-minutes or 0.17 hours.

(2) Hourly emission rates are based on assumed maximum number of vehicles arriving or leaving the parking lot or PPUDO within a 1 hour period.

(3) Daily emission rates are not used in the model, as a variable hourly emission scenario is used in the modelling.

Sample Calculation - Vehicle Travelling in B4_PPUDO

Hourly Emission Rate = Emission Factor (g/VMT) x loop travel distance (miles) x Number of vehicles (V/hour) x 1 hour/3600 s

Daily Emission Rate = Emission Factor (g/VMT) x loop travel distance (miles) x Number of vehicles (V/day) x 1day/24 hr x 1 hour/3600 s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the assumed number of vehicles using the parking lot based on proposed future train schedule, and proposed parking lot capacity.

Summary of Emissions

-			Mornin	g Rush Hour	Evening F	Total Daily	
ource Group	Contaminant	CAS#	Hourly Emission Rate	Daily Emission Rate (entering)	Hourly Emission Rate	Daily Emission Rate (leaving)	Daily Emission Rate
			g/s	g/s	g/s	g/s	g/s
	NOx	10102-44-0	5.0E-05	i 1.3E-05	9.45E-04	1.24E-04	1.4E-04
	NO2	10102-44-0	5.9E-06	1.5E-06	4.8E-05	6.8E-06	8.2E-0
	СО	630-08-0	1.9E-03	4.9E-04	1.66E-02	2.31E-03	2.8E-0
	PM2.5	N/A	4.9E-06	1.2E-06	9.78E-05	1.28E-05	1.4E-0
	PM10	N/A	3.1E-05	7.7E-06	1.36E-04	2.09E-05	2.9E-0
	PM	N/A	3.1E-05	7.7E-06	1.36E-04	2.09E-05	2.9E-0
EX_LOT2	SO ₂	7446-09-5	1.1E-06	2.7E-07	7.00E-06	1.01E-06	1.3E-0
	Benzene	71-43-2	6.3E-07	1.6E-07	5.27E-05	6.66E-06	6.8E-0
	Acetaldehyde	75-07-0	2.3E-07	5.7E-08	2.17E-05	2.75E-06	2.8E-0
	Acrolein	107-02-8	1.5E-08	3.7E-09	1.45E-06	1.83E-07	1.9E-0
	Benzo(a)pyrene	50-32-8	4.7E-10				
	1,3-Butadiene	106-99-0	4.9E-08	1.2E-08	6.65E-06	8.38E-07	8.5E-0
	Formaldehyde	50-00-0	2.6E-07	6.6E-08	1.43E-05	1.82E-06	1.9E-0
	NOx	10102-44-0	2.9E-04	7.3E-05	6.1E-03	8.0E-04	8.8E-0
	NO2	10102-44-0	4.7E-05			4.4E-05	
	со	630-08-0	4.5E-02	1.1E-02	1.2E-01	2.0E-02	3.1E-0
	PM2.5	N/A	2.1E-04				
	PM10	N/A	1.4E-03		2.6E-03	5.0E-04	8.6E-04
	PM	N/A	1.4E-03				
B4_LOT	SO ₂	7446-09-5	3.9E-05	9.8E-06	8.3E-05	1.5E-05	2.5E-0
_	Benzene	71-43-2	9.2E-06			4.6E-05	
	Acetaldehyde	75-07-0	2.0E-06			2.0E-05	
	Acrolein	107-02-8	1.7E-07				
	Benzo(a)pyrene	50-32-8	7.2E-09			3.7E-08	
	1,3-Butadiene	106-99-0	7.1E-10				
	Formaldehyde	50-00-0	3.8E-06				
	NOx	10102-44-0	3.2E-04				
	NO2	10102-44-0	5.2E-05				
	CO	630-08-0	8.7E-02				
	PM2.5	N/A	9.6E-05				
	PM10	N/A	2.5E-04			1.5E-04	
	PM	N/A	2.5E-04			1.5E-04	
B4_PPUDO	SO ₂	7446-09-5	1.1E-04			6.8E-05	
	Benzene	71-43-2	1.9E-05				
	Acetaldehyde	75-07-0	4.0E-06				
	Acrolein	107-02-8	3.5E-07			2.1E-07	
	Benzo(a)pyrene 1,3-Butadiene	50-32-8 106-99-0	1.8E-08 1.4E-09				
	Formaldehyde	50-00-0	7.5E-06				

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B4 TOC Operation

Source: Transit Bus Tailpipe Emissions in Bus Loop - Existing /Future No Build Scenario

Source ID:

EX_BUS1	Existing GO bus loop Courtice Rd @ Baseline Rd (travelling buses)
EX_BUS_IDLE1	Existing GO bus loop Courtice Rd @ Baseline Rd (idling buses)

Description:

Diesel GO Bus emissions at the bus loop include tailpipe emissions due to travelling and idling. Emission rates are based on the estimation tool U.S. EPA Motor Vehicle Emission Simulator (MOVES3). Assumptions used in the calculation are detailed below.

Emissions calculated here only accounts for vehicular traffic travelling within the Station.

Contaminant(s) of Concern:

NO2, SO2, PM2.5, PM10, CO, acetaldehyde, acrolein, benzene, 1,3-butadiene, benzo(a) pyrene , formaldehyde are included in the estimations.

Emission Calculations - Parameters Used:

Parameter	Input /Reference				
Existing / Future No Build					
GO Bus idling time in bus loop	3	minutes	Information confirmed by Metrolinx		
Maximum number of Buses per hour during peak hour	1	per hour	Derived from the 2020 Weekday GO Bus schedule for Route 88 Peterborough/Oshawa.		
Maximum number of Buses per day	6	per day	Derived from the 2020 Weekday GO Bus schedule for Route 88 Peterborough/Oshawa.		
GO Bus travelling speed in bus loop	20	km/hour	Assumed travelling speed in parking lot		
Existing/ Future No Build Bus loop travel distance	0.32	miles	Stantec assumption - AERMOD line volumes source distance		

Emission Calculation for Diesel Bus Emissions:

Source ID	Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Em	hission Rate (2)	Daily Emission Rate (3)	
oource ib	Containinant		g/VMT	g/hour	g/s	g/day	g/s
	NOx	10102-44-0	16.376	5.2	1.4E-03	31.2	3.61E-04
	NO2	10102-44-0	2.505	0.8	2.2E-04	4.8	5.5E-05
	CO	630-08-0	7.342	2.3	6.5E-04	14.0	1.62E-04
	PM2.5	N/A	0.405	0.1	3.6E-05	0.8	8.93E-06
	PM10	N/A	0.845	0.3	7.5E-05	1.6	1.86E-05
	PM	N/A	0.845	0.3	7.5E-05	1.6	1.86E-05
EX_BUS1	SO ₂	7446-09-5	0.021	0.0	1.9E-06	0.0	4.63E-07
	Benzene	71-43-2	7.98E-03	0.0	7.0E-07	0.0	1.76E-07
	Acetaldehyde	75-07-0	3.92E-02	0.0	3.5E-06	0.1	8.66E-07
	Acrolein	107-02-8	6.95E-03	0.0	6.1E-07	0.0	1.53E-07
	Benzo(a)pyrene	50-32-8	1.75E-05	0.0	1.5E-09	0.0	3.87E-10
	1,3-Butadiene	106-99-0	2.84E-03	0.0	2.5E-07	0.0	6.27E-08
	Formaldehyde	50-00-0	8.43E-02	0.0	7.4E-06	0.2	1.86E-06
	NOx	10102-44-0	299.587	7.5	2.1E-03	44.94	5.20E-04
	NO2	10102-44-0	46.215	1.2	3.2E-04	6.93	8.02E-05
	CO	630-08-0	116.0	2.9	8.1E-04	17.39	2.01E-04
	PM2.5	N/A	4.773	0.1	3.3E-05	0.72	8.29E-06
	PM10	N/A	5.188	0.1	3.6E-05	0.78	9.01E-06
	PM	N/A	5.188	0.1	3.6E-05	0.78	9.01E-06
EX_BUS_IDL1	SO ₂	7446-09-5	0.2747	0.0	1.9E-06	0.04	4.77E-07
	Benzene	71-43-2	1.84E-01	0.0	1.3E-06	0.03	3.19E-07
	Acetaldehyde	75-07-0	8.95E-01	0.0	6.2E-06	0.13	1.55E-06
	Acrolein	107-02-8	1.59E-01	0.0	1.1E-06	0.02	2.76E-07
	Benzo(a)pyrene	50-32-8	2.82E-04	0.0	2.0E-09	0.00	4.90E-10
	1,3-Butadiene	106-99-0	6.52E-02	0.0	4.5E-07	0.01	1.13E-07
	Formaldehyde	50-00-0	1.94E+00	0.0	1.3E-05	0.29	3.36E-06

Notes:

(1) Emission rates are based on MOVES3 for year 2021. The more conservative emission rates (higher) between January and July are used in the estimation.

The idling emission factor is based on a MOVES modelled travel speed of 0.5 mph. The emission rate is therefore calculated based on the bus travelling 0.025 miles in a span of 3-minutes or 0.05 hours. bus idling distance = 0.5 mph x 0.05 hr = 0.025 miles

(2) Hourly emission rates are based on assumed maximum number of vehicles arriving or leaving the bus loop within a 1 hour period.

(3) Daily emission rates are not used in the model, as a variable hourly emission scenario is used in the modelling.

Sample Calculation

Hourly Emission Rate	=	Emission Factor (g/VKT) x Number of vehicles (V/hour) x Travel distance miles x 1 hour/3600 s
Daily Emission Rate	=	Emission Factor (g/VKT) x Number of vehicles (V/day) x Travel distance miles x 1day/24hours x 1 hour/3600 s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the 2021 Route 88A bus schedule.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B4 TOC Operation

Source: Transit Bus Tailpipe Emissions in Bus Loop - Existing / Future No Build Scenario

Source ID:

EX_BUS2	Existing GO bus loop Clarington Blvd @ Durham Hwy 2 (travelling buses)
EX_BUS_IDL2	Existing GO bus loop Clarington Blvd @ Durham Hwy 2 (idling buses)

Description:

Diesel GO Bus emissions at the bus loop include tailpipe emissions due to travelling and idling. Emission rates are based on the estimation tool U.S. EPA Motor Vehicle Emission Simulator (MOVES3). Assumptions used in the calculation are detailed below.

Emissions calculated here only accounts for vehicular traffic travelling within the Station.

Contaminant(s) of Concern:

NO2, SO2, PM2.5, PM10, CO, acetaldehyde, acrolein, benzene, 1,3-butadiene, benzo(a) pyrene , formaldehyde are included in the estimations.

Emission Calculations - Parameters Used:

Parameter	Input /Reference				
Existing / Future No Build					
GO Bus idling time in bus loop	3	minutes	Information confirmed by Metrolinx		
Maximum number of Buses per hour during peak hour	4	per hour	Derived from the 2020 Weekday GO Bus schedule for Route 88 Peterborough/Oshawa.		
Maximum number of Buses per day	28	per day	Derived from the 202 Weekday GO Bus schedule for Route 88 Peterborough/Oshawa.		
GO Bus travelling speed in bus loop	20	km/hour	Assumed travelling speed in parking lot		
Existing/ Future No Build Bus loop travel distance	0.05	miles	Stantec assumption - AERMOD line volumes source distance		

Emission Calculation for Diesel Bus Emissions:

Source ID	Contaminant	CAS#	Emission Factor ⁽¹⁾	Hourly Em	ission Rate (2)	Daily Emission Rate (3)	
Source ib		0,0#	g/VMT	g/hour	g/s	g/day	g/s
	NOx	10102-44-0	16.376	3.1	8.5E-04	21.5	2.5E-04
	NO2	10102-44-0	2.505	0.5	1.3E-04	3.3	3.8E-05
	CO	630-08-0	7.342	1.4	3.8E-04	9.6	1.1E-04
	PM2.5	N/A	0.405	0.1	2.1E-05	0.5	6.2E-06
	PM10	N/A	0.845	0.2	4.4E-05	1.1	1.3E-05
	PM	N/A	0.845	0.2	4.4E-05	1.1	1.3E-05
EX_BUS2	SO ₂	7446-09-5	0.021	0.0	1.1E-06	0.0	3.2E-07
	Benzene	71-43-2	7.98E-03	0.0	4.2E-07	0.0	1.2E-07
	Acetaldehyde	75-07-0	3.92E-02	0.0	2.0E-06	0.1	6.0E-07
	Acrolein	107-02-8	6.95E-03	0.0	3.6E-07	0.0	1.1E-07
	Benzo(a)pyrene	50-32-8	1.75E-05	0.0	9.1E-10	0.0	2.7E-10
	1,3-Butadiene	106-99-0	2.84E-03	0.0	1.5E-07	0.0	4.3E-08
	Formaldehyde	50-00-0	8.43E-02	0.0	4.4E-06	0.1	1.3E-06
	NOx	10102-44-0	299.587	30.0	8.3E-03	209.71	2.4E-03
	NO2	10102-44-0	46.215	4.6	1.3E-03	32.35	3.7E-04
	CO	630-08-0	116.0	11.6	3.2E-03	81.17	9.4E-04
	PM2.5	N/A	4.773	0.5	1.3E-04	3.34	3.9E-05
	PM10	N/A	5.188	0.5	1.4E-04	3.63	4.2E-05
	PM	N/A	5.188	0.5	1.4E-04	3.63	4.2E-05
EX_BUS_IDL2	SO ₂	7446-09-5	0.2747	0.0	7.6E-06	0.19	2.2E-06
	Benzene	71-43-2	1.84E-01	0.0	5.1E-06	0.13	1.5E-06
	Acetaldehyde	75-07-0	8.95E-01	0.1	2.5E-05	0.63	7.3E-06
	Acrolein	107-02-8	1.59E-01	0.0	4.4E-06	0.11	1.3E-06
	Benzo(a)pyrene	50-32-8	2.82E-04	0.0	7.8E-09	0.00	2.3E-09
	1,3-Butadiene	106-99-0	6.52E-02	0.0	1.8E-06	0.05	5.3E-07
	Formaldehyde	50-00-0	1.94E+00	0.2	5.4E-05	1.36	1.6E-05

Notes:

(1) Emission rates are based on MOVES3 for year 2031. The more conservative emission rates (higher) between January and July are used in the estimation.

The idling emission factor is based on a MOVES modelled travel speed of 0.5 mph. The emission rate is therefore calculated based on the bus travelling 0.025 miles in a span of 3-minutes.

bus idling distance = 0.5 mph x 0.05 hr = 0.025 miles

(2) Hourly emission rates are based on assumed maximum number of vehicles arriving or leaving the bus loop within a 1 hour period.

(3) Daily emission rates are not used in the model, as a variable hourly emission scenario is used in the modelling.

Sample Calculation

Hourly Emission Rate	=	Emission Factor (g/VKT) x Number of vehicles (V/hour) x Travel distance miles x 1 hour/3600 s
Daily Emission Rate	=	Emission Factor (g/VKT) x Number of vehicles (V/day) x Travel distance miles x 1day/24hours x 1 hour/3600 s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the peak and off peak bus volumes provided by Metrolinx.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B4 TOC Operation

Source: Transit Bus Tailpipe Emissions in Bus Loop - Future Build Scenario

Source ID:

FB_BUS_B4	Future build B4 station GO bus loop (travelling buses)
FB_BUS_IDLE	Future build B4 station GO bus loop (idling buses)

Description:

Diesel GO Bus emissions at the bus loop include tailpipe emissions due to travelling and idling. Emission rates are based on the estimation tool U.S. EPA Motor Vehicle Emission Simulator (MOVES3). Assumptions used in the calculation are detailed below.

Emissions calculated here only accounts for vehicular traffic within the Project site based on the current GO bus schedule.

Contaminant(s) of Concern:

NO2, SO2, PM2.5, PM10, CO, acetaldehyde, acrolein, benzene, 1,3-butadiene, benzo(a) pyrene , formaldehyde are included in the estimations.

Emission Calculations - Parameters Used:

Parameter	Input /Reference					
Future Build						
GO Bus idling time in bus loop	3	minutes	Information provided by Metrolinx 201075-STANTEC-RFI-00019			
Maximum number of Buses per hour during peak hour	4	per hour	Information provided by Metrolinx 201075-STANTEC-RFI-00019			
Maximum number of Buses per day	46	per day	Calculated based on Information provided by Metrolinx 201075-STANTEC-RFI-00019			
GO Bus travelling speed in bus loop	20	km/hour	Assumed travelling speed in parking lot			
Future Build Bus loop travel distance	0.07	miles	Stantec assumption - AERMOD line volumes source distance			

Emission Calculation for Diesel Bus Emissions:

		CAS#	GO Buses @ 12.4 mph							
Source ID	Contaminant		Emission Factor ⁽¹⁾	Hourly Em	hission Rate (2)	Daily Emission Rate				
			g/VMT	g/hour	g/s	g/day	g/s			
	NOx	10102-44-0	8.603	2.5	6.97E-04	28.9	3.34E-04			
	NO2	10102-44-0	2.857	0.8	2.3E-04	9.6	1.1E-04			
	CO	630-08-0	4.802	1.4	3.89E-04	16.1	1.86E-04			
	PM2.5	N/A	0.133	0.0	1.07E-05	0.4	5.15E-06			
	PM10	N/A	0.554	0.2	4.49E-05	1.9	2.15E-05			
	PM	N/A	0.554	0.2	4.49E-05	1.9	2.15E-05			
FB_BUS_B4	SO ₂	7446-09-5	0.018	0.0	1.48E-06	0.1	7.11E-07			
	Benzene	71-43-2	1.51E-03	0.0	1.23E-07	0.0	5.88E-08			
	Acetaldehyde	75-07-0	1.05E-02	0.0	8.48E-07	0.0	4.06E-07			
	Acrolein	107-02-8	1.56E-03	0.0	1.27E-07	0.0	6.07E-08			
	Benzo(a)pyrene	50-32-8	3.18E-06	0.0	2.58E-10	0.0	1.24E-10			
	1,3-Butadiene	106-99-0	5.06E-04	0.0	4.10E-08	0.0	1.97E-08			
	Formaldehyde	50-00-0	1.86E-02	0.0	1.51E-06	0.1	7.21E-07			
	NOx	10102-44-0	160.529	16.1	4.5E-03	184.61	2.1E-03			
	NO2	10102-44-0	54.219	5.4	1.5E-03	62.35	7.2E-04			
	CO	630-08-0	66.1	6.6	1.8E-03	75.97	8.8E-04			
	PM2.5	N/A	1.035	0.1	2.9E-05	1.19	1.4E-05			
	PM10	N/A	4.279	0.4	1.2E-04	4.92	5.7E-05			
	PM	N/A	4.279	0.4	1.2E-04	4.92	5.7E-05			
FB_BUS_IDLE	SO ₂	7446-09-5	0.2270	0.0	6.3E-06	0.26	3.0E-06			
	Benzene	71-43-2	3.55E-02	0.0	9.9E-07	0.04	4.7E-07			
	Acetaldehyde	75-07-0	2.41E-01	0.0	6.7E-06	0.28	3.2E-06			
	Acrolein	107-02-8	3.63E-02	0.0	1.0E-06	0.04	4.8E-07			
	Benzo(a)pyrene	50-32-8	5.59E-05	0.0	1.6E-09	0.00	7.4E-10			
	1,3-Butadiene	106-99-0	1.18E-02	0.0	3.3E-07	0.01	1.6E-07			
	Formaldehyde	50-00-0	4.34E-01	0.0	1.2E-05	0.50	5.8E-06			

Notes:

(1) Emission rates are based on MOVES3 for year 2031. The more conservative emission rates (higher) between January and July are used in the estimation.

The idling emission factor is based on a MOVES modelled travel speed of 0.5 mph. The emission rate is therefore calculated based on the bus travelling 0.025 miles in a span of 3-minutes.

bus idling distance = 0.5 mph x 0.05 hr = 0.025 miles

(2) Hourly and daily emission rates are based volumes provided by Metrolinx.

=

Sample Calculation

Hourly Emission Rate Daily Emission Rate

Emission Factor (g/VKT) x Number of vehicles (V/hour) x Travel distance miles x 1 hour/3600 s

= Emission Factor (g/VKT) x Number of vehicles (V/day) x Travel distance miles x 1day/24hours x 1 hour/3600 s

Operating Condition, Individual Maximum Rates of Production:

The emission rate calculation for this source group is based on the peak and off peak bus volumes provided by Metrolinx.

Appendix E: Summary of Air Dispersion Modelling Inputs Location: Project Operation within Oshawa, Courtice and Bowmanville

Source: Emissions from Paved Roads During Operation

Description: Dust emissions from GO Buses and passenger vehicles travelling on paved roads within the proposed B1, B2, B3 and B4 stations.

Contaminant(s) of Concern: Particulate matter, including PM, PM₁₀, and PM_{2.5} emissions are the contaminants of concern due to the vehicles travelling on paved road. Resuspended particulate emissions from paved roads originate from, and result in the depletion of, the loose material present on the surface of roads.

Methodology: Emission Factor (EF) Emission factor was calculated using Equation (1a) in the US EPA AP-42 document Chapter 13.2.1. (Paved Road). The equation is:

E = k (sL)^{0.91} x (W)^{1.02}

where:

E = particulate emission factor (g/VMT)

k = particle size multiplier for particle size range and units of interest (g/VMT)

sL = road surface silt loading (g/m²) W = average weight of vehicles traveling the road (tons)

Vehicle Weight Calculation:

Model Segment	Source ID	Source Description	Weight of Vehicl	e ⁽¹⁾ , (tons)	Percentage	ntage of Vehicle Avera		
			Car	Bus	Car	Bus	Weight ⁽²⁾ (tons)	
Existing / Future No Bu	ild							
Courtice	EX_LOT1	vehicles in existing GO parking lot @ Courtice Rd and Baseline Rd.	1.88	20	100%	0%	1.88	
Bowmanville	EX_LOT2	vehicles in existing GO parking lot @ Clarington Blvd and Hwy 2	1.88	20	100%	0%	1.88	
Courtice	EX_BUS1	GO buses in existing bus loop @ Courtice Rd and Baseline Rd.	1.88	20	0%	100%	20	
Bowmanville	EX BUS2	GO buses in existing bus loop @ Clarington Blvd and Hwy 2	1.88	20	0%	100%	20	
Future Build								
Oshawa	B1 PPUDO	vehicles in B1 TOC passenger pick up and drop off area	1.88	20	100%	0%	1.88	
Oshawa	B2 PPUDO1	vehicles in B2 TOC passenger pick up and drop off area 1	1.88	20	100%	0%	1.88	
Oshawa	B2 PPUDO2	vehicles in B2 TOC passenger pick up and drop off area 2	1.88	20	100%	0%	1.88	
Oshawa	B2 LOT	vehicles in B2 TOC parking lot	1.88	20	100%	0%	1.88	
Courtice	B3 PPUDO	vehicles in B3 TOC future build PPUDO	1.88	20	100%	0%	1.88	
Courtice	B3_LOT	vehicles in B3 TOC future build parking lot	1.88	20	100%	0%	1.88	
Bowmanville	B4 PPUDO	vehicles in B4 TOC passenger pick up and drop off area	1.88	20	100%	0%	1.88	
Bowmanville	B4_LOT	vehicles in B4 TOC parking lot	1.88	20	100%	0%	1.88	
Bowmanville	FB_BUS_B4	GO buses in future B4 TOC bus loop	1.88	20	0%	100%	20	

Notes: [(1) Bus weight per Metrolinx Draft Air Quality Environmental Guide dated November 2019. Average passenger vehicle weight is assumed based on an average weight of a sedan (2900 lbs) and SUV/van (4600 lbs).

(2) Since there are different vehicles running on different schedules and the estimation methodology suggested by US. EPA is intended for a "fleet" average weight of all vehicles travelling on the road, a weighted (based on weight of each vehicle and travelled distance) vehicle mass is used for emissions estimation. Therefore, the average weight on each road is estimated based on the traffic data.

Appendix E: Summary of Air Dispersion Modelling Inputs Location: Project Operation within Oshawa, Courtice and Bowmanville

Source: Emissions from Paved Roads During Operation

Emission Factor Calculation:

Model Segment	Model Source ID	Source Description	Average Vehicle Weight (tons)			/VMT)	ADT ⁽²⁾	Silt Loading ⁽³⁾	Emission Factor ⁽³⁾ (g/VMT)		/VMT)
Model Segment	Model Source ID	Source Description		PM	PM10	PM2.5	ADI	g/m²	РМ	PM10	PM2.5
Existing / Future No Bui	ld				•	•					•
Courtice	EX_LOT1	vehicles in existing GO parking lot @ Courtice Rd and Baseline Rd.	1.88	5.24	1	0.25	212	0.60	6.250	1.193	0.298
Bowmanville	EX_LOT2	vehicles in existing GO parking lot @ Clarington Blvd and Hwy 2	1.88	5.24	1	0.25	174	0.60	6.250	1.193	0.298
Courtice	EX_BUS1	GO buses in existing bus loop @ Courtice Rd and Baseline Rd.	20	5.24	1	0.25	28	0.60	69.904	13.340	3.335
Bowmanville	EX_BUS2	GO buses in existing bus loop @ Clarington Blvd and Hwy 2	20	5.24	1	0.25	6	0.60	69.904	13.340	3.335
Future Build											
Oshawa	B1_PPUDO	vehicles in B1 TOC passenger pick up and drop off area	1.88	5.24	1	0.25	836	0.20	2.300	0.439	0.110
Oshawa	B2_PPUDO1	vehicles in B2 TOC passenger pick up and drop off area 1	1.88	5.24	1	0.25	924	0.20	2.300	0.439	0.110
Oshawa	B2_PPUDO2	vehicles in B2 TOC passenger pick up and drop off area 2	1.88	5.24	1	0.25	924	0.20	2.300	0.439	0.110
Oshawa	B2_LOT	vehicles in B2 TOC parking lot	1.88	5.24	1	0.25	1,786	0.20	2.300	0.439	0.110
Courtice	B3_PPUDO	vehicles in B3 TOC future build PPUDO	1.88	5.24	1	0.25	108	0.20	2.300	0.439	0.110
Courtice	B3_LOT	vehicles in B3 TOC future build parking lot	1.88	5.24	1	0.25	1,432	0.20	2.300	0.439	0.110
Bowmanville	B4_PPUDO	vehicles in B4 TOC passenger pick up and drop off area	1.88	5.24	1	0.25	1,584	0.20	2.300	0.439	0.110
Bowmanville	B4_LOT	vehicles in B4 TOC parking lot	1.88	5.24	1	0.25	1,648	0.20	2.300	0.439	0.110
Bowmanville	FB_BUS_B4	GO buses in future B4 TOC bus loop	20	5.24	1	0.25	46	0.60	69.904	13.340	3.335

Notes: (1) Reference: USEPA AP-42 Table 13.2.1-1

(2) Stantec estimation as follows: PPUDO ADT calculated based on # of PPUDO spots x # of trains per day

Lot ADT calculated based on # of parking spots x two way travel Lot ADT calculated based on # of parking spots x two way travel Existing Bus ADT derived using 2021 (NB+SB weekday volumes for travel Route 88 and 88A). Future Build Bus ADT Information provided by Metrolinx 201075-STANTEC-RFI-00019. (3) bliquitos Bit Loading Default Values (AP-42 Chapter 13.2.1 - T2).

ADT Category	sL (g/VMT)
<500	0.6
500-5,000	0.2
5,000-10,000	0.06
>10,000	0.03

(3) Emission factors are calculated using the above equation.

Emission Calculation:

EX_LOT1	Road and Direction		Volume ⁽¹⁾	per Day ⁽¹⁾	Distance	Distance	PM	PM10				
	vahidas in existing CO parking lat @ Courtiss Pd and Passing Pd				(mile/hr)	(mile/day)	r WI	PW10	PM2.5	PM	PM10	PM2.5
	vehicles in existing GO parking let @ Courtise Rd and Resoline Rd											
	venicies in existing GC parking for (@ Countide Ru and baseline Ru.	0.16	35	212	6	34	4.1E-04	7.8E-05	2.0E-05	2.5E-03	4.7E-04	1.2E-04
EX_LOT2	vehicles in existing GO parking lot @ Clarington Blvd and Hwy 2	0.04	29	174	1	7	8.4E-05	1.6E-05	4.0E-06	5.0E-04	9.6E-05	2.4E-05
EX_BUS1	GO buses in existing bus loop @ Courtice Rd and Baseline Rd.	0.32	1	6	0.3	2	2.6E-04	4.9E-05	1.2E-05	1.5E-03	2.9E-04	7.4E-05
EX_BUS2	GO buses in existing bus loop @ Clarington Blvd and Hwy 2	0.05	4	28	0.2	1	1.5E-04	2.9E-05	7.2E-06	1.1E-03	2.0E-04	5.1E-05
B1 PPUDO	vehicles in B1 TOC passenger pick up and drop off area	0.24	57	836	14	201	3.6E-04	6.9E-05	1.7E-05	5.3E-03	1.0E-03	2.5E-04
32 PPUDO1	vehicles in B2 TOC passenger pick up and drop off area 1	0.08	63	924	5	74	1.3E-04	2.6E-05	6.4E-06	2.0E-03	3.8E-04	9.4E-05
32 PPUDO2	vehicles in B2 TOC passenger pick up and drop off area 2	0.08	63	924	5	74	1.3E-04	2.6E-05	6.4E-06	2.0E-03	3.8E-04	9.4E-05
B2 LOT	vehicles in B2 TOC parking lot	0.13	298	1,786	39	232	1.0E-03	2.0E-04	4.9E-05	6.2E-03	1.2E-03	2.9E-04
B3 PPUDO	vehicles in B3 TOC future build PPUDO	0.44	36	108	16	48	4.2E-04	8.0E-05	2.0E-05	1.3E-03	2.4E-04	6.0E-05
B3 LOT	vehicles in B3 TOC future build parking lot	0.25	239	1,432	60	358	1.6E-03	3.0E-04	7.6E-05	9.5E-03	1.8E-03	4.5E-04
B4 PPUDO	vehicles in B4 TOC passenger pick up and drop off area	0.06	108	1,584	6	95	1.7E-04	3.3E-05	8.2E-06	2.5E-03	4.8E-04	1.2E-04
B4 LOT	vehicles in B4 TOC parking lot	0.20	275	1,648	55	330	1.5E-03	2.8E-04	7.0E-05	8.8E-03	1.7E-03	4.2E-04
FB BUS B4	GO buses in future B4 TOC bus loop	0.07	4	46	0	3	2.4E-04	4.5E-05	1.1E-05	2.7E-03	5.2E-04	1.3E-04
B	EX LOT2 EX BUS1 EX BUS2 1 PPUDO 2 PPUDO1 2 PPUDO2 B2 LOT 3 PPUDO B3 LOT 4 PPUDO B4 LOT	EX. LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 EX. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 1 PPUD0 vehicles in B1 TOC passenger pick up and drop off area 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 2 PPUD02 vehicles in B2 TOC passenger pick up and drop off area 2 B2 LOT vehicles in B3 TOC future build PPUD0 3 PPUD0 vehicles in B3 TOC future build parking lot 3 LOT vehicles in B3 TOC passenger pick up and drop off area 4 PPUD0 vehicles in B3 TOC future build parking lot 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area 4 POT vehicles in B4 TOC parking lot	EX. LOT2 vehicles in existing G0 parking lot @ Clarington Bivd and Hwy 2 0.04 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 EX. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 1 PPUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 3 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 B2 LOT vehicles in B3 TOC fastenger pick up and drop off area 2 0.04 B3 LOT vehicles in B3 TOC future build PPUD0 0.44 B3 LOT vehicles in B4 TOC passenger pick up and drop off area 0.25 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area 0.06 84 LOT vehicles in B4 TOC passenger pick up and drop off area 0.06	EX. LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 0.04 29 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.04 1 EX. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 1 PPUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 2 PPUD02 vehicles in B2 TOC passenger pick up and drop off area 2 0.068 63 B2 LOT vehicles in B3 TOC future build proble 0.13 298 3 PPUD0 vehicles in B3 TOC future build parking lot 0.25 239 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area 0.06 108 80 LOT vehicles in B3 TOC future build parking lot 0.25 239 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area 0.06 108 81 LOT vehicles in B4 TOC passenger pick up and drop off area 0.06 108 84 LOT vehicles in B4 TOC passenger pick up and drop off area 0.06 108 </td <td>EX.LOT2 vehicles in existing G0 parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 EX.BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 EX.BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 1 PPUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 2 PPUD02 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 2 PPUD02 vehicles in B3 TOC fraxmen prick up and drop off area 2 0.08 63 924 3 PPUD0 vehicles in B3 TOC future build PPUD0 0.44 36 108 83 LOT vehicles in B3 TOC future build parking lot 0.25 239 1.432 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area 0.06 108 1.584 84 LOT vehicles in B4 TOC passenger pick up and drop off area 0.06 1.584 1.584</td> <td>EX.LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 EX.BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 EX.BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 PPUDO vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 2 PPUDO2 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 5 B2 LOT vehicles in B3 TOC parking lot 0.13 298 1,786 39 3 PPUDO vehicles in B3 TOC future build PPUDO 0.44 36 108 16 B3 LOT vehicles in B3 TOC future build parking lot 0.25 239 1,432 60 4 PPUDO vehicles in B4 TOC passenger pick up and drop off area 0.06 108 1584 6</td> <td>EX. LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 S. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1 PPUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 D2 PVDD02 vehicles in B2 TOC parking lot 0.13 298 1.786 39 232 3 PPUD0 vehicles in B3 TOC future build PPUD0 0.44 36 108 16 48 81 LOT vehicles in B3 TOC future build parking lot 0.25 239 1.432 60 358 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area</td> <td>EX. LOT2 vehicles in existing G0 parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 EX. BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 2 2.6E-04 X. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 1 PPUDO vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 1.3E-04 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 5 74 1.3E-04 B2 LOT vehicles in B3 TOC future build PPUDO 0.13 298 1.766 39 232 1.0E-03 3 PPUDO vehicles in B3 TOC future build PPUDO 0.44 36 108 16 48 4.2E-04 83 LOT vehicles</td> <td>EX. LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 1.6E-05 EX. BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 2 2.6E-04 4.9E-05 X. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 Y. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 1 PPUDO vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 6.9E-05 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 1.3E-04 2.6E-05 DPUDO1 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 5 74 1.3E-04 2.6E-05 B2 LOT vehicles in B3 TOC future build PUDO 0.44</td> <td>EX. LOT2 vehicles in existing GO parking lot @ Clarington Bird and Hwy 2 0.04 29 174 1 7 8.4E-05 1.6E-05 4.0E-06 EX. BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 2 2.6E-04 4.9E-05 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.2E-06 7.2E-06 1.2E-05 X.2E-06 7.2E-06 1.2E-05 X.2E-06 X.2E-06 X.2E-06 X.2E-06 X.2E-05 0.4E-06 0.24 5 74 1.3E-04 2.6E-05 6.4E-06 X.2E-05 6.4E-06 X.2E-04 X.2E-05 6.4E-06 X.2E-05 6.4E-06 X.2E-04 X.2E-05 6.4E-06 X.2E-04 X.2E-05 6.4E-06 X.2E-04 X.2E-0</td> <td>EX. LOT2 vehicles in existing for (2 clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 1.6E-05 4.0E-06 5.0E-04 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.03 1 6 0.3 2 2.6E-04 4.9E-05 1.2E-05 1.5E-03 X. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 7.2E-06 1.1E-03 PUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 6.9E-05 1.2E-05 6.4E-06 2.0E-03 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 0.08 63 924 5 74 1.3E-04 2.6E-05 6.4E-06 2.0E-03 82 LOT vehicles in B3 TOC parking lot 0.13 298 1.786 39 232 1.0E-03 2.0E-04 4.9E-05 6.2E-05 6.2E-03 3 PPUD0 vehicles in B3 TOC future build PUDO 0.4</td> <td>EX. LOT2 vehicles in existing GO parking bit @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 1.0E-05 4.0E-06 5.0E-04 9.6E-05 XB US1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 6 0.3 2 2.6E-04 4.9E-05 1.2E-05 1.5E-03 2.9E-04 XB US2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 7.2E-06 1.1E-03 2.0E-04 XB US2 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 6.9E-05 1.7E-05 5.8E-03 1.0E-03 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 1.3E-04 2.6E-06 2.0E-03 3.8E-04 B2 LOT vehicles in B3 TOC parking lof 0.13 298 1.786 39 2.322 1.0E-03 2.0E-04 4.9E-05 6.4</td>	EX.LOT2 vehicles in existing G0 parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 EX.BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 EX.BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 1 PPUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 2 PPUD02 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 2 PPUD02 vehicles in B3 TOC fraxmen prick up and drop off area 2 0.08 63 924 3 PPUD0 vehicles in B3 TOC future build PPUD0 0.44 36 108 83 LOT vehicles in B3 TOC future build parking lot 0.25 239 1.432 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area 0.06 108 1.584 84 LOT vehicles in B4 TOC passenger pick up and drop off area 0.06 1.584 1.584	EX.LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 EX.BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 EX.BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 PPUDO vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 2 PPUDO2 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 5 B2 LOT vehicles in B3 TOC parking lot 0.13 298 1,786 39 3 PPUDO vehicles in B3 TOC future build PPUDO 0.44 36 108 16 B3 LOT vehicles in B3 TOC future build parking lot 0.25 239 1,432 60 4 PPUDO vehicles in B4 TOC passenger pick up and drop off area 0.06 108 1584 6	EX. LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 S. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1 PPUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 D2 PVDD02 vehicles in B2 TOC parking lot 0.13 298 1.786 39 232 3 PPUD0 vehicles in B3 TOC future build PPUD0 0.44 36 108 16 48 81 LOT vehicles in B3 TOC future build parking lot 0.25 239 1.432 60 358 4 PPUD0 vehicles in B4 TOC passenger pick up and drop off area	EX. LOT2 vehicles in existing G0 parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 EX. BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 2 2.6E-04 X. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 1 PPUDO vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 1.3E-04 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 5 74 1.3E-04 B2 LOT vehicles in B3 TOC future build PPUDO 0.13 298 1.766 39 232 1.0E-03 3 PPUDO vehicles in B3 TOC future build PPUDO 0.44 36 108 16 48 4.2E-04 83 LOT vehicles	EX. LOT2 vehicles in existing GO parking lot @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 1.6E-05 EX. BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 2 2.6E-04 4.9E-05 X. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 Y. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 1 PPUDO vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 6.9E-05 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 1.3E-04 2.6E-05 DPUDO1 vehicles in B2 TOC passenger pick up and drop off area 2 0.08 63 924 5 74 1.3E-04 2.6E-05 B2 LOT vehicles in B3 TOC future build PUDO 0.44	EX. LOT2 vehicles in existing GO parking lot @ Clarington Bird and Hwy 2 0.04 29 174 1 7 8.4E-05 1.6E-05 4.0E-06 EX. BUS1 GO buses in existing bus loop @ Courtice Rd and Baseline Rd. 0.32 1 6 0.3 2 2.6E-04 4.9E-05 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.0E-06 1.2E-05 X.2E-06 7.2E-06 1.2E-05 X.2E-06 7.2E-06 1.2E-05 X.2E-06 X.2E-06 X.2E-06 X.2E-06 X.2E-05 0.4E-06 0.24 5 74 1.3E-04 2.6E-05 6.4E-06 X.2E-05 6.4E-06 X.2E-04 X.2E-05 6.4E-06 X.2E-05 6.4E-06 X.2E-04 X.2E-05 6.4E-06 X.2E-04 X.2E-05 6.4E-06 X.2E-04 X.2E-0	EX. LOT2 vehicles in existing for (2 clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 1.6E-05 4.0E-06 5.0E-04 EX. BUS1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.03 1 6 0.3 2 2.6E-04 4.9E-05 1.2E-05 1.5E-03 X. BUS2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 7.2E-06 1.1E-03 PUD0 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 6.9E-05 1.2E-05 6.4E-06 2.0E-03 2 PPUD01 vehicles in B2 TOC passenger pick up and drop off area 0.08 63 924 5 74 1.3E-04 2.6E-05 6.4E-06 2.0E-03 82 LOT vehicles in B3 TOC parking lot 0.13 298 1.786 39 232 1.0E-03 2.0E-04 4.9E-05 6.2E-05 6.2E-03 3 PPUD0 vehicles in B3 TOC future build PUDO 0.4	EX. LOT2 vehicles in existing GO parking bit @ Clarington Bivd and Hwy 2 0.04 29 174 1 7 8.4E-05 1.0E-05 4.0E-06 5.0E-04 9.6E-05 XB US1 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 6 0.3 2 2.6E-04 4.9E-05 1.2E-05 1.5E-03 2.9E-04 XB US2 GO buses in existing bus loop @ Clarington Bivd and Hwy 2 0.05 4 28 0.2 1 1.5E-04 2.9E-05 7.2E-06 1.1E-03 2.0E-04 XB US2 vehicles in B1 TOC passenger pick up and drop off area 0.24 57 836 14 201 3.6E-04 6.9E-05 1.7E-05 5.8E-03 1.0E-03 2 PPUDO1 vehicles in B2 TOC passenger pick up and drop off area 1 0.08 63 924 5 74 1.3E-04 2.6E-06 2.0E-03 3.8E-04 B2 LOT vehicles in B3 TOC parking lof 0.13 298 1.786 39 2.322 1.0E-03 2.0E-04 4.9E-05 6.4

 Downiativitie
 PB BUS B4
 GO bases in future B4 FOC bus toop
 Output

 Notes:
 (1) Stantec estimation as follows:
 PPUDO pask hour volume calculated based on # of PPUDO spots x peak # of trains per hour. ADT calculated based on # of PPUDO spots x # of trains per day
 Lot peak hour volume is calculated based on # of PPUDO spots x that 1/3 of the parking to is filled. ADT calculated based on # of parking spots x two way travel
 Existing Bus ADT derived using 2021 (NB+SB weekday volumes for travel Route 88/88A).

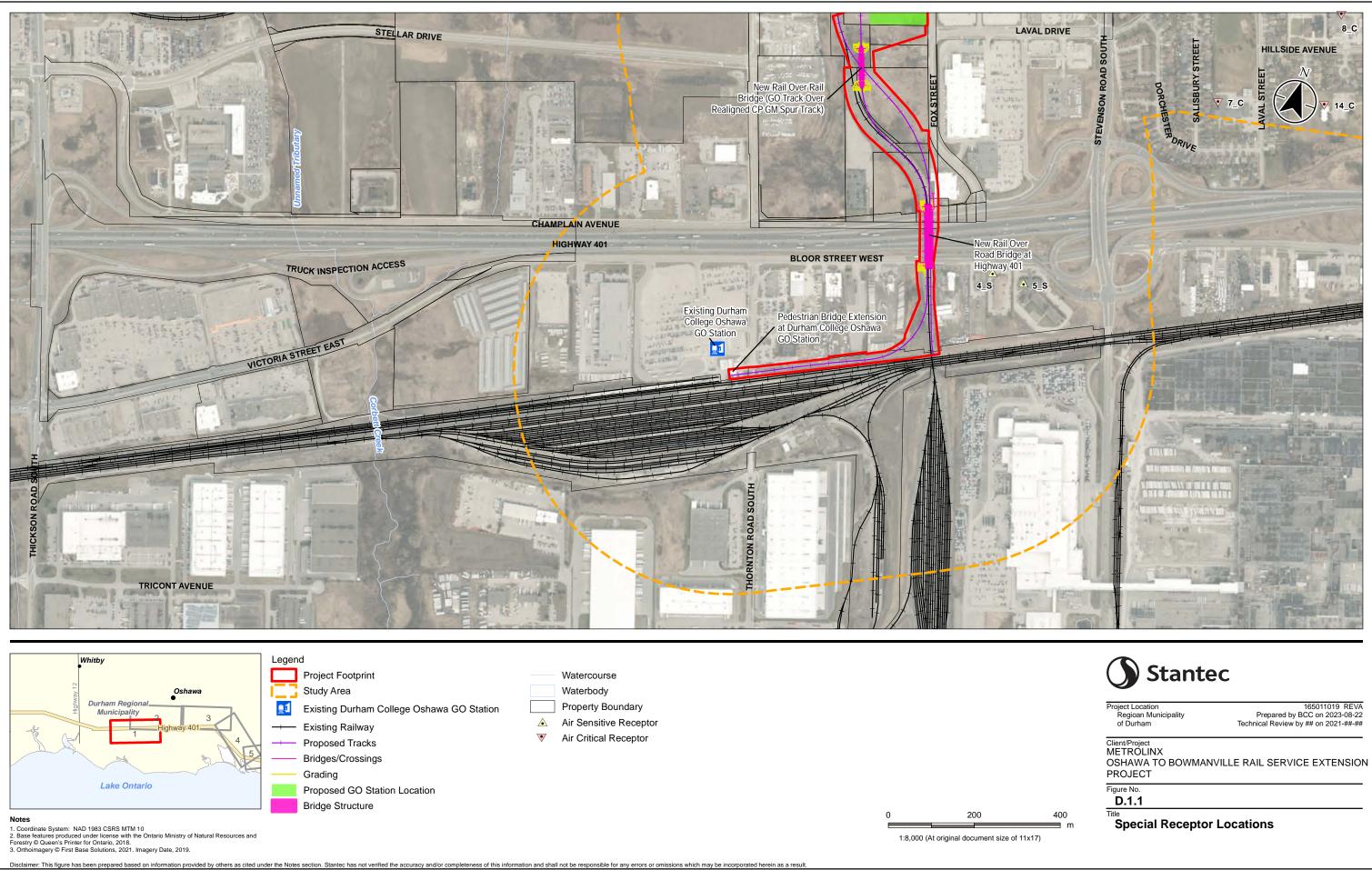
 Future Build Bus peak hour and ADT Information provided by Metrolinx 201075-STANTEC-RFI-00019.
 Future Suit Bus ADT environment of the stante BAR ADT envi

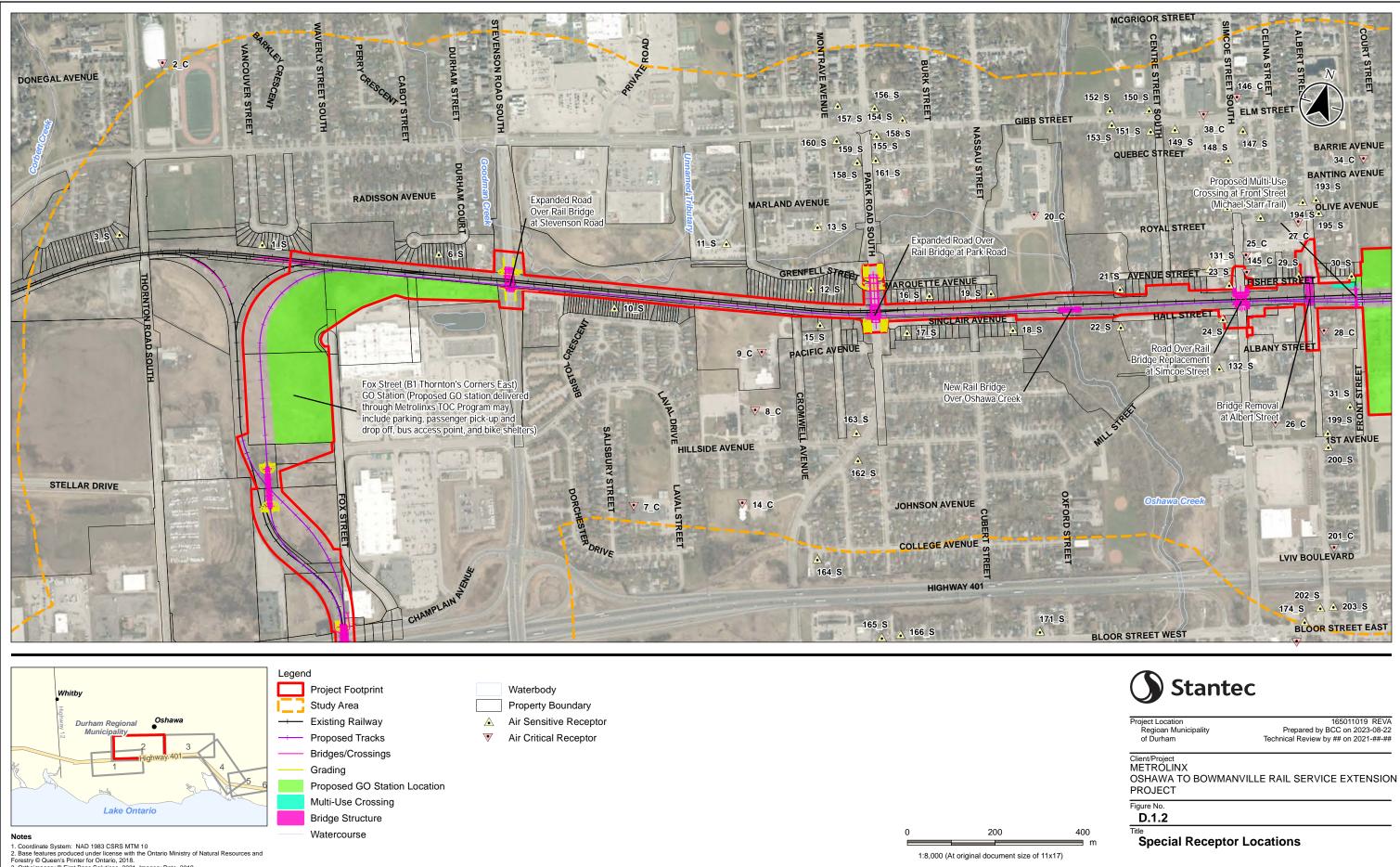
(2) Emission control efficiency is not applied to the dust quantification.

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report

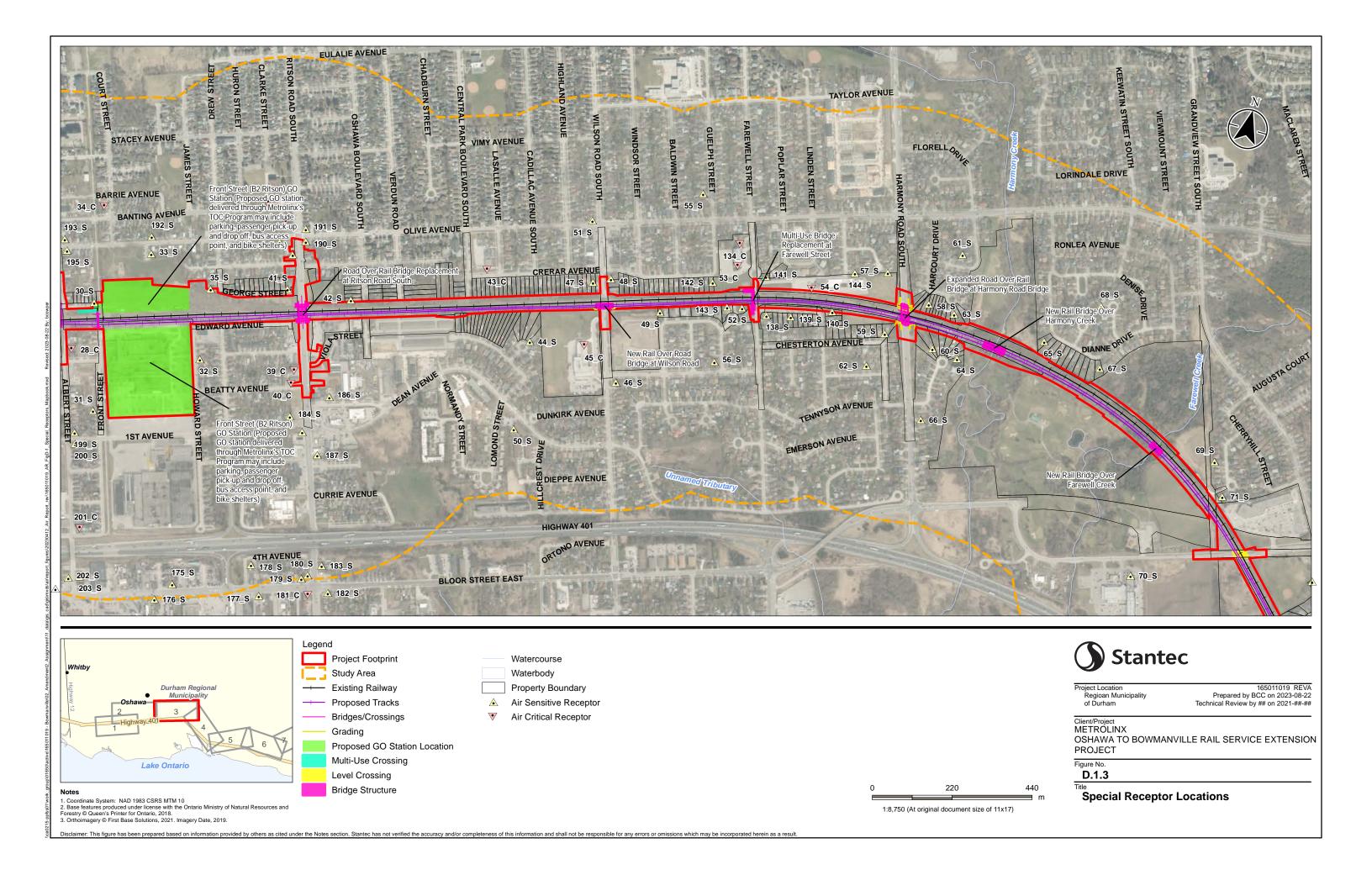
Appendix D List and Location of Special Receptors

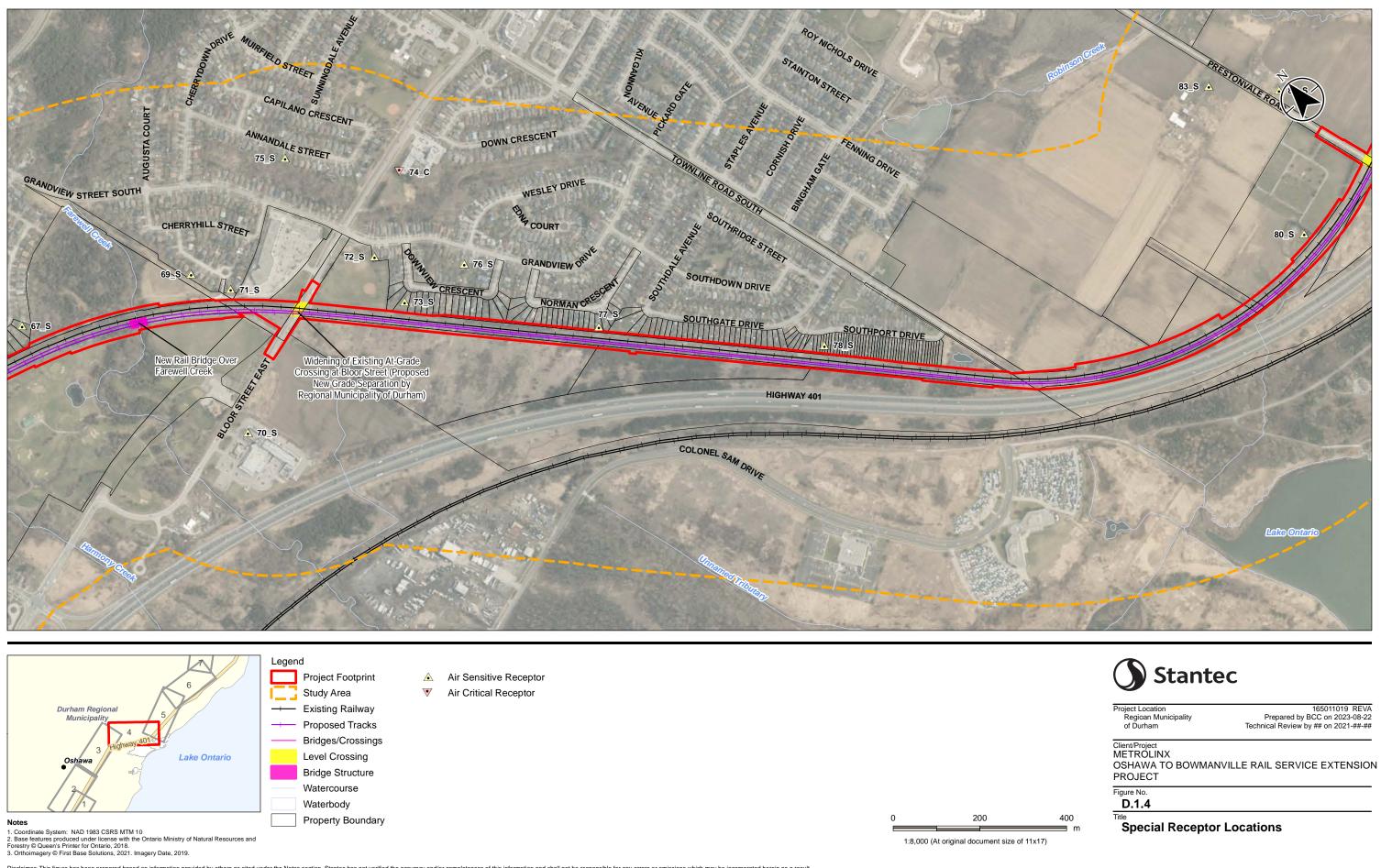
Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Table D-1 - Special Receptors

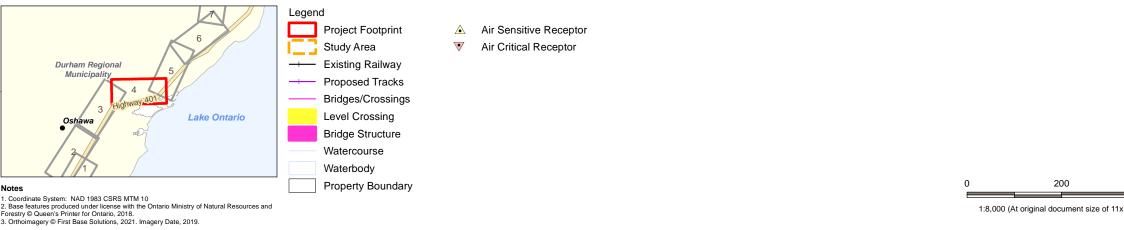

Receptor ID#	UTM East (m)	UTM North (m)	Description	Details	Location near	Sensitive / Critical
1_S	669823	4861025	Residential house	Vancouver Crescent	Thornton Station	Sensitive
2 C	669493	4861348	Recreation and sports field	Civic Recreation complex	Thornton Station	
3_S	669508	4860949	Residential house	Shamrock Crescent	Thornton Station	Sensitive
4_S	670447	4860142	Hotel	Comfort Inn	Thornton Station	Sensitive
5_S	670523	4860143	Hotel	Best Western	Thornton Station	Sensitive
6_S	670219	4861115	Residential house	Durham Court	Thornton Station	Sensitive
7_C	670813	4860690	School	College Hill Public School	Thornton Station	Critical
8_C	671016	4860978	Place of Worship and School	Parroisse Assomption de Notre Dame, Elementary School Catholic Corpus-Christi	Park Rd Bridge	Critical
9_C	670992	4861109	School	Saint Thomas Aquinas Catholic School	Park Rd Bridge	Critical
10 S	670638	4861111	Residential house	Bristol Crescent	Thornton Station	Sensitive
11_S	670840	4861326	Apartments	Greenfell Street	Park Rd Bridge	Sensitive
12_S	671055	4861281	Residential house	Greenfell Street	Park Rd Bridge	Sensitive
13_S	671029	4861422	Apartments	Marland Avenue	Park Rd Bridge	Sensitive
14_C	671049	4860766	Place of worship	Grace Lutheran Church	Park Rd Bridge	Critical
15_S	671098	4861210	Residential house	Montrave Avenue	Park Rd Bridge	Sensitive
16_S	671318	4861346	Residential house	Marquette Avenue	Park Rd Bridge	Sensitive
17_S	671294	4861250	Residential house	Sinclair Avenue	Park Rd Bridge	Sensitive
18_S	671523	4861325	Residential house	Sinclair Avenue	Oshawa Creek Bridge	Sensitive
19 S	671453	4861393	Residential house	Marquette Avenue	Oshawa Creek Bridge	Sensitive
20_C	671498	4861587	School	Village Union Public School	Oshawa Creek Bridge	Critical
21_S	671732	4861491	Residential house	Avenue Street	Oshawa Creek Bridge	Sensitive
22_S	671757 671966	4861401	Residential house	Hall Street	Oshawa Creek Bridge Simcoe St Bridge	Sensitive
23_S 24_S	671975	4861486	Residential house	Side Street Inn Hall Street	Simcoe St Bridge	Sensitive Sensitive
25_C	671987	4861638	Place of Worship	Holy Cross Roman Catholic Church	Simcoe St Bridge	Critical
26_C	672161	4861291	Place of Worship or Senior's Home	St. George's Ukranian Centre	Albert St Bridge	Critical
27_C	672079	4861745	Place of Worship	New Life Seventh Day Adventist Church	Albert St Bridge	Critical
28_C	672207	4861523	Place of worship/Community service	World Life Ministries / Gate 3:16 Outreach Centre	Albert St Bridge	Critical
29_S	672113	4861630	Residential house	Fisher Street	Albert St Bridge	Sensitive
30_S	672228	4861665	Residential house	Fisher Street	Oshawa Central Station / Front St Pedestrian Crossing	Sensitive
31_S	672310	4861378	Residential house	Front Street (N of First Avenue)	Oshawa Central Station / Front St Pedestrian Crossing	Sensitive
32_S	672552	4861598	Residential house	HowaRoad St	Oshawa Central Station	
33_S	672340	4861838	Residential house	Olive Avenue	Oshawa Central Station	Sensitive
34_C	672181	4861926	Place of Worship	Church of the Good Shephard	Oshawa Central Station	
35_S	672530	4861799	Residential house	Drew St	Oshawa Central Station	Sensitive
36_C	672610	4862066	School	Ritson Public School	Ritson St Bridge	Critical
37_C	672672	4862030	Place of worship	RCCG Bethel Assemby	Ritson St Bridge	Critical
38_C	671781	4861935	School	Grove School and Treatment Centre, Durham Alternative Secondary School	Simcoe St Bridge	Critical
39_C	672811	4861643	Place of worship	Protection of the Mother of God Catholic Church	Ritson St Bridge	Critical
40 C	672814	4861607	Place of worship	The Corner Church	Ritson St Bridge	Critical
40_C 41_S 42_S	672728 672916	4861852 4861885	Residential house	George St Oshawa Blvd South	Ritson St Bridge Ritson St Bridge	Sensitive
43_C	673241	4862062	Residential house School	St. Hedwig Catholic School	Wilson St Bridge	Critical
44_S	673409	4861905	Residential house	Brest Crescent	Wilson St Bridge	Sensitive
45_C	673557	4861938	School	David Bouchard Public School	Wilson St Bridge	Critical
46_S	673667	4861866	Residential house	Wilson Road S	Wilson St Bridge	Sensitive
47_S	673528	4862112	Residential house	Crerar Avenue	Wilson St Bridge	Sensitive
48_S	673573	4862136	Residential house	Wilson Road S	Wilson St Bridge	Sensitive
49_S	673729	4862086	Residential house	Chaucer Avenue	Wilson St Bridge	Sensitive
50_S	673435	4861662	Townhouses	Dean Avenue	Wilson St Bridge	Sensitive
51_S	673478	4862275	Residential house	Wilson Road S	Wilson St Bridge	Sensitive
52_S 53_C	673941 673899	4862157 4862270	Residential house Place of worship	Austen Crescent Evangel Pentecostal Church	Farewell St Pedestrian Bridge Farewell St Pedestrian Bridge	Sensitive
54_C	674112	4862268	Place of worship	Greek Cultural Centre and Church	Farewell St Pedestrian Bridge	Critical
55_S	673749	4862433	Residential house	Guelph Steet	Farewell St Pedestrian Bridge	Sensitive
56_S	673911	4861998	Residential house	Loring Street	Farewell St Pedestrian Bridge	Sensitive
57_S	674298	4862370	Residential house	Wicklow Crescent	Harmony Rd Bridge	Sensitive
58_S	674431	4862320	Residential house	Harcourt Crescent	Harmony Rd Bridge	Sensitive
59_S	674338	4862207	Residential house	Chesterton Avenue	Harmony Rd Bridge	Sensitive
60 S	674476	4862206	Residential house	Tennyson Crescent	Harmony Rd Bridge	Sensitive
61_S	674482	4862477	Residential house	Florell Drive	Harmony Rd Bridge	Sensitive
62_S	674315	4862108	Residential house	Shelley Avenue	Harmony Rd Bridge	Sensitive
63_S 64_S	674506	4862313 4862198	Residential house Residential house	Harcourt Crescent Tennyson Crescent	Harmony Rd Bridge Harmony Creek Bridge	Sensitive
65_S 66_S	674765 674502	4862312 4862008	Residential house	Diane Drive	Harmony Creek Bridge	Sensitive
67_S	674933	4862285	Residential house Residential house	Tennyson Crescent Diane Drive	Harmony Creek Bridge Farewell Creek Bridge	Sensitive
68_S	674888	4862451	Residential house	Susan Crescent	Harmony Creek Bridge	Sensitive
69_S	675310	4862129	Residential house	St. Andrews Crescent	Harmony Creek Bridge	Sensitive
70_S	675178	4861763	Hotel	Marriott	Bloor St Crossing	Sensitive
71_S	675358	4862044	Residential house	St. Andrews Crescent	Bloor St Crossing	Sensitive
72_S	675662	4861890	Residential house	Grandview Dr	Bloor St Crossing	Sensitive
73_S	675650	4861766	Residential house	Downview Crescent	Bloor St Crossing	Sensitive
74_C	675833	4862004	Senior's Home	Traditions of Durham Retirement Residence	Bloor St Crossing	Critical
75_S	675648	4862197	Residential house	Annandale St	Bloor St Crossing	Sensitive
76_S	675812	4861746	Residential house	Grandview Dr	Bloor St Crossing	Sensitive
77_S	675963	4861444	Residential house	Norman Crescent	between Bloor St Crossing and Prestonvale Rd crossing	Sensitive
78_S	676334	4861072	Residential townhouse	Southport Drive	between Bloor St Crossing and Prestonvale Rd crossing	Sensitive
79_S	677571	4860517	Residential house	Prestonvale Road Prestonvale Road	Prestonvale Rd Crossing	Sensitive
80_S	677351	4860565	Residential house		Prestonvale Rd Crossing	Sensitive
81_S	677724	4860565	Residential house	Baseline Road W	Prestonvale Rd Crossing	Sensitive
82_S	677518	4860858	Residential house	Prestonvale Road	Prestonvale Rd Crossing	Sensitive
83_S	677399	4860968	Residential house	Prestonvale Road	Prestonvale Rd Crossing	Sensitive
84_S	678554	4861420	Residential house	Trulls Road	Trulls Rd Crossing	
85_S 86_S	678583	4861534	Residential house	Trulls Road	Trulls Rd Crossing	Sensitive
86_S 87_S	678740 678806 679673	4860837 4861215	Residential house Residential house Residential house	Baseline Road Trulis Road Baseline Road	Truits Rd Crossing Truits Rd Crossing	Sensitive Sensitive Sensitive
88_S 89_S	679339	4861703	Residential house	Courtice Road	Courtice Station / Courtice Rd Bridge Courtice Station / Courtice Rd Bridge	Sensitive
90_S	679464	4861052	Residential house	Baseline Road Courtice Road	Courtice Station / Courtice Rd Bridge	Sensitive
91_S	679569	4861049	Residential house		Courtice Station / Courtice Rd Bridge	Sensitive
92_S	679366	4861016	Residential house	Baseline Road	Courtice Station / Courtice Rd Bridge	Sensitive
93_S	680149	4861302	Residential house	Baseline Road	Baseline Rd crossing (M168.22)	Sensitive
94_S	681874	4861918	Residential house	Baseline Road	Rundle Rd Station / Rundle Rd Crossing	Sensitive
95_S	681956	4861728	Residential house	Rundle Road	Rundle Rd Station / Rundle Rd Crossing	Sensitive
96_S	682037	4861697	Residential house	Rundle Road	Rundle Rd Station / Rundle Rd Crossing	Sensitive
97_S	681810	4861889	Residential house	Baseline Road	Rundle Rd Station / Rundle Rd Crossing	Sensitive
98_S	682138 682295	4862038 4861974	Residential house Residential house	Baseline Road Baseline Road	Baseline Rd crossing (M166.92) Baseline Rd crossing (M166.92)	Sensitive
100_S	682557	4862313	Residential house	Holt Road	Holt Rd crossing	Sensitive
101_S	682750	4862149	Residential house	Baseline Road / Holt Road	Holt Rd crossing	Sensitive
102_S	682730	4861998	Residential house	Holt Road	Holt Rd crossing	Sensitive
103_S	682899	4862182	Residential house	Baseline Road	Holt Rd crossing	Sensitive
104_S	683245	4863267	Residential house	Maple Grove Road	Maple Grove Rd crossing	Sensitive
105_S	684009	4863595	Condominium/Apartment	Aspen Springs Drive	Green Rd bridge	Sensitive
106_C	684025	4863539	School / Daycare	Holy Family Catholic School / Compass Early Learning and Care	Green Rd bridge	Critical
107_S	683953	4863562	Condominium/Apartment	Green Road	Green Rd bridge	Sensitive
108 S	683830	4863594	Residential house	Padfield Drive	Green Rd bridge	
109_S	683818	4863714 4863840	Residential house	Padfield Drive	Green Rd bridge	Sensitive
110_S 111_S	683862 683665	4863676	Residential house Residential house	Boswell Drive Weldrick Crescent Annee Network	Green Rd bridge Green Rd bridge	Sensitive Sensitive
112_S	684050	4863663	Condominium/Apartment	Aspen Springs Drive	Green Rd bridge	Sensitive
113_S	683895	4863465	Condominium/Apartment	Connell Lane	Green Rd bridge	Sensitive
114_C	684301	4864121	Senior's Home	Seasons Retirement Communities	Bowmanville Station	Critical
115_S	684357	4864010	Condominium	Aspen Springs Drive	Bowmanville Station	Sensitive
116_S	684524	4863978	Residential house	Bonnycastle Drive	Bowmanville Station	Sensitive
117_S	684583	4864024	Residential house	Glen Ray Court	Bowmanville Station	Sensitive
118_S 119_S	684477 684547	4863919 4863827	Residential house Residential house	Fry Crescent	Bowmanville Station Bowmanville Station	Sensitive
120_S 121_S	684645 684684	4863830 4864113	Residential house Residential house	Bornycastle Drive Bowmanville Avenue	Bowmanville Station Bowmanville Station	Sensitive
122_S	684084 684228 684448	4863881	Condominium/Apartment	Aspen Springs Drive	Bowmanville Station	Sensitive
123_S 124_C	684322	4863750 4864400	Townhouses Place of worship	Vail Meadows Crescent The Church of Jesus Christ of Latter-day Saints	Bowmanville Station Bowmanville Station	Sensitive Critical
125_C	684553	4864674	Place of worship	Liberty Pentecostal Church	Bowmanville Station	Critical
126_S	684388	4864613	Recreation complex	Carnet B. Rickard Recreation Complex	Bowmanville Station	Sensitive
127_S	684631	4864296	Residential house	Bowmanville Avenue	Bowmanville Station	Sensitive
128_S	684733	4864378	Residential house	McCrimmon Crescent	Bowmanville Station	Sensitive
.20_0	301130	.001010			John Marrie Claudi	Gonouido

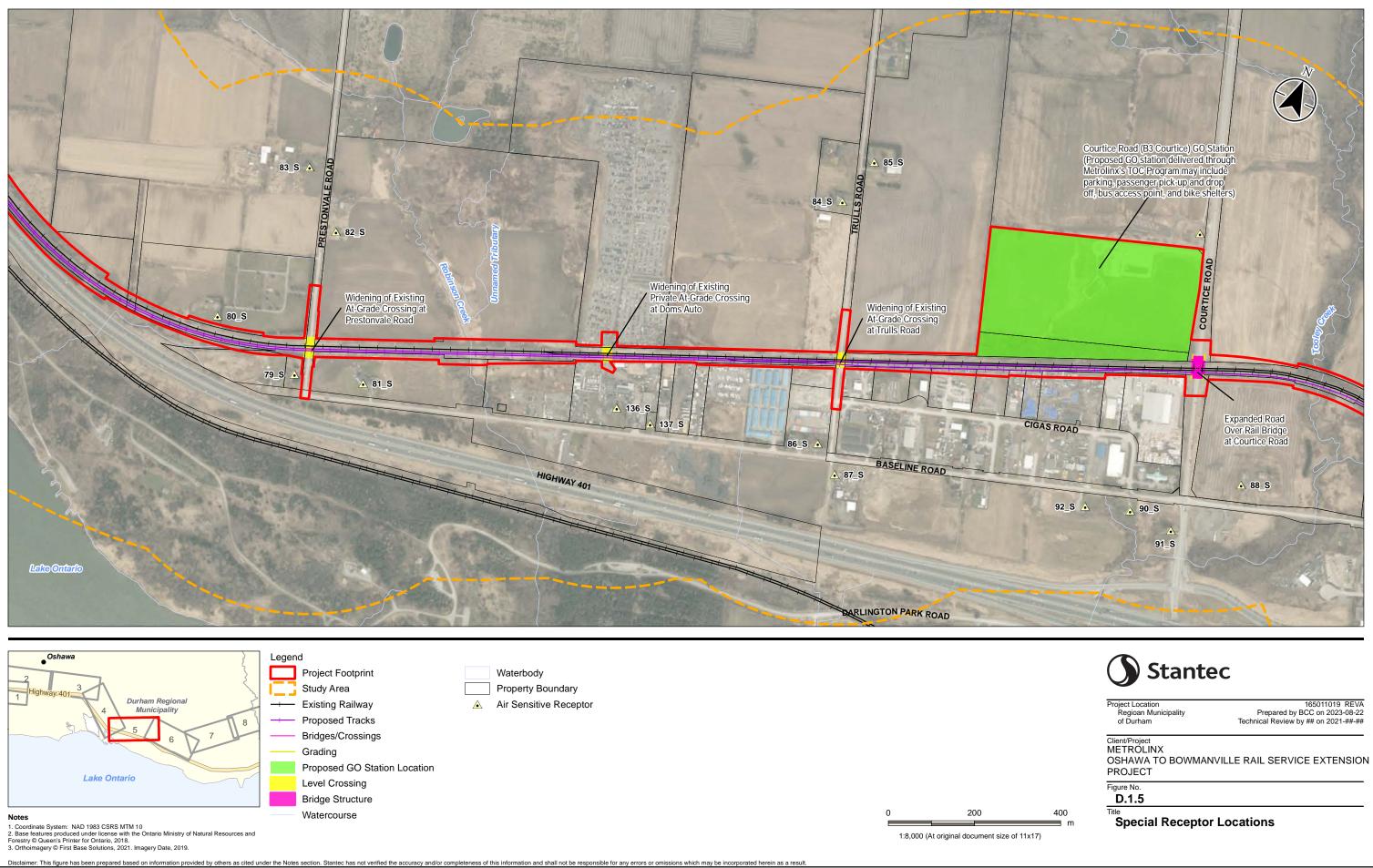

Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Table D-1 - Special Receptors

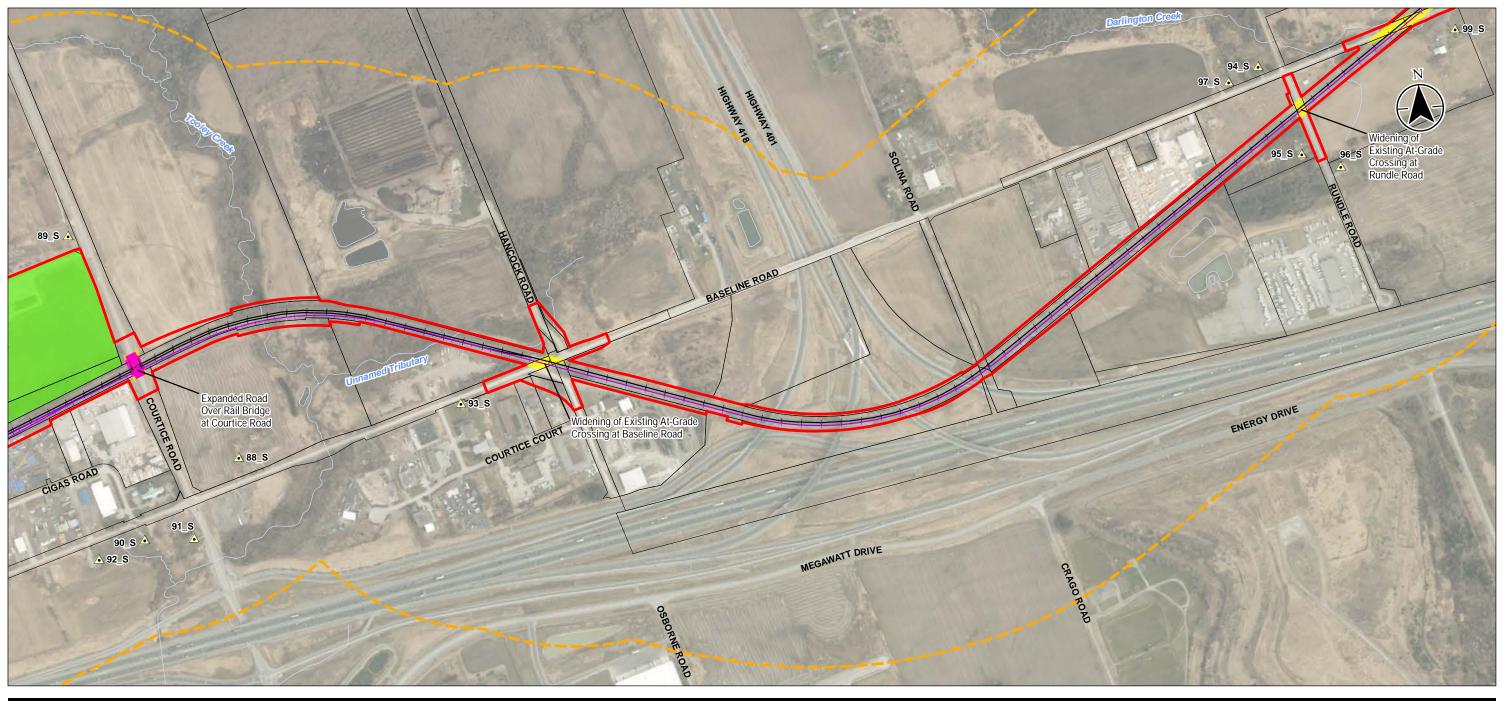
Receptor ID#	UTM East (m)	UTM North (m)	Description	Details	Location near	Sensitive / Critical
129 S	684816	4864204	Residential house	Trewin Lane	Bowmanville Station	Sensitive
130_C	684242	4864139	Senior's Home	Seasons Retirement Communities	Bowmanville Station	Critical
131_S	671913	4861588	Apartments	Avenue Street	Simcoe St Bridge	Sensitive
132_S	672000	4861376	Residential house	Mill Street	Simcoe St Bridge	Sensitive
133_C	672066	4861303	Place of worship	St. James Presbyterian Church	Simcoe St Bridge	Critical
134_C	673888	4862329	Daycare	Evangel Daycare	Farewell St Pedestrian Bridge	Critical
135_C	684970	4863976	School	Blaisdale Montessori School	Bowmanville Station	Critical
136_S	678282	4860763	Residential house	Baseline Road West	Dom's Auto Crossing	Sensitive
137_S	678368	4860762	Residential house	Baseline Road West	Dom's Auto Crossing	Sensitive
138_S	674012	4862162	Residential house	Keates Avenue	Farewell St Pedestrian Bridge	Sensitive
139_S	674077	4862177	Residential house	Keates Avenue	Farewell St Pedestrian Bridge	Sensitive
140_S	674183	4862223	Residential house	Milton Street	Farewell St Pedestrian Bridge	Sensitive
141_S	673980	4862264	Residential house	Elmridge Street	Farewell St Pedestrian Bridge	Sensitive
142_S	673844	4862206	Residential house	Crerar Avenue	Farewell St Pedestrian Bridge	Sensitive
143_S	673902	4862152	Residential house	Austen Court	Farewell St Pedestrian Bridge	Sensitive
144_S 145_C	674212 672000	4862343 4861601	Residential house Community Service	Elmridge Street	Harmony Rd Bridge Simcoe St Bridge	Sensitive
145_C 146 C	671864	4861977		Sincoe Hall Settlement House	Simcoe St Bridge	Critical
146_C 147_S	671896	4861977	Place of Worship Condominium/Apartment	Church of God 7th Day Simcoe Street South	Sincoe St Bridge	Sensitive
147_5 148_S	671883	4861836	Condominium/Apartment	Since Street South	Sincoe St Bridge	Sensitive
148_S	671746	4861869	Residential house	Gibb Street	Sincoe St Bridge	Sensitive
149_5 150_S	671677	4861894	Residential house	Gibb Street	Sincoe St Bridge	Sensitive
150_5	671694	4861849	Condominium/Apartment	Centre Street	Simcoe St Bridge	Sensitive
151_5 152 S	671591	4861868	Residential house	Gibb Street	Simcoe St Bridge	Sensitive
152_5 153 S	671605	4861838	Residential house	Gibb Street	Simcoe St Bridge	Sensitive
153_5 154 S	671144	4861712	Residential house	Gibb Street	Simcoe St Bridge	Sensitive
154_3 155 S	671144	4861679	Residential house	Gibb Street	Sincoe St Bridge	Sensitive
155_5 156_S	671076	4861719	Residential house	Park Road South	Sincoe St Bridge	Sensitive
150_3 157 S	670993	4861700	Residential house	Frontenac Avenue	Simcoe St Bridge	Sensitive
158 S	671098	4861659	Residential house	Frontenac Avenue	Sincoe St Bridge	Sensitive
158 S	671074	4861590	Residential house	Frontenac Avenue	Simcoe St Bridge	Sensitive
159 S	671073	4861589	Residential house	Park Road South	Simcoe St Bridge	Sensitive
160_0	671014	4861623	Residential house	Montrave Avenue	Simcoe St Bridge	Sensitive
		4861606				
161_S	671112		Residential house	Park Road South	Simcoe St Bridge	Sensitive
162_S	671269	4860938 4860998	Residential house	Park Road South Park Road South	Simcoe St Bridge	Sensitive
163_S	671248		Residential house		Simcoe St Bridge	Sensitive
164_S	671246	4860696	Residential house	College Avenue	Simcoe St Bridge	Sensitive
165_S	671438	4860567	Residential house	Park Road South	Simcoe St Bridge	Sensitive
166_S	671477	4860585	Residential house	Park Road South	Simcoe St Bridge	Sensitive
167_S	671536	4860563	Residential house	Bloor Street West	Simcoe St Bridge	Sensitive
170_S 171_S	671791 671780	4860637 4860683	Condominium/Apartment Condominium/Apartment	Bloor Street West	Simcoe St Bridge Simcoe St Bridge	Sensitive
171_S 172 S	672279	4860688	Residential house			Sensitive
				Knights Road	Simcoe St Bridge	
173_C 174_S	672351 672352	4860827 4860878	Place of worship Residential house	St. John the Baptist Church Bloor Street East	Simcoe St Bridge Simcoe St Bridge	Critical Sensitive
175_S 176_S	672656 672621	4860983 4860929	Residential house Residential house	Bloor Street East Bloor Street East	Simcoe St Bridge Simcoe St Bridge	Sensitive Sensitive
176_5 177_S	672894	4860929	2nd Storey Residence	Bloor Street East Bloor Street East	Simcoe St Bridge	Sensitive
177_3 178 S	672849	4861020		Fourth Avenue	Sincoe St Bridge	Sensitive
178_S 179_S	672993	4861096	Condominium/Apartment Residential house	Bloor Street East	Simcoe St Bridge	Sensitive
179_5 180_S	673007	4861099	Residential house	Ritson Road South	Simcoe St Bridge	Sensitive
180_S	673025	4861062	Place of worship	Ritson Road South	Simcoe St Bridge	Critical
181_C 182_S	673025	4861062	Place of worship Residential house	Ritson Road South Bloor Street East	Simcoe St Bridge	Sensitive
182_5 183 S	673036	4861150	Residential house Residential house	Ritson Road South	Simcoe St Bridge	Sensitive
183_5 184 S	672834	4861519	Residential house	McNaughton Avenue	Sincoe St Bridge	Sensitive
184_S 185 S	672879	4861487	Residential house	Ritson Road South	Sincoe St Bridge	Sensitive
185_5 186_S	672923	4861601	Residential house	Kitchener Avenue	Simcoe St Bridge	Sensitive
180_3 187_S	672938	4861438	Residential house	Ritson Road South	Sincoe St Bridge	Sensitive
187_3	672669	4861971	Residential house	Olive Avenue	Simcoe St Bridge	Sensitive
188_S	672714	4861948	Residential house	Ritson Road South	Simcoe St Bridge	Sensitive
190 S	672738	4861993	Residential house	Olive Avenue	Simcoe St Bridge	Sensitive
190_3 191_S	672728	4862026	Residential house	Olive Avenue	Simce St Bridge	Sensitive
191_5 192_S	672328	4861884	Residential house	Olive Avenue	Simcoe St Bridge	Sensitive
193_S	672100	4861809	Residential house	Olive Avenue	Sincoe St Bridge	Sensitive
193_3 194_S	672073	4861794	Residential house	Olive Avenue	Simcoe St Bridge	Sensitive
195 S	672115	4861781	Residential house	Olive Avenue	Simcoe St Bridge	Sensitive
196 S	671946	4861750	2nd Storey Residence	Olive Avenue	Simcoe St Bridge	Sensitive
190_0	671912	4861732	Residential house	Since Street South	Simcoe St Bridge	Sensitive
197_5 198_S	671991	4861733	Residential house	Olive Avenue	Simcoe St Bridge	Sensitive
199_S	672279	4861306	Residential house	Albert Street	Simcoe St Bridge	Sensitive
200 S	672289	4861276	Residential house	First Avenue	Simcoe St Bridge	Sensitive
200_0 201 C	672371	4861057	Place of worship	St. George's Catholic Church	Simcoe St Bridge	Critical
	672377	4860918	Residential house	Abert Street	Simcoe St Bridge	Sensitive
202 S						
202_S 203_S	672405	4860930	Residential house	Abert Street	Simcoe St Bridge	Sensitive

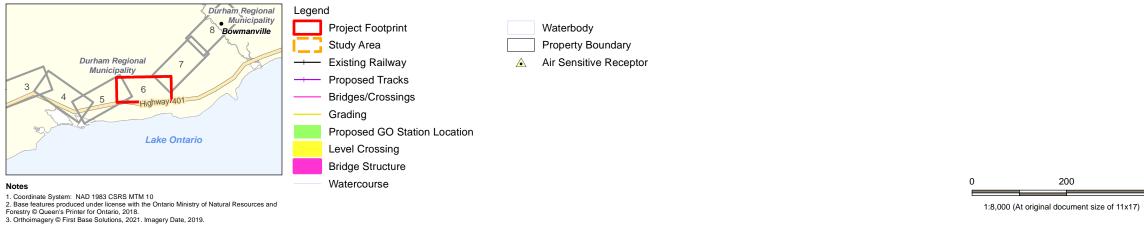

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report


Figure D.1 Special Receptor Locations




3. Orthoimagery © First Base Solutions, 2021. Imagery Date, 2019.





sclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Project Location Regioan Municipality of Durham

165011019 REVA Prepared by BCC on 2023-08-22 Technical Review by ## on 2021-##-##

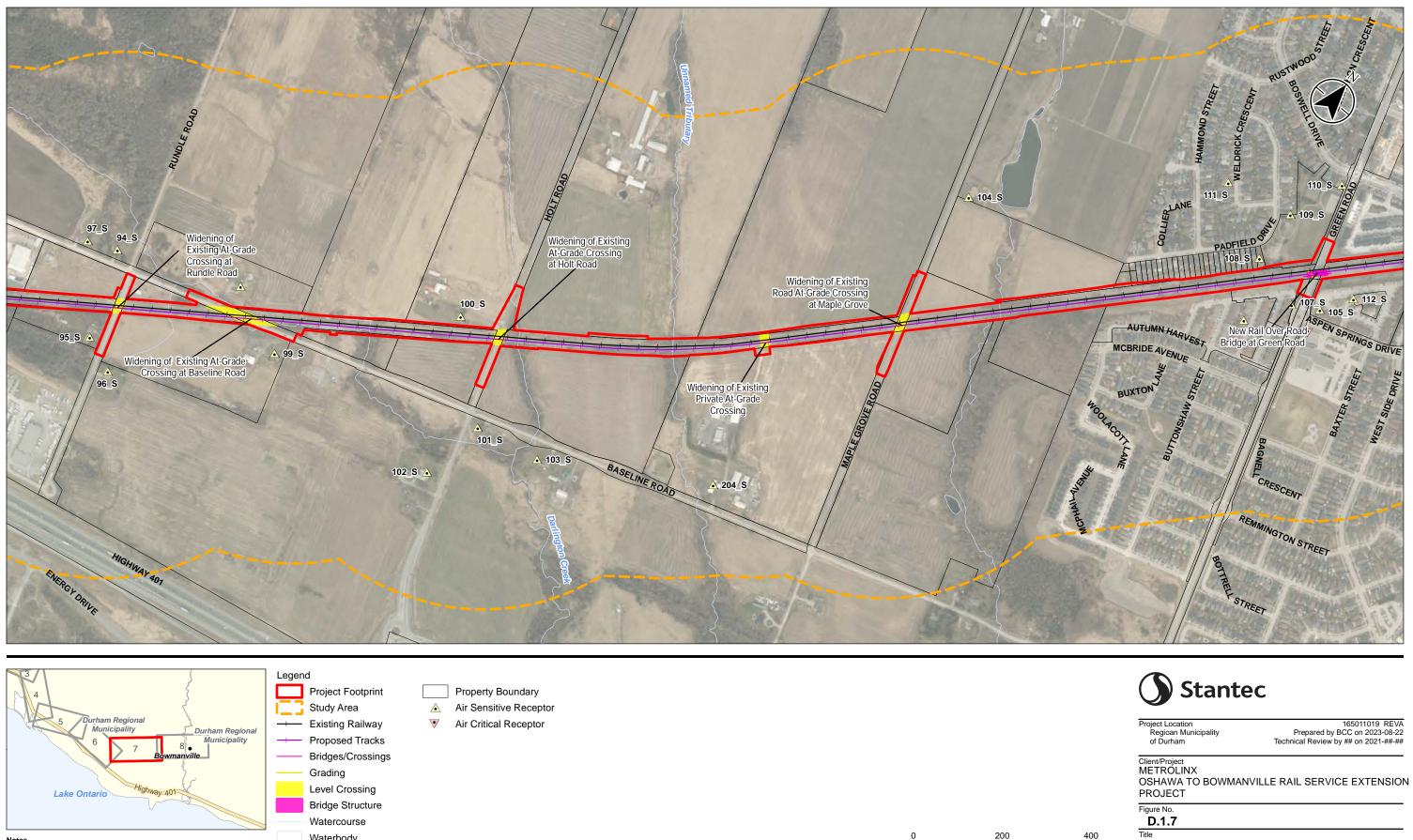
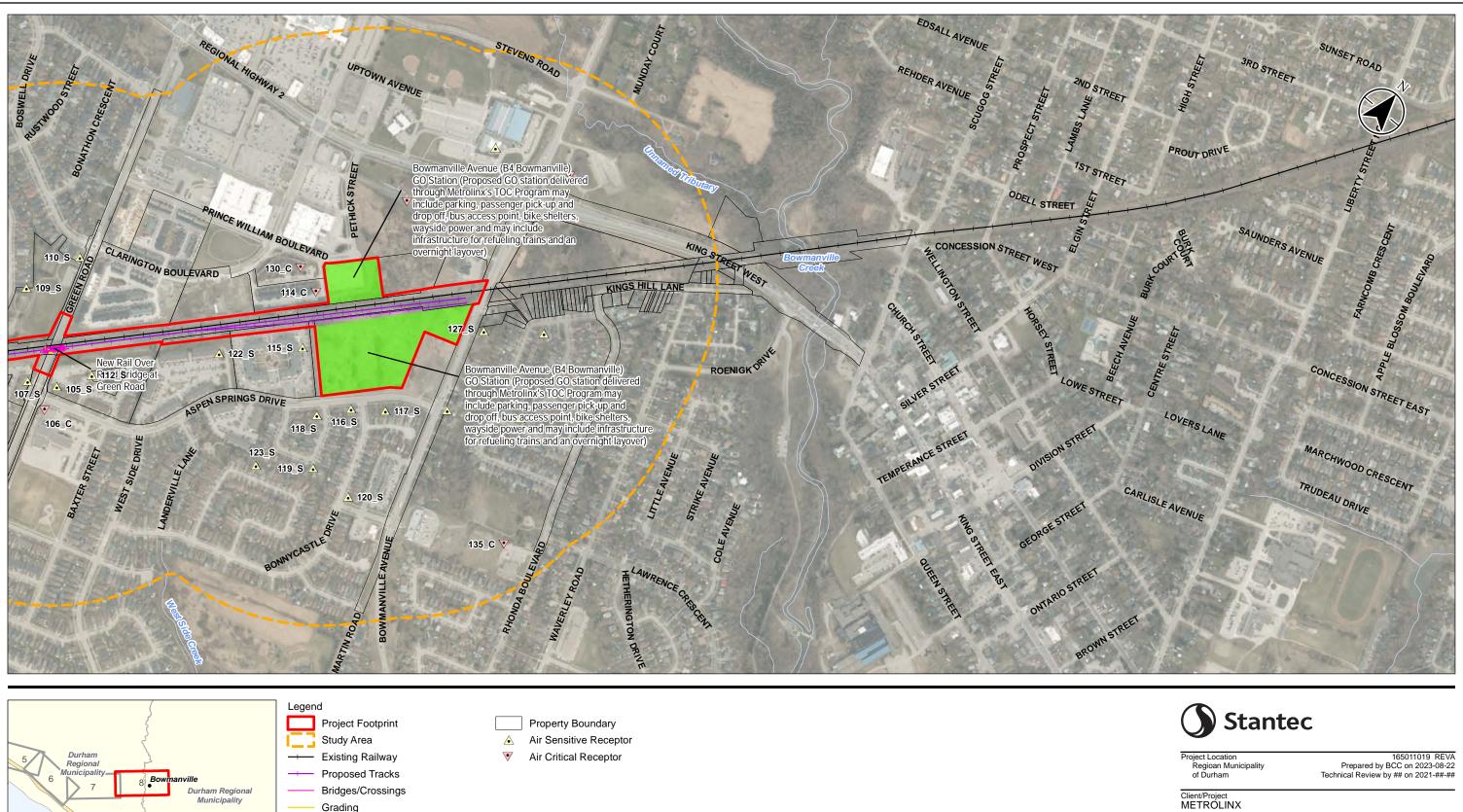

Client/Project METROLINX OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT

Figure No.

D.1.6 Title

400 ∎ m

Special Receptor Locations



Disclaimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

∎ m

Special Receptor Locations

200

1:8,000 (At original document size of 11x17)

1. Coordinate System: NAD 1983 CSRS MTM 10
 2. Base features produced under license with the Ontario Ministry of Natural Resources and
Forestry © Queen's Printer for Ontario, 2018.
 3. Orthoimagery © First Base Solutions, 2021. Imagery Date, 2019.

hway:401

Lake Ontario

Notes

claimer: This figure has been prepared based on information provided by others as cited under the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Proposed GO Station Location

Bridge Structure

Watercourse

Waterbody

Newcastle

OSHAWA TO BOWMANVILLE RAIL SERVICE EXTENSION PROJECT

Figure No.

D.1.8 Title

400 m

Special Receptor Locations

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report

Appendix E Summary of Air Dispersion Modelling Inputs

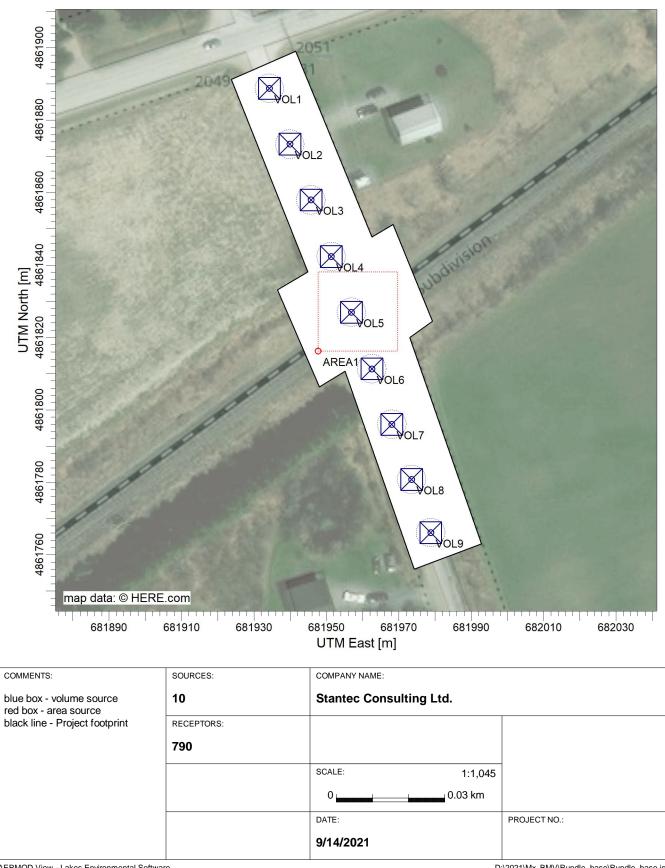
Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: Rundle Road - Widen Crossing Appendix E <u>Source Summary Table</u>

Source ID	Source	Type of	Contaminant	Averaging	Worst-cas	e Scenario	Note
	Description	Source and Location		Period (hours)	Emission Rate (g/s)	% of Overall Emissions	
			SO ₂	10 min, 1, 8760	2.91E-05	100%	
			NO _x	1, 24, 8760	9.66E-03	100%	
			PM	24, 8760	6.30E-04	2%	
			PM10	24	6.05E-04	3%	
	Construction -	Volume -	PM2.5	24, 8760	5.67E-04	22%	
VOL1-VOL9	Nonroad equipment		CO	1, 8	2.38E-02	100%	The source (group)
	tailpipe		Benzene	24, 8760	3.77E-05	100%	
			1,3-Butadiene	24, 8760	1.51E-06	100%	
			Acrolein	1, 24	1.63E-05	100%	operates 8
			Acetaldehyde	30 min, 24	9.87E-05	100%	hours/day (8am-
			Formaldehyde	24	2.91E-04	100%	(oan- 5pm).
			Benzo(a)pyrene	24, 8760	2.98E-09	100%	opinj.
AREA1 C	Construction -	Area -	РМ	24, 8760	3.21E-02	98%	
	Construction Dust	construction	PM10	24	2.05E-02	97%	1
		area	PM2.5	24, 8760	2.05E-03	78%	
			Crystalline silica	24	1.07E-03	100%	

Appendix E: Summary of Air Dispersion Modelling Inputs Location: Rundle Road - Widen Crossing

Dispersion Modelling Parameters for Area Source

Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	AREA1		
Length of x side	21.91	m	
Length of y side	21.91	m	
Area	480.0	m2	active construction area for worst-case scenario
Orientation angle from N	0	degrees	
Release Height	1.00	m	assumed release height of dust
Vehicle Height	3.5	m	assumed average construction vehicle height
Initial Vertical Dimension	1.63	m	(Plume Height) / 2.15


Dispersion Modelling Parameters for Volume Sources

Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	VOL1 - VOL9		
Length of x side	6	m	measured total width of the road
Vehicle Height	3.5	m	assumed average construction vehicle height
Release Height	3.00	m	assumed height of exhaust for construction vehicles
Initial Lateral Dimension	1.40	m	(Length of side) / 4.3
Initial Vertical Dimension	0.81	m	for elevated release height: (Plume Height) / 4.3

Background Ozone concentrations used for Ozone Limiting Method in AERMOD model

		Background ozone concentrations (ppb)					
Hour	Winter	Spring	Summer	Fall			
1	34	38	33	26.4			
2	34	37	32	26			
3	34	36	30	26			
4	33	34	26	26			
5	32	34	24.4	25.4			
6	30	31	21	24			
7	29	31	21	22			
8	29	33	25	22			
9	31	36	30.1	22			
10	33	40	37.7	24			
11	34	44	45	27			
12	36	47	49	29			
13	37	50	53	30			
14	39	53	56	31			
15	39	55	55	32			
16	39	54.9	56	32			
17	39	54	55	31			
18	37	53	55	28			
19	35	51	51	27			
20	34	48.7	46	27			
21	33	44	40.4	27			
22	34	41.8	37	26			
23	33.4	40	35	27			
24	34	39	33	26			

PROJECT TITLE: Figure E-1: Dispersion Modelling Plan for Rundle Road Crossing **Construction Scenario**

AERMOD View - Lakes Environmental Software

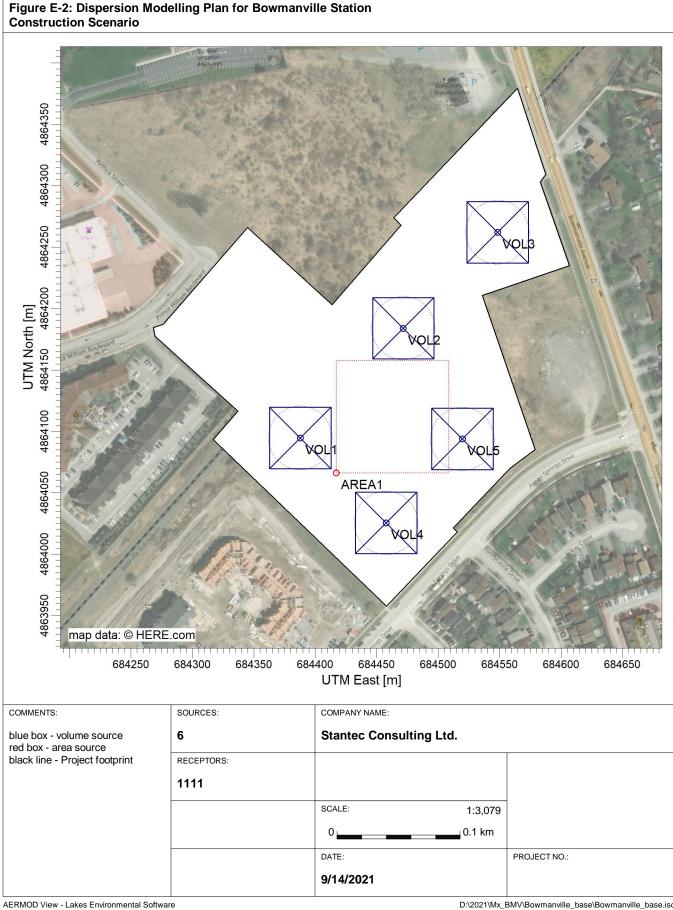
D:\2021\Mx_BMV\Rundle_base\Rundle_base.isc

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: B4 Station (at Bowmanville) Construction Appendix E Source Summary Table

Source ID	Source	Type of	Contaminant	Averaging	Worst-cas	e Scenario	Note
	Description	Source and Location		Period (hours)	Emission Rate (g/s)	% of Overall Emissions	
			SO ₂	10 min, 1, 8760	8.81E-05	100%	
			NO _x	1, 24, 8760	2.88E-02	100%	
			PM	24, 8760	1.48E-03	0%	
			PM10	24	1.42E-03	0%	
	Construction -	Volume -	PM2.5	24, 8760	1.33E-03	4%	
VOL1-VOL5	Nonroad equipment		CO	1, 8	5.63E-02	100%	The source
	tailpipe		Benzene	24, 8760	1.14E-04	100%	
			1,3-Butadiene	24, 8760	4.55E-06	100%	(group)
			Acrolein	1, 24	4.93E-05	100%	operates 8
			Acetaldehyde	30 min, 24	2.99E-04	100%	hours/day
			Formaldehyde	24	8.79E-04	100%	(8am- 5pm).
			Benzo(a)pyrene	24, 8760	9.02E-09	100%	Spin).
I ARFA1 I	Construction - I	Area -	РМ	24, 8760	5.60E-01	100%	
	Construction Dust	construction	PM10	24	3.59E-01	100%	1
		area	PM2.5	24, 8760	3.59E-02	96%	
			Crystalline silica	24	1.87E-02	100%	

Appendix E: Summary of Air Dispersion Modelling Inputs Location: B4 Station (at Bowmanville) Construction

Dispersion Modelling Parameters for Area Source


Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	AREA1		
Length of x side	91.593	m	
Length of y side	91.593	m	
			active construction area for worst-case
Area	8389	m2	scenario excluding existing GO facility north of
			the tracks as it is already developed.
Orientation angle from N	0	degrees	
Release Height	1.00	m	assumed release height of dust
Vehicle Height	3.5	m	assumed average construction vehicle height
Initial Vertical Dimension	1.63	m	(Plume Height) / 2.15

Dispersion Modelling Parameters for Volume Sources

Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	VOL1 - VOL5		
Length of x side	50	m	measured total width of the road
Vehicle Height	3.5	m	assumed average construction vehicle height
Release Height	3.00	m	assumed height of exhaust for construction
Initial Lateral Dimension	11.63	m	(Length of side) / 4.3
Initial Vertical Dimension	0.81	m	for elevated release height: (Plume Height) /

Background Ozone concentrations used for Ozone Limiting Method in AERMOD model

	Background ozone concentrations (ppb)					
Hour	Winter	Spring	Summer	Fall		
1	34	38	33	26.4		
2	34	37	32	26		
3	34	36	30	26		
4	33	34	26	26		
5	32	34	24.4	25.4		
6	30	31	21	24		
7	29	31	21	22		
8	29	33	25	22		
9	31	36	30.1	22		
10	33	40	37.7	24		
11	34	44	45	27		
12	36	47	49	29		
13	37	50	53	30		
14	39	53	56	31		
15	39	55	55	32		
16	39	54.9	56	32		
17	39	54	55	31		
18	37	53	55	28		
19	35	51	51	27		
20	34	48.7	46	27		
21	33	44	40.4	27		
22	34	41.8	37	26		
23	33.4	40	35	27		
24	34	39	33	26		

PROJECT TITLE:

D:\2021\Mx_BMV\Bowmanville_base\Bowmanville_base.isc

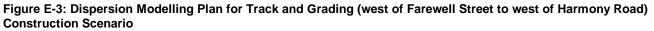
Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Location: Track and Grading Construction (west of Farewell Street to west of Harmony Road) Appendix E Source Summary Table

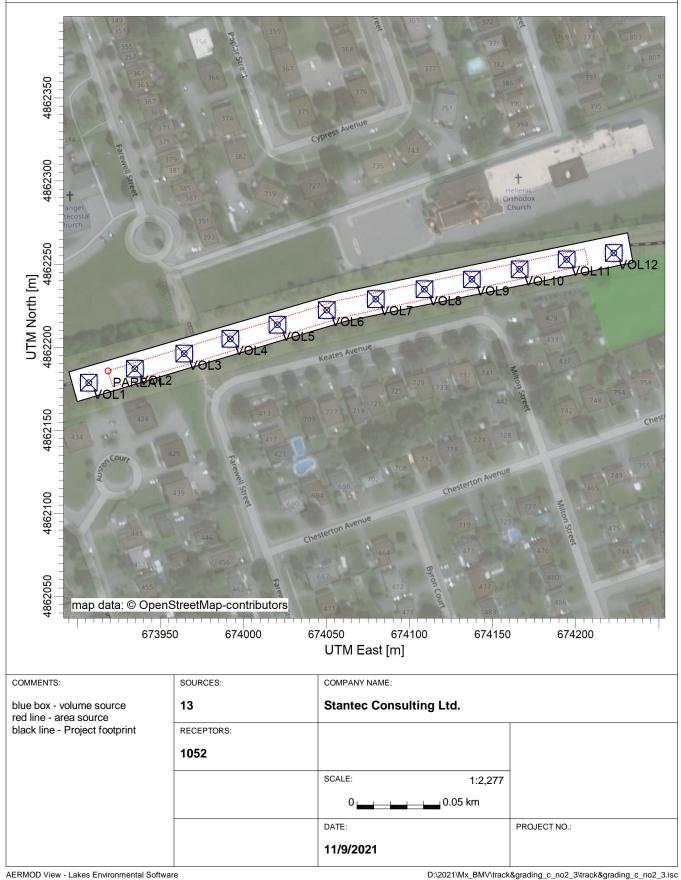
Source ID	Source Description	Type of	Contaminant	Averaging	Worst-case Scenario		Note
		Source and		Period	Emission	% of	
		Location		(hours)	Rate (g/s)	Overall	
						Emissions	
			SO ₂	10 min, 1, 8760	4.02E-05	100.0%	
			NO _x	1, 24, 8760	1.32E-02	100.0%	
			PM	24, 8760	6.82E-04	0.3%	
			PM10	24	6.54E-04	0.5%	
	Construction -	Volume -	PM2.5	24, 8760	6.13E-04	4.6%	The source (group)
VOL1-VOL12	Nonroad equipment		CO	1, 8	2.59E-02	100.0%	
	tailpipe	area	Benzene	24, 8760	5.20E-05	100.0%	
			1,3-Butadiene	24, 8760	2.08E-06	100.0%	operates 8
			Acrolein	1, 24	2.25E-05	100.0%	hours/day
			Acetaldehyde	30 min, 24	1.36E-04	100.0%	(8am-5pm).
			Formaldehyde	24	4.01E-04	100.0%	,
			Benzo(a)pyrene	24, 8760	4.12E-09	100.0%	
PAREA1 Construction -		Polygonal Area	PM	24, 8760	2.00E-01	99.7%	
	Construction -	- construction	PM10	24	1.28E-01	99.5%	
	Construction Dust	area	PM2.5	24, 8760	1.28E-02	95.4%	1
		a. 64	Crystalline silica	24	6.70E-03	100.0%	

Appendix E: Summary of Air Dispersion Modelling Inputs Location: Track and Grading Construction (west of Farewell Street to west of Harmony Road)

Dispersion Modelling Parameters for Area Polygon Source

Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	PAREA1		
No. Vertices (or sides)	6	m	
Area	3000	m2	active construction area for worst-case
Леа	3000	1112	scenario
Release Height	1.00	m	assumed release height of dust
Vehicle Height	3.5	m	assumed average construction vehicle height
Initial Vertical Dimension	1.63	m	(Plume Height) / 2.15


Dispersion Modelling Parameters for Volume Sources


Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	VOL1 - VOL12		
Length of x side	10	m	measured width of vehicle travel in construction
Lengur of x side	10	111	area
Vehicle Height	3.5	m	assumed average construction vehicle height
Release Height	3.00	m	assumed height of exhaust for construction
Release Height	5.00	111	vehicles
Initial Lateral Dimension	2.33	m	(Length of side) / 4.3
		m	for elevated release height: (Plume Height) /
Initial Vertical Dimension	0.81	m	4.3

Background Ozone concentrations used for Ozone Limiting Method in AERMOD model

	Background ozone concentrations (ppb)					
Hour	Winter	Spring	Summer	Fall		
1	34	38	33	26		
2	34	37	32	26		
3	34	36	30	26		
4	33	34	26	26		
5	32	34	24	25		
6	30	31	21	24		
7	29	31	21	22		
8	29	33	25	22		
9	31	36	30	22		
10	33	40	38	24		
11	34	44	45	27		
12	36	47	49	29		
13	37	50	53	30		
14	39	53	56	31		
15	39	55	55	32		
16	39	55	56	32		
17	39	54	55	31		
18	37	53	55	28		
19	35	51	51	27		
20	34	49	46	27		
21	33	44	40	27		
22	34	42	37	26		
23	33	40	35	27		
24	34	39	33	26		

Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case	Scenario fo	Modelling*	Note
					1-hr Emission Rate (g/s)	24-hr Emission Rate (g/s)	% of Overall Emissions	
			SO ₂ NO _x PM PM10	10 min, 1, 8760 1, 24, 8760 24, 8760 24	5.19E-05 1.70E-02 8.57E-04 8.23E-04	5.19E-05 1.70E-02 8.57E-04 8.23E-04	2% 5% 0% 0%	
VOL1-VOL11	Construction - Nonroad equipment tailpipe	Volume - construction area	PM2.5 CO Benzene	24, 8760 1, 8 24, 8760	7.72E-04 3.26E-02 6.71E-05	7.72E-04 3.26E-02 6.71E-05	2% 1% 7%	The source (group)
			1,3-Butadiene Acrolein Acetaldehyde Formaldehyde	24, 8760 1, 24 30 min, 24 24	2.68E-06 2.90E-05 1.76E-04 5.18E-04	2.68E-06 2.90E-05 1.76E-04 5.18E-04	3% 20% 18% 25%	operates 8 hours/day (8am-5pm).
PAREA1	Construction - Construction Dust	Area - construction P area P	Benzo(a)pyrene PM PM10 PM2.5 Crystalline silica	24, 8760 24, 8760 24 24 24, 8760 24	5.32E-09 4.24E-02 2.72E-02 2.72E-03 1.42E-03	5.32E-09 4.24E-02 2.72E-02 2.72E-03 1.42E-03	0% 7% 14% 6% 23%	
			SO ₂ NO _x PM	10 min, 1, 8760 1, 24, 8760 24, 8760	1.55E-05 2.55E-03 1.97E-03	5.37E-06 8.87E-04 1.58E-03	1% 1% 0%	
	Construction - Tailpipe		PM10 PM2.5 Crystalline silica	24, 8760 24 24, 8760 24	8.54E-04 2.21E-04 1.37E-05	4.68E-04 1.19E-04 1.37E-05	0% 0% 0%	
R1a_Q	emissions and road dust from detoured vehicles	Volume - construction area	CO Benzene 1,3-Butadiene	1, 8 24, 8760 24, 8760	2.18E-02 6.36E-06 6.11E-07	7.56E-03 2.21E-06 2.12E-07	1% 1% 1%	
			Acrolein Acetaldehyde Formaldehyde	1, 24 30 min, 24 24	9.53E-07 6.56E-06 1.22E-05	3.31E-07 2.28E-06 4.25E-06	1% 1% 1%	
		Volume - construction area	Benzo(a)pyrene SO ₂ NO _x PM	24, 8760 10 min, 1, 8760 1, 24, 8760 24, 8760	8.04E-09 1.48E-05 2.44E-03 1.88E-03	2.79E-09 5.12E-06 8.46E-04 1.51E-03	1% 1% 1% 0%	
	Construction - Tailpipe		PM10 PM2.5 Crystalline silica	24 24, 8760 24	8.14E-04 2.10E-04 1.31E-05	4.46E-04 1.14E-04 1.31E-05	0% 0% 0%	
R1b_Q	emissions and road dust from detoured vehicles		CO Benzene 1,3-Butadiene Acrolein	1, 8 24, 8760 24, 8760 1, 24	2.08E-02 6.06E-06 5.83E-07 9.09E-07	7.21E-03 2.11E-06 2.02E-07 3.16E-07	1% 1% 1% 1%	
			Acetaldehyde Formaldehyde Benzo(a)pyrene	1, 24 30 min, 24 24 24, 8760	6.25E-06 1.17E-05 7.67E-09	2.17E-06 4.05E-06 2.66E-09	1% 1% 1%	
			SO ₂ NO _x PM	10 min, 1, 8760 1, 24, 8760 24, 8760	1.83E-05 3.05E-03 2.37E-03	6.36E-06 1.06E-03 1.91E-03	1% 1% 0%	
	Construction - Tailpipe	Volume - construction	PM10 PM2.5 Crystalline silica	24 24, 8760 24	1.01E-03 2.65E-04 1.67E-05	5.60E-04 1.44E-04 1.67E-05	1% 1% 0%	
R2a_Q	R2a_Q emissions and road dust from detoured vehicles	area	CO Benzene 1,3-Butadiene	1, 8 24, 8760 24, 8760	2.60E-02 7.55E-06 7.17E-07 1.11E-06	9.04E-03 2.62E-06 2.49E-07 3.86E-07	1% 1% 1% 1%	
			Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene	1, 24 30 min, 24 24 24, 8760	7.67E-06 1.43E-05 9.66E-09	2.66E-06 4.95E-06 3.35E-09	1% 1% 1% 1%	
			SO ₂ NO _x PM	10 min, 1, 8760 1, 24, 8760 24, 8760	7.59E-06 1.26E-03 2.36E-03	2.64E-06 4.39E-04 2.17E-03	0% 0% 0%	
	Construction - Tailpipe	Volume - construction	PM10 PM2.5 Crystalline silica	24 24, 8760 24	6.83E-04 1.76E-04 2.07E-05	4.96E-04 1.26E-04 2.07E-05	0% 0% 0%	
R2b_Q emissions and road dust from detoured vehicles		dust volume - construction	CO Benzene 1,3-Butadiene	1, 8 24, 8760 24, 8760	1.08E-02 3.13E-06 2.97E-07	3.75E-03 1.09E-06 1.03E-07	0% 0% 0%	
		Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene	1, 24 30 min, 24 24 24, 8760	4.60E-07 3.18E-06 5.91E-06 4.00E-09	1.60E-07 1.10E-06 2.05E-06 1.39E-09	0% 0% 0%		

Pag. C Construction - Tailogn from debuned vehicles Solution From debuned vehicles Solution - Frainger From debuned vehicles Solution From debuned vehicles Soluti	Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case	Scenario for	Modelling*	Note
R3_C Construction - Tailpip ensistorie and road road from detoured vehicles Volume - construction ensistorie and road road from detoured vehicles Volume - construction from detoured vehicles Volume - construction ensistorie and road road from detoured vehicles Volume - construction from detoured veh						Emission	Emission	Overall	
Pair Pair Pair Pair Pair Pair Pair Pair									
PR3_C Construction - Tailore from distured vehicles PM00 24 1 328-03 8 - 10 1 - 10 PR3_C construction - Tailore from distured vehicles volume - construction for distured vehicles volume - construction - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,									
PLG_C Construction - Tailpipe emissions and cost dut from debund vehicles Volume - construction (Cystalline silica 24, 4700 19:16-04 28:86:04 1% Construction - Tailpipe emissions and cost dut from debund vehicles Volume - construction from debund v									
Rb_C C Construction - Tailpipe menisons and read which is from defaured vehicles Volume - construction rereation - Tailpipe menisons and read dut from defaured vehicles Construction - Tailpipe menisons and read dut from defaured vehicles Construction - Tailpipe menisons and read dut from defaured vehicles Construction - Tailpipe menisons and read dut from defaured vehicles Volume - construction ments Construction - Tailpipe menisons and read dut from defaured vehicles Volume - construction ments Construction - Tailpipe menisons and read dut from defaured vehicles Volume - construction ments Construction - Tailpipe menisons and read dut from defaured vehicles Volume - construction ments Construction - Tailpipe menisons and read dut from defaured vehicles Volume - construction ments Construction - Tailpipe menisons and read dut from defaured vehicles Volume - construction ments Construction - Tailpipe menisons and read dut from defaured vehicles Volume - construction ments Construction - Tailpipe ments Construction - Tailpipe menissions and read dut from def									
P3_C emissions and road dut from defound vehicles Volume - construction area CO 1,8 3.28E-02 11-8C2 11-8 Brozone 24,4780 3.24E-08 3.21E-08 1%		Construction - Tailpipe							
Priori deduced vehicles Berzere bit (4, 676) Disk-(-0) Disk-(-0) <thdisk-(-0)< th=""> Disk-(-0) D</thdisk-(-0)<>	R3_C			СО	1, 8	3.28E-02	1.14E-02		
R4_0_0 Construction - Tailgrep from detourd vehicles Volume - construction area Acceler Participyrene 24, 8700 5278-00 7278-00 %% R4_0_0 Construction - Tailgrep from detourd vehicles Volume - construction area SO, 10 min., 19700 4.04E-05 4.02E-00 1% R4_0_0 Construction - Tailgrep from detourd vehicles Volume - construction area SO, 10 min., 19700 4.04E-05 1.02E-03 7% — PMI 24, 8700 5.05E-63 4.02E-03 1.02E-03 1.02		from detoured vehicles	arou						
Ref_C_C Construction - Tailpipe emissions and road data from debued vehicles Volume - construction area Sol (Construction - Tailpipe emissions and road data from debued vehicles Volume - construction (Construction - Tailpipe emissions and road data from debued vehicles Volume - construction (Construction - Tailpipe emissions and road data from debued vehicles Volume - construction (Construction - Tailpipe emissions and road data from debued vehicles Volume - construction (Construction - Tailpipe emissions and road data from debued vehicles Volume - construction (Construction - Tailpipe (Construction - Tailpipe (Construction - Tailpipe emissions and road data from debued vehicles Volume - construction (Construction - Tailpipe (Construction - Tailpipe (Construct									
Rds_O Construction - Taiping emissions and road data from debued vehicles Formaleshyde Beroccio/prome 24 1.41E-05 4.92E-00 1% Rds_O Construction - Taiping emissions and road data from debued vehicles Volame - construction area SO, 100, 100, 100, 100, 100, 100, 100, 10									
R4a_O So, 2 10 min, 1, 1700 4.04:0.05 2.9% R4a_O Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area So, 2 10 min, 1, 1700 4.04:0.3 1.9% PM10 2.4 5.08:0.3 1.0% PM10 2.228:0.3 1.21:4:600 3.08:0.44 11% PM2 2.4.8700 5.08:0.01 3.08:0.44 11% PM2 2.228:0.3 1.21:4:606 1.5% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 1.9% 2.06:0.01 2.06:0.01 2.06:0.01 2.06:0.01 2.06:0.01 2.06:0.01 2.06:0.01 1.9% 2.06:0.01 2.06:0.01 1.0% 2.06:0.01 1.0% 2.06:0.01 1.0% 2.06:0.01 1.0% 2.06:0.01 1.0% 2.06:0.01 1.0% 2.06:0.01									
R4a_O Construction - Talipipe imissions and road dust from detoured vehicles volume - construction area No. 1,24,8760 6.015-03 4.026-03 1% R4b_O construction - Talipipe emissions and road dust from detoured vehicles volume - construction area 24 3.775-06 1.016-05 3.775-06 1.016-05 R4b_O construction - Talipipe emissions and road dust from detoured vehicles volume - construction from detoured vehicles volume - construction from detoured vehicles Volume - construction area 24,8760 1.016-06 5.026-07 2% R4b_O construction - Talipipe emissions and road dust from detoured vehicles Volume - construction area 24,8760 1.016-06 5.026-07 2% R4b_O construction - Talipipe emissions and road dust from detoured vehicles Volume - construction area 2.017-06 2.016-08 1.178-06 2.026-07 1.016-08 R5_C construction - Talipipe emissions and road dust from detoured vehicles Volume - construction area 2.017-06 3.016-02 1.226-03 3.016-07 1.016-06 3					24, 8760				
R4a_O Construction - Tailpip emissions and road dut from detoured vehicles Volume - construction area PM 24,4700 5.052-03 1.21E-03 1.1% R4a_O emissions and road dut from detoured vehicles volume - construction area 1.8 5.052-02 1.98E-06 3.07E-03 1.9% - Benzene 24,6700 1.98E-06 5.07E-07 2.5% -				-					
Rda_Q Construction - Tailpipe from debuned vehicles PM10 24 22.23 1.21E-03 1.95 1.95 Rda_Q emissions and rad dust from debuned vehicles Volume - construction area 24 3.47E-05 3.67E-02 2% 1.26E-02 2% 1.26E-03 2.72E-03 1.27E-05 2.46E 1.26E-03 1.27E-05 2.46E 1.26E-03 1.27E-05 2.46E 1.26E-03 1.27E-05 2.46E 1.26E-03 1.27E-05 2.46E 1.36E-03 1.36E									
R4a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24,8700 6.082-02 3.07E-05 1% — R4b_Q new -1,8 0.562-02 3.07E-05 1% — — — — — — — — — …									
R4a_Q emissions and road dist from detoured vehicles Volume - construction area CO 1.8 9.05E-02 2%									
R4B_Q enissions and road dust from deloared vehicles area from deloared vehicles CO 1.8 5.052-02 1.92-02 2/h modeloared vehicles from deloared vehicles non-construction 1.3-Butadiene 24, 8760 1.052-02 1.92/h response 24, 8760 1.052-02 1.92/h 1.3-Butadiene 24, 8760 1.052-02 1.92/h Acctaidehyde 24, 4760 1.051-06 5.952-07 2/h 1.3-Butadiene 24, 4760 1.7172-06 6.22/h 1.3-Butadiene 24, 4760 1.7172-06 2/h 1.3-Butadiene 24, 4760 1.7172-09 2/h 1.3-Butadiene 24, 4760 1.365-03 1.3/h			Volume - construction		24				
R4b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - constructio	R4a_Q								
Rdb_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Constructi		nom detoured vehicles							
Rdb_0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - constructio									
Rdb_Q Construction - Tailpipe emissions and road dut from detoured vehicles Volume - construction area Volume - construction (CO Volume - constru									
R4b_0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area So, NO, NO, PM 10 min, 1, 8700 2.78E-05 9.48E-06 1% (%) R4b_0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction (CO 1, 8 3.86E-02 1.78E-04 1% (%) R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 1.78E-05 1.78E-05 1.78E-06									
R4b_0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction construction Volume - construction area Volume - construction area Volume - construction area Volume - construction Volume - construction area Volume - construction Volume - co									
R4b_Q Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area PM 24, 8760 3.41E-03 2.72E-03 1% PM2.5 24, 8760 3.83E-04 2.07E-04 1% - Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 24, 8760 1.12E-05 3.88E-06 1% No. 1.38Utadiene 24, 8760 1.12E-05 3.88E-06 1% Acrolein 4 1.24 1.71E-06 5.38E-07 1% Acrolein 4 1.24 1.71E-06 5.38E-06 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1.8760 1.39E-08 4.84E-09 1% R5_C C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1% SO2 10 min, 1.8760 1.38E-04 1% R6a_O Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1 24, 8760 1.32E-04 8.06E-01 12% R6a_O				-					
R4b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 1.50E-03 3.81-66-14 1% CO 1.6 3.83E-04 2.07E-04 1% 1 Co 1.6 3.83E-04 2.07E-04 1% 1 CO 1.6 3.83E-04 2.07E-04 1% 1 CO 1.6 3.80E-02 1.32E-02 3.88E-06 1% Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction 2.4 2.18E-05 7.80E-06 1% PM 2.4 6.700 1.38E-04 8.70E-05 1.37E-07 1% R5_C Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 802_ 10 min, 1.8760 4.37E-03 2.64E-03 9% Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 2.4 3.06E-04 4.30E-02 3.39K-02 7% PM10 2.4 3.08E-01 1.38E-04 6.30E-01 12%									
R4b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 2.35E-05 2.35E-05 0% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.8 3.80E-06 1.32E-02 1.32E-02 1.% R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 2.4,8760 1.02E-03 3.77E-07 1% Volume - construction from detoured vehicles Volume - construction area 2.4,8760 1.39E-08 4.07E-06 1% Volume - construction from detoured vehicles Volume - construction area NO_ 1.24,8760 1.39E-04 4.08E-05 1% PM 24,8760 1.39E-04 4.08E-05 1% 162E-02 1% PM 24,8760 4.07E-03 1.08E-04 6% 102E-04 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 2.4,8760 1.08E-04 1.02E-01 1.2% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles									
R4b_Q emissions and road dus from detoured vehicles Volume - construction area CO 1,8 3.80E-02 1.32E-02 1% Benzene 24,8760 1.09E-06 3.77E-07 1% 1 Acrolein 1,24 1.71E-06 5.39E-07 1% 1 Acrolein 1,24 1.77E-07 1% 1 1 Acrolein 1,24 1.77E-06 5.39E-07 1% 1 Acrolein 1,24 1.77E-06 5.39E-07 1% 1 Acrolein 1,24 1.77E-06 5.39E-07 1% 1 Acrolein 1,24 1.77E-05 7.70E-06 1% 1 Benzon(psyme 24,8760 1.39E-04 1.87E-05 12% NO_ 1,24,8760 4.07E-02 1.32E-02 13% PM 24,8760 4.07E-02 1.32E-02 13% PM 24,8760 4.07E-02 3.98E-05 11% Acrolein 1,8 3.88E-01 1.32E-01				PM2.5	24, 8760	3.83E-04	2.07E-04	1%	
R4b_Q emissions and road dust from detoured vehicles area CO 1,8 3.80E-02 17.32E-02 1% If om detoured vehicles from detoured vehicles area Energene 24,8760 1.12E-05 3.88E-06 1% Image: Second Sec			Volume - construction						
R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 1,38utadiene 24,8760 1,09E-06 3.77E-07 1% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24,8760 4.08E-02 3.88E-01 1% Volume - construction from detoured vehicles Volume - construction area Volume - construction area 24,8760 4.07E-02 1.82E-02 1% Volume - construction from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24,8760 4.37E-03 2.64E-03 9% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 7.8 3.68E-01 1.28E-04 3.08E-04 6.0E-04 6% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 7.8 7.8 7.8 7.8 7.8	R4b_Q								
R5_C Construction - Tailpipe emissions and road dut from detoured vehicles Volume - construction area Volume - construction area Acrolein Formatdehyde 1,24 1,71E-06 5.93E-07 1% 4.07E-06 1% 1% R6a_Q Construction - Tailpipe emissions and road dut from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 1,24 1,71E-06 5.93E-07 1% NO_ 1,24,8760 1,39E-08 4.84E-09 1% 1% PM 24,8760 4.40E-02 1.63E-02 1.3% PM10 24 7.660 4.7E-03 2.64E-03 9% CO 1,8 3.60E-04 3.60E-04 6% 1.24 CO 1,8 3.60E-04 3.60E-04 6% 1.24 Acrolein 1,24 1.21E-05 4.20E-06 8% 1.38E-01 1.28 Formatdehyde 24 1.68E-04 5.49E-05 8% 1.24E-05 8% 1.24E-01 1.2% R6a_Q Construction - Tailpipe emisisions and road dut from detoured vehicles		nom detoured vehicles							
R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Acetaldehyde 30 min, 24 1.17E-05 4.07E-06 1% R6a_O Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles SO_2 10 min, 1.8760 5.08E-05 8% Construction - Tailpipe emissions and									
Benzo(a)pyrene 24,8760 1.38E-08 4.84E-09 1% SO2 10 min, 1,8760 2.51E-04 8.70E-05 12% NO, 1.24,8760 4.67E-02 1.62E-02 13% PM 24,8760 4.40E-02 3.89E-02 7% PM10 24 4.87E-03 3.89E-02 7% PM2.5 24,8760 4.37E-03 2.64E-03 9% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles 1.38Ladiene 24,8760 1.37E-06 2.97E-06 Acrolein 1,24 1.28E-01 12% 12% 13% Acrolein 1,24 1.28E-04 5.96E-05 11% Acrolein 1,24 1.28E-04 5.96E-05 8% Acrolein 1,24 1.28E-04 5.96E-05 8% Benzo(a)pyrene 24,8760 1.37E-03 2% 11% Macteldehyde 20 10 min, 1,8760 5.98E-05 2.98E-05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1%</td> <td></td>								1%	
R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO ₂ 10 min, 1, 8760 2.51E-04 8.70E-05 12% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area SO ₂ 10 min, 1, 8760 2.51E-04 8.70E-05 12% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO ₂ 10 min, 1, 8760 2.51E-04 8.70E-05 1.28E-04 6.% Volume - construction from detoured vehicles Volume - construction area 24 8.7600 4.30E-04 6.% Volume - construction from detoured vehicles Volume - construction from detoured vehicles Volume - construction from detoured vehicles 8.57E-06 3.04E-05 9% NO _a 1, 24, 8760 1.39E-07 4.84E-08 12% Volume - construction from detoured vehicles Volume - construction area 10 min, 1, 8760 5.99E-05 2.08E-05 3% NO _a 1, 24, 8760 0.7E-02 6.7E-03 3.7E-03 5% PM									
R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO_a 1, 24, 8760 4.67E-02 1.62E-02 13% V0lume - construction from detoured vehicles Volume - construction area Volume - construction area 24, 8760 4.40E-02 9.63E-03 7% V0lume - construction from detoured vehicles Volume - construction area 24, 8760 4.37E-03 2.64E-03 9% CO 1, 8 3.68E-01 1.28E-04 6% 6% CO 1, 8 3.68E-01 1.28E-05 11% Accetaldehyde 24, 8760 8.57E-06 2.97E-06 11% Accetaldehyde 30 min, 24 8.57E-05 3.04E-05 8% Accetaldehyde 24, 8760 1.39E-07 4.84E-08 12% R6a_Q Onstruction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO_Q 1,24,8760 1.39E-07 4.84E-08 12% PM 24,8760 1.28F-04 5.49E-05 3.67E-05 3.67E-03 2% PM 24,8760									
R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24, 8760 4.40E-02 3.89E-02 7% PM10 24 1.48E-02 9.63E-03 7%				-					
R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 1.48E-02 9.63E-03 7% C0 24, 8760 4.37E-03 2.64E-03 9% C0 1, 8 3.68E-01 1.28E-01 12% Benzene 24, 8760 1.03E-04 3.69E-05 11% 1,3-Butadiene 24, 8760 1.03E-04 3.59E-05 11% Acotaldehyde 20 min, 24 8.75E-05 3.04E-05 9% Acotaldehyde 20 min, 24 1.58E-04 5.49E-05 8% Formaldehyde 24, 8760 1.39E-04 5.49E-05 8% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 10 min, 1.8760 6.07E-03 2.11E-03 2% PM2.5 24, 8760 1.52E-04 3.68E-04 5.62E-04 3% Construction - Tailpipe emissions and road dust fr									
R5_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 3.60E-04 3.60E-04 6% R5_C from detoured vehicles volume - construction area 1.8 3.60E-01 1.28E-01 1.28E-01 1.29K-01 1.2% Benzene 24,8760 8.57E-06 2.97E-06 11% 1.35Butadiene 24,8760 8.57E-06 2.97E-06 11% Acrolein 1,24 1.21E-05 4.20E-06 8% 4.4cetaldehyde 30 min,24 8.75E-06 3.04E-05 9% Formaldehyde 24 1.58E-04 5.49E-05 8% 4.4cetaldehyde 30 min, 24 8.75E-06 3.04E-05 9% Formaldehyde 24 1.58E-04 6.07E-03 2.11E-03 2% 4.4cetaldehyde 1.98-07 4.84E-08 12% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO _x 1,24,8760 1.27E-02 6.7E-03 2% PM10 24 9.84E-03 3.				PM10				7%	
R5_C emissions and road dust from detoured vehicles volume - construction area CO 1,8 3.68E-01 1.28E-01 12% Benzene 24,8760 1.03E-04 3.59E-05 11% 1,3-Butadiene 24,8760 8.57E-06 2.97E-06 11% Acctaldehyde 30 min, 24 8.75E-05 3.04E-05 9% Formaldehyde 24 1.58E-04 5.49E-05 8% Benzo(a)pyrene 24,8760 1.39E-07 4.84E-08 12% Benzo(a)pyrene 24,8760 1.39E-07 4.84E-08 12% Benzo(a)pyrene 24,8760 1.27E-02 6.77E-03 2% PM 24,8760 1.27E-02 6.77E-03 2% PM 24,8760 1.56E-03 3.57E-05 1% CO 1,8 6.19E-02 2.15E-02 2% PM2.5 24,8760 3.01E-05 1% 20 CO 1,8 6.19E-02 2.15E-02 2% Benzene 24,8760 <									
from detoured vehicles From detoured vehicles Benzene 24,8760 1.03E-04 3.59E-05 11% 1,3-Butadiene 24,8760 8.57E-06 2.97E-06 11% Acrolein 1,24 1.21E-05 4.20E-06 8% Acrolein 1,24 1.21E-05 4.20E-06 8% Acrolein 1,24 1.58E-04 5.49E-05 8% Formaldehyde 24 1.58E-04 5.49E-05 8% Benzo(a)pyren 24,8760 1.39E-07 4.84E-08 12% SO2 10 min, 1,8760 5.99E-05 2.08E-05 3% NOx 1,24,8760 6.07E-03 2.11E-03 2% PM 24,8760 1.27E-02 6.77E-03 2% PM2.5 24,8760 1.27E-02 6.77E-03 2% PM2.5 24,8760 1.56E-03 6.52E-04 3% CO 1,8 6.19E-02 2.15E-02 2% Benzene 24,8760 3.01E-05 1.04E-05 3% <td>R5 C</td> <td></td> <td>Volume - construction</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	R5 C		Volume - construction						
R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 1,3-Butadiene 24,8760 8.57E-06 2.97E-06 11% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1,8760 5.99E-05 2.08E-05 3% R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1,24,8760 1.27E-02 6.77E-03 2% PM10 24 9.84E-03 3.87E-03 5% 0 PM2.5 24,8760 1.56E-03 6.52E-04 3% Construction - Tailpipe emissions and road dust from detoured vehicles 0 1,3-800 1.56E-03 6.52E-04 3% PM2.5 24,8760 1.56E-03 6.52E-04 3% 0 0 Grystalline silica 24 3.67E-05 3.57E-05 1% 0 Genzene 24,8760 3.01E-05 1.04E-05 3% 0 Grystalline silica 24	10_0		area						
R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area Acetaldehyde 30 min, 24 8.75E-05 3.04E-05 9% R6a_Q 0 1.39E-07 4.84E-08 12% 1.39E-07 4.84E-08 12% R6a_Q 10 min, 1, 8760 5.99E-05 2.08E-05 3% 0 NO _x 1,24,8760 6.07E-03 2.11E-03 2% PM 24,8760 1.27E-02 6.77E-03 2% PM10 24 9.84E-03 3.87E-03 5% CO 1, 8 6760 1.56E-03 6.52E-04 3% CO 1, 8 6760 3.01E-05 3.57E-05 1% CO 1, 8 6760 3.01E-05 1.04E-05 3% Horizona 24, 8760 3.01E-05 1.04E-05 3% Formaldehyde 24, 8760 3.01E-05 1.04E-05 3% Formaldehyde 24, 8760 3.01E-05 1.04E-05 3%									
Formaldehyde 24 1.58E-04 5.49E-05 8% Benzo(a)pyrene 24, 8760 1.39E-07 4.84E-08 12% Solution 10 min, 1, 8760 5.99E-05 2.08E-05 3% NOx 1, 2,4 8760 6.07E-03 2.11E-03 2% PM 24, 8760 1.27E-02 6.77E-03 2% PM 24, 8760 1.27E-02 6.77E-03 2% PM10 24 9.84E-03 3.87E-03 5% PM2.5 24, 8760 1.56E-03 6.52E-04 3% Construction - Tailpipe emissions and road dust from detoured vehicles (Construction area 24 9.84E-03 3.87E-03 5% PM2.5 24, 8760 1.56E-03 6.52E-04 3% 6 CO 1,8 6.19E-02 2.15E-02 2% 6 Benzene 24, 8760 3.01E-05 1.04E-05 3% 6 Actaldehyde 30 min, 24 3.41E-05 1.08E-05 3% 6 Formaldehyde					1, 24				
Benzo(a)pyrene 24,8760 1.39E-07 4.84E-08 12% R6a_Q No_x 1,24,8760 5.99E-05 2.08E-05 3% PM 24,8760 1.27E-02 6.77E-03 2.11E-03 2% PM 24,8760 1.27E-02 6.77E-03 2.16E-03 2% PM10 24 9.84E-03 3.87E-03 5% PM2.5 24,8760 1.56E-03 6.52E-04 3% Crystalline silica 24 3.57E-05 3.57E-05 1% CO 1,8 6.19E-02 2.15E-02 2% Benzene 24,8760 3.01E-05 1.04E-05 3% Acetaldehyde 24,8760 3.14E-06 1.09E-06 4% Acetaldehyde 30 min, 24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24,8760 2.83E-08 9.83E-09 3%									
Kea_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 5.99E-05 2.08E-05 3% PM 24, 8760 6.07E-03 2.11E-03 2% PM10 24 9.84E-03 3.87E-03 5% PM2.5 24, 8760 1.56E-03 6.52E-04 3% Crystalline silica 24 3.57E-05 3.57E-05 1% QO 1, 8 6.19E-02 2.15E-02 2% Image: Single silica 24 3.57E-05 3.57E-05 1% QO 1, 8 6.19E-02 2.15E-02 2% Benzene 24, 8760 3.01E-05 1.04E-05 3% Actrolein 1,24 5.09E-06 1.77E-06 3% Acetaldehyde 30 min, 24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24, 8760 2.83E-08 9.83E-09 3%									
R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO _x 1, 24, 8760 6.07E-03 2.11E-03 2% PM 24, 8760 1.27E-02 6.77E-03 2% PM 24, 8760 1.27E-02 6.77E-03 2% PM10 24 9.84E-03 3.87E-03 5% PM 24, 8760 1.56E-03 6.52E-04 3% Crystalline silica 24 3.57E-05 3.57E-05 1% CO 1, 8 6.19E-02 2.15E-02 2% Benzene 24, 8760 3.01E-05 1.04E-05 3% 1.424 6.19E-02 2.15E-02 2% Henzene 24, 8760 3.01E-05 1.04E-05 3% 1.424 1.09E-06 4% Acetaldehyde 30 min, 24 3.41E-05 1.18E-05 3% 1.424 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% 1.424 1.18E-05 3% 1.424 1.18E-05 3% 1.424 1.18E-05<									
R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles PM 24,8760 1.27E-02 6.77E-03 2% PM10 24 9.84E-03 3.87E-03 5% - PM2.5 24,8760 1.56E-03 6.52E-04 3% - Construction - Tailpipe emissions and road dust from detoured vehicles Construction area 24 9.84E-03 3.87E-05 1% Delete - Construction area Delete - Construction area 24 3.57E-05 1% - CO 1,8 6.19E-02 2.15E-02 2% - - Benzene 24,8760 3.01E-05 1.04E-05 3% - 1.3-Butadiene 24,8760 3.01E-05 1.09E-06 4% Acctaldehyde 30 min, 24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24,8760 2.83E-08 9.83E-09 3%									
PM2.5 24,8760 1.56E-03 6.52E-04 3% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24,8760 1.56E-03 6.52E-04 3% Crystalline silica 24 3.57E-05 3.57E-05 1% Co 1,8 6.19E-02 2.15E-02 2% Benzene 24,8760 3.01E-05 1.04E-05 3% Acrolein 1,24 5.09E-06 1.77E-06 3% Acetaldehyde 30 min, 24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24,8760 2.83E-08 9.83E-09 3%				PM	24, 8760				
R6a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 3.57E-05 3.57E-05 1% CO 1,8 6.19E-02 2.15E-02 2% 3% 2% 2% 2% 2% 2% 2% 2% 2%									
R6a_Q emissions and road dust from detoured vehicles volume - construction area CO 1,8 6.19E-02 2.15E-02 2% Benzene 24,8760 3.01E-05 1.04E-05 3% I,3-Butadiene 24,8760 3.14E-06 1.09E-06 4% Acrolein 1,24 5.09E-06 1.77E-06 3% Acetaldehyde 30 min,24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24,8760 2.83E-08 9.83E-09 3%		Construction Tailaina							
from detoured vehicles Benzene 24,8760 3.01E-05 1.04E-05 3% 1,3-Butadiene 24,8760 3.14E-06 1.09E-06 4% Acrolein 1,24 5.09E-06 1.77E-06 3% Acetaldehyde 30 min, 24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24,8760 2.83E-08 9.83E-09 3%	R6a Q								
Acrolein 1, 24 5.09E-06 1.77E-06 3% Acetaldehyde 30 min, 24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24, 8760 2.83E-08 9.83E-09 3%			area						
Acetaldehyde 30 min, 24 3.41E-05 1.18E-05 3% Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24, 8760 2.83E-08 9.83E-09 3%				1,3-Butadiene	24, 8760				
Formaldehyde 24 6.48E-05 2.25E-05 3% Benzo(a)pyrene 24, 8760 2.83E-08 9.83E-09 3%									
Benzo(a)pyrene 24, 8760 2.83E-08 9.83E-09 3%									
NO _x 1, 24, 8760 5.49E-03 1.91E-03 1%					1, 24, 8760				
PM 24,8760 1.44E-02 8.97E-03 2%									
PM10 24 9.45E-03 4.04E-03 5% PM2.5 24,8760 1.54E-03 7.26E-04 3%									
Construction - Tailnine Constalline silica 24 6.07E-05 6.07E-05 1%		Construction - Tailpipe							
R6b_Q emissions and road dust volume - construction CO 1, 8 5.60E-02 1.94E-02 2%	R6b_Q	emissions and road dust							
Trom detoured venicies Benzene 24, 8760 2.72E-05 9.44E-06 3%		from detoured vehicles	urea						
1,3-Butadiene 24,8760 2.84E-06 9.87E-07 4%									
Acrolein 1, 24 4.61E-06 1.60E-06 3% Acetaldehyde 30 min, 24 3.08E-05 1.07E-05 3%									
Acteriateriya 30 min, 24 5.06E-05 1.07E-05 3% Formaldehyde 24 5.86E-05 2.03E-05 3%									
Benzo(a)pyrene 24,8760 2.56E-08 8.89E-09 2%									

Republic Local (Control (Contro)(Control (Contro) (Contro) (Co	Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case	Scenario for	Modelling*	Note
Rra_D Construction - Tarlying emissions and vehicles Volume - control Res Construction - Tarlying emissions and vehicles Volume - control Rrb_D Construction - Tarlying emissions and vehicles Volume - control Volume - contro Volume - contro Volume - cont						Emission	Emission	Overall	
RP2_Q Continues on raining and sine discuss of raining and sine discus of raining and sine discuss of									
Rfr_u_D Contraction - Taiping from detroared vehicles PMI0 24 6.484-00 3.586-01 9.56 Prof. D 24 76.492-03 77.650 77.65 77.65 77.65 Prof. D 24.1700 5.462-03 1.57.66 77.65 <									
RTs_D Construction - Tarlinge encode and order to decready which is not decready which is the second state is and order to decready which is the second state is the second state is the second state is and order to the second state is the second state is									
Rra_Q Conduction - Taiping institution and and adia from discured vehicles in discured vehicles									
PTR_D_ omissions and values from dotured vehicles in dotured vehicles in dotured vehicles volume - construction - registration - registration 0		Construction - Tailpipe							
Ref. 0 Construction - Targing- tion debund wholes Description (Construction - Targing- tion debund wholes) Description (Construction - Targing- tion (Construction - Targing- tion debund wholes) Description (Construction - Targing- tion (Construction - Tar	R7a_Q	emissions and road dust							
Rrb_O Construction - Taiping Volume - construction from debund where Arrent - 1, 24 - Construction - Taiping Arrent - 1, 24 - Const		from detoured vehicles	aica						
RPb_C Construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand from detored vehicles Volume - construction - Tailpige emissions and rand data from detored vehicles Volume - construction - Tailpige emissions and rand from detored vehicles Vol									
R10, 0 Formation - Tailpige insistors and road of the set o									
RTD_D Construction - Tailgoe emissions and road date from debuned vehicles So_1 formin_1, 19700 1.17E-04 4.08E-00 9% RTD_D Construction - Tailgoe emissions and road date from debuned vehicles Volume - construction area So_1 formin_1, 19700 1.17E-04 4.08E-00 9% RTD_D Construction - Tailgoe emissions and road date from debuned vehicles Volume - construction area									
R7b_Q. Construction 1 Tailying emissions and road and the defense of th				Benzo(a)pyrene	24, 8760	7.10E-08	2.47E-08	6%	
PR1_0 24, 4700 1005-02 71% (-0.2) 70% (-0.2) PR1_0 24 5454-03 265:03 2% PR1_0 24 5454-03 75% 3% PM10 24 558:03 1%				-					
R/b_0 Construction - Tailoge from actourd vehicles PMIO 24 5.54E-03 2.82(-03) 3% PR0_2 24,6700 1.44E-03 7.37E-04 3% Construction - Tailoge missions and road dual from debured vehicles veloane - construction area 2.4,6700 1.44E-03 7.37E-04 3% R10_0_0 Construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehicles veloane - construction - Tailoge missions and road dual from debured vehi									
R7b_0 Construction - Tailping emissions and road dash from decound vehicles area in the deco									
R7b_0.0 Construction - Tailpine from detoured vehicles Volume - construction sees Optimine alica (0) 1.8 1.556-00 5.754-02 6% Becance 24, 8700 4.82700 4.82700 4.82700 6.956 7.86 Home events 24, 8700 4.82700 4.82700 6.956 7.86									
HOB_LD enhance of data and code data from debound vehicles area COL 1.8 1.98-01 1.98-01 1.98-01 9.98-020 Construction - Tailpipe envisions and code data from debound vehicles area COL 1.8 1.98-01 1.98-01 9.98-02 9.95 R8_CO Orstanzion - Tailpipe envisions and code data from debound vehicles vehicles Vehicles 2.92 9.92 <td< td=""><td></td><td>Construction - Tailpipe</td><td>Volume construction</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		Construction - Tailpipe	Volume construction						
Rend Demonstruction 24,8700 4.828-36 1.94-86-36 6% Accelan 1,24,8700 4.828-36 1.91-80 6% Accelan 1,24,8700 4.828-36 1.91-80 6% Accelan 1,24,8700 4.81263 1.926-36 5% Barcol(bypens 24,8700 6.916-36 1.226-36 5% Barcol(bypens 24,8700 6.938-502 2.286-36 1.76 PM 24,8700 1.586-36 1.76 1.78 1.78 PM10 24,8700 1.586-36 1.76 1.78	R7b_Q	emissions and road dust							
R8_C.D Construction - Taipipe ensistons and cod dat from debuned vehicles Acroitation Research Formadebryte 1,24 7.28:06 251:00 9% R8_C.D Construction - Taipipe ensistons and cod dat from debuned vehicles Volume - construction area Volume - construct		Trom detoured vehicles							
R8_C Constanction - Tailpipe encisions and out dat from deburd vehicles Actaidadityde Formation 30 min, 324 4,8700 6.010-08 6,02-00 2.226-08 7,820-08 5% 7,820-08 R8_C Constanction - Tailpipe encisions and out dat from deburd vehicles Volume - constanction from deburd vehicles <									
Ra_CO Construction - Tailpipe emissions and road dust from detoured vehicles Formaldelingte Barcol apprena 24, 8700 6.10E-08 2.12E-04 19% RB_CO Construction - Tailpipe emissions and road dust from detoured vehicles SO, NO, NO, PMI 1.24, 8700 6.05E-02 2.41E-02 19%									
R0_0 Construction - Tailpipe emissions and road dust from detoured vehicles from detoured vehicles S0_2 10 mm, 1, 8700 7.872-42 19% — PM 24, 8700 4.02E-02 2.41E-03 9% — PM 24, 8700 5.30E-03 9% — — PM40 24 772E-02 9.51E-03 9% — PM2.5 24, 8700 5.30E-03 2.778E-03 9% — PM2.5 24, 8700 1.52E-04 5.30E-03 1% — Construction - Tailpipe emissions and road dust from detoured vehicles 1.24E-04 5.32E-04 1.24E-05 12% R0_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.24E-05 1.24E-05 12% — PM 24, 4760 5.02E-05 1.2% — — — Googen to insistence and row enclose from detoured vehicles Volume - construction area 2.06E-05 1.0% — — PM 2.4, 6760 2.14E-05 2.36E-02 1%									
R8_CC Construction - Tailpipe from detoured vehicles NO, NO, PM10 1.24,8700 6.08E-02 2.41E-02 1.9% R8_CC Construction - Tailpipe from detoured vehicles Volume - construction rom detoured vehicles				Benzo(a)pyrene	24, 8760	6.10E-08	2.12E-08	5%	
R8_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 PM10 PM2.5 24, 8760 4.02:00 2.92:03 <td></td> <td></td> <td></td> <td>-</td> <td>10 min, 1, 8760</td> <td></td> <td></td> <td></td> <td></td>				-	10 min, 1, 8760				
R8_C. Construction - Taipipe from detoured vehicles PM10 24 1.72.603 1.1% R9_C. Construction - Taipipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area 24 2246-01 238-03 11% Berzene 24, 8760 1.375-04 4.28-04 1.8% - Berzene 24, 8760 1.375-04 4.28-06 1.6% - Acrolein 1.24 1.375-04 4.28-06 1.6% - Acrolein 1.24 1.375-04 4.28-06 1.6% - Berzene 24, 8760 1.387-06 5.382-03 1.3% - Formadehyde 24 2.352-08 1.48-06 1.2% - - S0_, 100mn, 1.8760 5.082-03 3.9% - - - PM10 24 7.09 9.852-03 1.9% - - - - - - - - - - - - - -									
R8_C Construction - Tailpipe emissions and road dust from detoured vehicles PWC.5 24, 8760 5.05C-0 2.782-03 11% R9_C 0.0000 1.8 5.462-04 5% - R9_C 1.8 5.462-04 5% - - R9_C 1.8 5.462-01 1.882-04 1.95% - Acataldehyde 24, 8760 1.95%-06 4.428-06 1.95% - Acataldehyde 30 mm, 24 1.95%-06 4.428-06 1.95% - Acataldehyde 20 mm, 24 1.95%-06 4.25%-06 1.95% - Acataldehyde 20 mm, 24 1.95%-07 7.188-08 1.95% - Berozolajoyrene 2.4, 8700 2.95%-07 7.188-08 1.95% - Monitoria area 2.4, 8700 2.95%-07 7.188-08 1.95% - Monitoria area 2.4, 8700 2.487-03 1.95% - - Monitoria area 2.4, 8700 2.487-03									
R8_C Construction - Tailpipe from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R8_C emissions and road dust from detoured vehicles Volume - construction area CO 1,8 5.84E-01 1.89E-01 1.89E-		Construction - Tailpipe							
Benzene 24,6760 1.528-04 5.33E-05 1.7% Benzene 24,6760 1.72F-05 4.242E-06 16% Acrolein 1,24 1.72F-05 4.242E-06 16% Acrolein 1,24 1.72F-05 4.242E-06 16% Acrolein 1,24 1.72F-05 4.242E-06 16% Benzoelaybrein 24,8760 1.52F-05 1.34E-05 1.25K Benzoelaybrein 24,8760 1.52F-05 1.34E-05 1.85E-05 1.9% NO, 1,24,4760 9.05E-03 3.34E-03 1% 1% PM0 24,8760 1.32E-03 1% 1% 1% PM10 24,8760 1.32E-03 1% 1% 1% Construction - Tailpipe emissions and road dust from detoured vehicles 1,8 3.96E-05 1.24E-05 1% 1% Formaldehyde 24,8760 1.77E-06 6.14E-07 2% 1 1.34E-06 1.87E-05 1% 1 I.34Diadiene 24,8760	R8_C	emissions and road dust		CO	1, 8	5.46E-01	1.89E-01	18%	
R9_C Construction - Tailpipe emissions and road dut from detoured vehicles Acroalient Formal dehyde 1,24 1,78E-05 6,22E-06 12% 13/0 12% (from detoured vehicles							
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Acetalechyde 30 min, 24 2.35E-04 4.5E-05 13% (1.28) (1.28) R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area									
Formaldehyde 24 2.35:04 8.14E-05 12% Benzo(lo)pyrene 24,8760 2.07:07 7.16E-05 19% Benzo(lo)pyrene 24,8760 5.18E-05 1.80E-05 2% NO, 1.24,8760 5.08E-03 1.80E-05 2% NO, 1.24,8760 5.08E-03 1.32E-03 3% PM10 24,8760 7.05E-04 8.0E-04 2% emissions and road dust from detoured vehicles rom detoured vehicles The construction area Construction - 1, 8 7.59E-02 2.64E-03 1% 1.3-Butadeine 24,8760 7.37E-04 8.0E-04 2% 1 1.3-Butadeine 24,8760 7.37E-06 8.46E-06 2% 1 1.3-Butadeine 24,8760 1.77E-06 1.77E-06 1.77E-06 2% 1 1.3-Butadeinyde 30min, 1,8760 5.10E-06 1.77E-06 2% 1 1.3-Butadeinyde 24,8760 1.77E-06 1.41E-05 2.28E-08 1.00E-08 3.77E-05 2%									
R9_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction				·					
R9_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction (Crystalline silica Acrolein 24 2.39E-03 3.35E-03 3.% R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area									
R9_C Construction - Tailpipe emissions and road duty from detoured vehicles Volume - construction area PM1 24,8700 5.06E-03 4.54E-03 1% (model) R9_C Construction - Tailpipe emissions and road duty from detoured vehicles Volume - construction area 24,8700 7.37E-04 3.30E-04 2% (model) R10a_C 1.3 Construction - Tailpipe emissions and road duty from detoured vehicles Volume - construction area 24,8700 1.78E-04 3.30E-04 2% (model) R10a_C Construction - Tailpipe emissions and road duty from detoured vehicles Volume - construction area 30min, 24 1.81E-05 6.28E-06 2% (model) (model) 2% (model)				SO ₂	10 min, 1, 8760				
R9_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 2.96(-0.3) 1.32E-03 1.9% CO 1, 8 7.59E-04 3.08E-05 1% 2% CO 1, 8 7.59E-02 2.64E-02 3% 3% Construction - Tailpipe from detoured vehicles 1.3E-tailoglogene 24,8760 1.77E-06 6.14E-07 2% Accolation 1,24 2.50E-06 6.87E-07 2% - - Accolation 1,24 2.50E-06 6.28E-06 1.38E-05 2% - Formaldehyde 24 3.08E-05 1.13E-05 2% - - Benzo(a)pyrene 24,8760 8.09E-03 3.09E-03 3.09E-03 - - NO ₄ 1.24,4760 8.09E-03 3.07E-04 1% - - PMI0 24,8760 4.97E-03 3.07E-04 1% - Qystalline silica 24 7.06 4.97E-05 3.77E-05 2%									
R9_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24,8760 7.37E-04 3.80E-04 2% Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction 1.3 24 3.96E-05 3.96E-05 3%									
R9_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 3.96E-05 3.96E-05 1% CO 1,8 7.59E-02 2.64E-02 3%									
K9_C emissions and road dust from detoured vehicles area CO 1,8 7.58E-02 2.24E-02 3% from detoured vehicles from detoured vehicles name 4,8760 1.77E-06 6.14E-07 2% Acrolein 1,24 2.50E-06 8.67E-07 2% 1.67 Acrolein 1,24 1.87E-05 6.22E-06 1.75E-05 2% Formaldehyde 24 8.760 1.75E-05 1.77E-05 2% Mon 1,24,8760 4.87E-03 1.77E-05 2% 1.75E-05 NO_ 1,24,8760 4.97E-03 3.77E-03 1% 1.75E-03 1.75E-03 1.75E-05		Construction - Tailpipe							
Benzene 24,870 2.14E-05 7.42E-06 2% Home 24,8760 1.77E-06 6.14E-07 2% Acceladehyde 30 min, 24 1.81E-05 6.28E-06 2% Acceladehyde 20 min, 24 1.81E-05 6.28E-06 2% Acceladehyde 24 3.28E-05 1.131E-05 6.28E-06 2% Benzo(a)pyrene 24,8760 2.88E-03 1.00E-08 3% 50 Benzo(a)pyrene 24,8760 8.89E-03 3.09E-03 2% 50 Mo_ 1.24,8760 8.89E-03 3.09E-03 2% 50 PM10 24,8760 6.38E-04 3.30E-04 1% 50 PM10 24,8760 1.87E-05 1% 50 50 1.77E-03 1% Construction - Taijpipe emissions and road dus from detoured vehicles Volume - construction area 24,8760 1.88E-04 3.32E-06 1% 50 Rocaladehyde 24,8760 1.88E-05 3.68E-04 3.48E-02 3% 50	R9_C			CO	1, 8	7.59E-02	2.64E-02		
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Acrolein No_Q 1,24 0,24,8760 2,26E-05 4,87E-05 1,31E-05 1,37E-05 2% 2% R10b_Q 2 Acetaidehyde 24 3,28E-05 1,31E-05 2% R10b_Q 2,48760 2,88E-08 1,00E-08 3% No_Q 1,24,8760 4,97E-03 3,07E-03 2% PM 24,8760 4,97E-03 3,07E-03 1% PM10 24 2,48760 3,07E-03 1% PM2.5 24,8760 6,85E-04 3,38E-04 1% CO 1,8 7,72E-02 2,68E-02 3% Benzene 24,8760 1,86E-06 6,48E-07 2% Acordein 1,24 2,97E-06 9,28E-07 1% Formaldehyde 24 3,49E-05 1,58E-06 2% R10b_Q No_A 1,24,8760 1,87E-08 9,89E-03 3% R10b_Q No_A 1,24,8760		from detoured vehicles							
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Acetaldehyde Formaldehyde 30 min, 24 1.81E-05 6.28E-06 2% R10b_Q 24, 8760 2.88E-08 1.00E-08 3% R10a_Q No, 10min, 1.8760 5.10E-05 1.77E-05 2% No, 1, 24, 8760 4.97E-03 3.07E-04 1% PM 24, 8760 4.97E-03 3.07E-04 1% PM10 24 2.43E-03 1.23E-03 1% PM2.5 24, 8760 6.85E-04 3.02E-04 1% CO 1,8 7.72E-02 2.68E-02 3% Benzzene 24, 8760 1.08E-06 6.48E-07 2% Acetaldehyde 24 3.42E-05 1.32E-05 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.94E-06 1.98E-06 6.48E-07 2% Acetaldehyde 24 3.78F-08 1.98E-05 2% R10b									
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Formaldehyde Benzo(a)pyrene 24 3.28E-05 1.13E-05 2% R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles NO_x 1,24,8760 8.89E-03 3.09E-03 2% R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO_x 1,24,8760 6.85E-04 3.09E-03 2% R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24 3.12E-05 3.12E-05 1% R10b_Q 1,3-Butadiene 24,8760 2.18E-06 6.48E-07 2% R10b_Q 24,8760 2.18E-05 7.59E-06 2% R10b_Q 24,8760 2.18E-05 6.68E-07 2% R10b_Q 24,8760 2.18E-05 6.68E-06 2% R10b_Q 24,8760 2.18E-05 9.28E-07 2% R10b_Q 24,8760 2.18E-05 9.28E-07 2% R10b_Q 2									
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area FML SO2 10 min, 1, 8760 5.08-05 1.77E-05 2% R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction 1, 24, 8760 4.97E-03 3.77E-03 1% PM1 24, 8760 4.97E-03 3.77E-03 1% PM10 24 2.43E-03 1.23E-03 1% PM10 24 2.43760 6.38E-04 3.36E-04 3.									
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO _x 1, 24, 8760 4.87E-03 3.09E-03 2% Volume - torstruction rom detoured vehicles Volume - construction area Volume - construction area Volume - construction area 24 8760 4.87E-03 1.28E-03 1/3% PM2.5 24,8760 6.85E-04 3.36E-04 1/3% 1/4% CO 1,8 7.72E-02 2.68E-02 3% CO 1,8 7.72E-02 2.68E-02 3% Benzole 24,8760 1.86E-06 6.48E-07 2% Accetaldehyde 20 1.8E-05 6.65E-06 2% Formaldehyde 24 3.49E-05 1.21E-05 2% Formaldehyde 24 3.49E-05 1.21E-05 2% Formaldehyde 24 3.49E-05 1.21E-05 2% Benzo(a)pyrene 24,8760 1.07E-05 3.72E-03 3% Volume - construction from detoured vehicles 1.94E-05 2.32E-05 3.						2.88E-08	1.00E-08	3%	
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24,8760 4.97E-03 3.77E-03 1% R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24,8760 4.97E-03 3.77E-03 1% (mission R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24,8760 2.98E-02 3% (mission (mission 2% (mission 2% (mission (m				SO ₂	10 min, 1, 8760		1.77E-05	2%	
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 24,8760 6.85E-04 1.336E-04 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24 3.12E-05 1% 1% 1% CO 1,8 7.72E-02 2.68E-02 3% 1% 1% CO 1,8 7.72E-02 2.68E-02 3% 1% 1% Homodeline 24,8760 2.19E-05 7.59E-06 2% 1% 1% 1% Acrolein 1,24 2.67E-06 9.28E-07 2% 2% 1%<									
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24,8760 6.85E-04 3.36E-04 1% Cystalline silica 24 3.12E-05 3.12E-05 1%									
R10a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 3.12E-05 3.12E-05 1% R10a_Q 1,8 7.72E-02 2.68E-02 3%									
R10a_Q emissions and road dust from detoured vehicles volume - construction area Co 1,8 7.72E-02 2.68E-02 3% Benzene 24,8760 2.19E-05 7.59E-06 2% 1,3-Butadiene 24,8760 1.86E-06 6.48E-07 2% Acrolein 1,24 2.67E-06 9.28E-07 2% Acrolein 1,24 2.67E-06 9.28E-07 2% Acetaldehyde 30 min,24 1.91E-05 6.68E-06 2% Formaldehyde 24 3.49E-05 1.21E-05 2% Benzo(a)pyrene 24,8760 2.87E-08 9.98E-09 3% SO2 10 min, 1,8760 6.14E-05 2.13E-05 3% NO, 1,24,8760 1.07E-02 3.72E-03 3% PM10 24 2.93E-03 1% PM110 24 2.93E-03 1% PM2.5 24,8760 8.28E-04 4.04E-04 2% Construction - Tailpipe missions and road dust from detoured vehicles 1,8 9.29E-02 <td></td> <td></td> <td>Volume construction</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Volume construction						
Benzene 24,8760 2.19E-05 7.59E-06 2% 1.3-Butadiene 24,8760 1.86E-06 6.48E-07 2% Acrolelin 1,24 2.67E-06 9.28E-07 2% Acctaldehyde 30 min,24 1.91E-05 6.65E-06 2% Formaldehyde 24 3.49E-05 1.21E-05 2% Benzo(a)pyrene 24,8760 2.87E-08 9.98E-09 3% SO2 10 min, 1.8760 6.14E-05 2.13E-05 3% NOx 1,24,8760 1.07E-02 3.72E-03 3% PM 24,8760 5.98E-03 4.54E-03 1% PM10 24 2.93E-03 1% 1% PM10 24,8760 8.25E-04 4.04E-04 2% Crystalline silica 24,8760 8.26E-05 1% 1% PM2.5 24,8760 8.26E-05 1% 1% PM2.5 24,8760 8.26E-05 1% 1% Construction - Tailpipe missions and road dust from detoured v	R10a_Q	emissions and road dust		CO		7.72E-02	2.68E-02		
Acrolein 1, 24 2.67E-06 9.28E-07 2% Acetaldehyde 30 min, 24 1.91E-05 6.65E-06 2% Formaldehyde 24 3.49E-05 1.21E-05 2% Benzo(a)pyrene 24, 8760 2.87E-08 9.98E-09 3% SO2 10 min, 1, 8760 6.14E-05 2.13E-05 3% NO, 1, 24, 8760 1.07E-02 3.72E-03 3% PM 24, 8760 5.98E-03 1.49E-03 1% PM10 24 2.93E-03 1.49E-03 1% PM2.5 24, 8760 8.25E-04 4.04E-04 2% Construction - Tailpipe emissions and road dust from detoured vehicles 7 7 7 7 R10b_Q Outme - construction area 1.38utadiene 24, 8760 8.25E-04 4.04E-04 2% Construction - Tailpipe from detoured vehicles 1.3Butadiene 24, 8760 2.63E-05 3.76E-05 1% Conditione 24, 8760 2.63E-05 9.14E-06 3% 2%		from detoured vehicles							
R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Acetaldehyde Formaldehyde 30 min, 24 1.91E-05 6.65E-06 2% R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles So_2 10 min, 1, 8760 6.14E-05 2.13E-05 3% Question - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO _A 1, 24, 8760 1.07E-02 3.72E-03 3% Question - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24, 8760 8.25E-04 4.04E-04 2% Question - Tailpipe emissions and road dust from detoured vehicles Construction area Crystalline silica 24 3.76E-05 3.76E-05 1% Question - Tailpipe emissions and road dust from detoured vehicles Construction area 1, 8 9.29E-02 3.22E-03 3% Question - Tailpipe emissions and road dust from detoured vehicles 1, 3-Butadiene 24, 8760 2.25E-06 7.80E-07 3% Question - Tailpipe emission - Tailpipe from detoured vehicles 1, 24 3.22E-06 1.2E-06 2%									
Formaldehyde 24 3.49E-05 1.21E-05 2% Benzo(a)pyrene 24,8760 2.87E-08 9.98E-09 3% Solution - Tailpipe emissions and road dust from detoured vehicles NO 10 min, 1,8760 1.07E-02 3.72E-03 3% PM 24,8760 5.98E-03 4.54E-03 1% PM10 24 2.93E-03 1.49E-03 1% PM2.5 24,8760 8.25E-04 4.04E-04 2% Construction - Tailpipe emissions and road dust from detoured vehicles CO 1,8 9.29E-02 3.23E-02 3% Acceladehyde 24,8760 2.63E-05 1% 1% Coc 1,8 9.29E-02 3.23E-05 3% Acrolein 1,24 3.70E-05 3% 16 Acrolein 1,24 3.72E-03 3% 16 Benzene 24,8760 2.63E-05 9.14E-06 3% Coc 1,8 9.29E-02 3.23E-05 1% Acrolein 1,24 3.22E-06									
Benzo(a)pyrene 24,8760 2.87E-08 9.98E-09 3% SO2 10 min, 1,8760 6.14E-05 2.13E-05 3% No. 1,24,8760 5.09E-03 3% MO 24,8760 5.09E-03 3% PM 24,8760 5.09E-03 4.54E-03 1% PM10 24 2.93E-03 1.49E-03 1% PM2.5 24,8760 8.29E-04 4.04E-04 2% Crystalline silica 24 3.76E-05 3% CO 1,8 9.29E-02 3.28E-02 3% Benzene 24,8760 2.63E-05 1% CO 1,8 9.29E-02 3.28E-02 3% Horder Vehicles 1,3-Butadiene 24,8760 2.63E-05 9.14E-06 3% Acrolein 1,24 3.70E-05 3% Co2 1,3-Butadiene 24,8760 2.63E-05 9.14E-06 3%									
R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Nox 1, 24, 8760 1.07E-02 3.72E-03 3% Volume - construction from detoured vehicles Volume - construction area Image: Nox 1/24, 8760 1.07E-02 3.72E-03 3% R10b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Image: Nox 24, 8760 8.25E-04 4.04E-03 1% R10b_Q Display 24, 8760 8.25E-04 4.04E-04 2% 1/2 Volume - construction area Image: Construction Crystalline silica 24 3.70E-05 1% CO 1, 8 9.29E-02 3.23E-02 3% 1/2 Accelation 24, 8760 2.63E-05 9.14E-06 3% Accelatidehyde 30 min. 24 3.22E-06 7.80E-07 3% Accelatidehyde 30 min. 24 3.23E-05 8.00E-06 2% Accelatidehyde 30 min. 24 2.31E-05 8.00E-06 2% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
PM 24,8760 5.98E-03 4.54E-03 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 2.93E-03 1.49E-03 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area 24,8760 8.25E-04 4.04E-04 2% CO 1,8 9.29E-02 3.23E-02 3% 3% Acrolein 24,8760 2.63E-05 9.14E-06 3% Acrolein 1,24 3.22E-06 7.80E-07 3% Acrolein 1,24 3.22E-06 7.80E-07 3% Acrolein 1,24 3.23E-02 8.00E-06 2% Formaldehyde 30 min,24 2.31E-05 8.00E-06 2%									
PM10 24 2.93E-03 1.49E-03 1% construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 2.93E-03 1.49E-03 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24, 8760 8.25E-04 4.04E-04 2% CO 1,8 9.29E-02 3.23E-02 3% 1 Acrolein 24, 8760 2.63E-05 9.14E-06 3% Acrolein 1,24 3.22E-06 7.80E-07 3% Accelaldehyde 30 min,24 2.31E-05 8.00E-06 2% Formaldehyde 24 4.20E-05 1.46E-05 2%									
PM2.5 24,8760 8.25E-04 4.04E-04 2% Construction - Tailpipe emissions and road dust from detoured vehicles Outme - construction area PM2.5 24,8760 8.25E-04 4.04E-04 2% Main of the emissions and road dust from detoured vehicles FM2.5 24,8760 2.63E-05 3.76E-05 1% Acrolein 1,8 9.29E-02 3.23E-02 3% Acrolein 1,24 3.22E-06 7.80E-07 3% Acrolein 1,24 3.22E-06 1.12E-06 2% Acrolein 1,24 3.21E-05 1.46E-05 2%									
Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 3.76E-05 3.76E-05 1% R10b_Q from detoured vehicles from detoured vehicles Crystalline silica 24 3.76E-05 3.76E-05 1% Benzene 24, 8760 2.63E-05 9.14E-06 3% Acrolein 1, 24 3.22E-06 7.80E-07 3% Accelaldehyde 30 min, 24 3.23E-05 8.00E-06 2% Formaldehyde 24 4.20E-05 1.46E-05 2%									
R10b_Q emissions and road dust from detoured vehicles volume - construction area CO 1,8 9.29E-02 3.23E-02 3% Benzene 24,8760 2.63E-05 9.14E-06 3% 1,3-Butadiene 24,8760 2.25E-06 7.80E-07 3% Acrolein 1,24 3.22E-06 7.80E-07 3% Acrolein 1,24 3.22E-06 1.12E-06 2% Accelaldehyde 30 min,24 2.31E-05 8.00E-06 2%		Construction - Tailpipe							
from detoured vehicles Benzene 24,8760 2.63E-05 9.14E-06 3% 1,3-Butadiene 24,8760 2.25E-06 7.80E-07 3% Acrolein 1,24 3.22E-06 7.80E-07 3% Acrolein 1,24 3.22E-06 7.80E-07 3% Acrolein 1,24 3.22E-06 7.80E-07 2% Acrolein 24,8760 2.31E-05 8.00E-06 2% Formaldehyde 24 4.20E-05 1.46E-05 2%	R10b_Q	emissions and road dust							
Acrolein 1, 24 3.22E-06 1.12E-06 2% Acetaldehyde 30 min, 24 2.31E-05 8.00E-06 2% Formaldehyde 24 4.20E-05 1.46E-05 2%		from detoured vehicles	uidu						
Acetaldehyde 30 min, 24 2.31E-05 8.00E-06 2% Formaldehyde 24 4.20E-05 1.46E-05 2%		Non deloured vehicles							
Formaldehyde 24 4.20E-05 1.46E-05 2%									
Benzo(a)pyrene 24, 8760 3.46E-08 1.20E-08 3%									

Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case	-		Note
					1-hr Emission Rate (g/s)	24-hr Emission Rate (g/s)	% of Overall Emissions	
			SO ₂	10 min, 1, 8760	6.84E-05	2.38E-05	3%	
			NO _x	1, 24, 8760	1.28E-02	4.43E-03	3%	
			PM	24, 8760	7.40E-03	6.00E-03	1%	
			PM10 PM2.5	24 24, 8760	3.15E-03 9.74E-04	1.75E-03 5.02E-04	2% 2%	
	Construction - Tailpipe		Crystalline silica	24, 8760	9.74E-04 5.23E-05	5.02E-04 5.23E-05	1%	
R11_C	emissions and road dust	Volume - construction area	CO	1, 8	1.00E-01	3.48E-02	3%	
	from detoured vehicles	area	Benzene	24, 8760	2.82E-05	9.80E-06	3%	
			1,3-Butadiene	24, 8760	2.34E-06	8.12E-07	3%	
			Acrolein	1, 24	3.30E-06	1.15E-06 8.30E-06	2% 2%	
			Acetaldehyde Formaldehyde	30 min, 24 24	2.39E-05 4.31E-05	1.50E-05	2%	
			Benzo(a)pyrene	24, 8760	3.80E-08	1.32E-08	3%	
			SO ₂	10 min, 1, 8760	1.27E-04	4.41E-05	6%	
			NO _x	1, 24, 8760	2.37E-02	8.22E-03	6%	
			PM	24, 8760	1.37E-02	1.11E-02	2%	
			PM10 PM2.5	24 24, 8760	5.86E-03 1.81E-03	3.25E-03 9.32E-04	3% 4%	
	Construction - Tailpipe		Crystalline silica	24, 0100	9.71E-05	9.71E-05	2%	
R12_C	emissions and road dust	Volume - construction area	co	1, 8	1.86E-01	6.47E-02	6%	
	from detoured vehicles		Benzene	24, 8760	5.24E-05	1.82E-05	6%	
			1,3-Butadiene	24, 8760	4.34E-06	1.51E-06	5%	
			Acrolein Acetaldehyde	1, 24 30 min, 24	6.13E-06 4.44E-05	2.13E-06 1.54E-05	4% 4%	
			Formaldehyde	24	8.01E-05	2.78E-05	4%	
			Benzo(a)pyrene	24, 8760	7.07E-08	2.45E-08	6%	
			SO ₂	10 min, 1, 8760	1.73E-04	6.01E-05	8%	
			NO _x	1, 24, 8760	2.75E-02	9.56E-03	7%	
			PM PM10	24, 8760	1.27E-02 8.02E-03	8.18E-03 3.51E-03	2% 4%	
			PM2.5	24 24, 8760	1.98E-03	8.67E-03	4%	
	Construction - Tailpipe		Crystalline silica	24, 0100	5.76E-05	5.76E-05	1%	
R13_Q	emissions and road dust	Volume - construction area	CO	1, 8	2.13E-01	7.40E-02	7%	
	from detoured vehicles	arou	Benzene	24, 8760	6.67E-05	2.32E-05	7%	
			1,3-Butadiene Acrolein	24, 8760	7.20E-06 1.20E-05	2.50E-06 4.17E-06	9% 8%	
			Acetaldehyde	1, 24 30 min, 24	8.00E-05	2.78E-05	8%	
			Formaldehyde	24	1.52E-04	5.27E-05	7%	
			Benzo(a)pyrene	24, 8760	8.42E-08	2.92E-08	8%	
		Volume - construction	SO ₂	10 min, 1, 8760	1.07E-04	3.71E-05	5%	
			NO _x	1, 24, 8760	1.78E-02	6.18E-03	5%	
			PM PM10	24, 8760 24	9.25E-03 5.04E-03	6.61E-03 2.40E-03	2% 3%	
			PM2.5	24, 8760	1.33E-03	6.23E-00	3%	
	Construction - Tailpipe		Crystalline silica	24	5.18E-05	5.18E-05	1%	
R14a_Q	emissions and road dust	area	со	1, 8	1.52E-01	5.28E-02	5%	
	from detoured vehicles		Benzene 1,3-Butadiene	24, 8760	4.41E-05 4.19E-06	1.53E-05 1.46E-06	5% 5%	
			Acrolein	24, 8760 1, 24	6.49E-06	2.25E-06	4%	
			Acetaldehyde	30 min, 24	4.48E-05	1.56E-05	4%	
			Formaldehyde	24	8.33E-05	2.89E-05	4%	
			Benzo(a)pyrene	24, 8760	5.64E-08	1.96E-08	5%	
			SO ₂	10 min, 1, 8760	1.16E-04	4.03E-05	5%	
			NO _x PM	1, 24, 8760 24, 8760	1.93E-02 1.00E-02	6.71E-03 7.17E-03	5% 2%	
			PM10	24, 8700	5.47E-03	2.60E-03	3%	
			PM2.5	24, 8760	1.44E-03	6.76E-04	3%	
D4/1 O	Construction - Tailpipe	Volume - construction	Crystalline silica	24	5.62E-05	5.62E-05	1%	
R14b_Q	emissions and road dust from detoured vehicles	area	CO Benzene	1, 8	1.65E-01 4.79E-05	5.73E-02	6% 5%	
			Benzene 1,3-Butadiene	24, 8760 24, 8760	4.79E-05 4.55E-06	1.66E-05 1.58E-06	5% 6%	
			Acrolein	1, 24	7.04E-06	2.44E-06	5%	
			Acetaldehyde	30 min, 24	4.86E-05	1.69E-05	5%	
			Formaldehyde	24	9.04E-05	3.14E-05	4%	
			Benzo(a)pyrene	24, 8760	6.12E-08	2.13E-08	5%	
			SO ₂ NO _x	10 min, 1, 8760 1, 24, 8760	1.86E-04 3.07E-02	6.46E-05 1.07E-02	9% 8%	
			PM	24, 8760	1.59E-02	1.13E-02	3%	
			PM10	24, 0700	8.78E-03	4.15E-02	4%	
			PM2.5	24, 8760	2.28E-03	1.07E-03	5%	
D15- 0	Construction - Tailpipe	Volume - construction	Crystalline silica	24	8.77E-05	8.77E-05	1%	
R15a_Q	emissions and road dust from detoured vehicles	area	CO Benzene	1, 8	2.62E-01 7.64E-05	9.09E-02 2.65E-05	9% 8%	
			1,3-Butadiene	24, 8760 24, 8760	7.64E-05 7.34E-06	2.65E-05 2.55E-06	8% 9%	
			Acrolein	1, 24	1.15E-05	3.98E-06	8%	
			Acetaldehyde	30 min, 24	7.88E-05	2.74E-05	8%	
			Formaldehyde	24	1.47E-04	5.10E-05	7%	
			Benzo(a)pyrene	24, 8760	9.66E-08	3.35E-08	9%	

Rtis_0 Construction - Tailogie missions affect of the second	Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case	Scenario for	Modelling*	Note
R15b_0 Construction - Tailpipe emissions and road dust from detoured vehicles No. PM 1.24. 8760 1.27E-03 4.26E-33 1% R15b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 24 3.36E-05 1% - R16_0.C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24 3.36E-05 1% - R16_0.C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 0.24,8760 3.05E-08 1.05E-08 3% R16_0.C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 0.05,-01 1.05E-08 1.05E-08 3% R16_0.C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 0.0,-0 1.24,4760 3.36E-08 1.05E-03						Emission	Emission	Overall	
R15i_0 Construction - Tailpipe emissions and road dust from debuned vehicles PM 24,8700 4.987-03 4.987-44 4.406-44 2% R15i_0_0 Construction - Tailpipe emissions and road dust from debuned vehicles Volume - construction 24,8700 9.426-04 4.406-04 2% - R16_0_C 1.8 1.086-05 1.06-05 3.% -									
Prisb0 Construction - Tailpipe emissions and road dust from debourd vehicles PMI0 24 3.682-03 1.71E-03 2% R15b0 emissions and road dust from debourd vehicles volume - construction from debourd vehicles Volume - construction Parame 24 3.682-06 1.682-06 1.96 R16C emissions and road dust from debourd vehicles Parame 24.8700 3.092-06 1.082-05 3% R16C Construction - Tailpipe emissions and road dust from debourd vehicles Volume - construction area 90, 1000, 112, 42, 8700 3.092-06 1.246-06 3% R17aQ Construction - Tailpipe emissions and road dust from debourd vehicles Volume - construction area 90, 1000, 12, 42, 8700 2.382-02 1.266, 44 4.382-05 1.3% R17aQ Construction - Tailpipe emissions and road dust from deboured vehicles Volume - construction area 24, 8700 3.392-01 1.282-01 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02 1.282-02									
R15b_0 Construction - Tailpipe emissions and road dust from detoured vehicles PM2.5 24.8760 9.48.2760 4.406-04 2% R15b_0.0 1.8 1.08E-06 1.75E-02 4.4% - area area - 1.8 1.08E-06 1.75E-02 4.4% Construction - Tailpipe emissions and road dust from detoured vehicles - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
R15b_0 Construction - Tailpipe emissions and road duat from detoured vehicles Volume - construction area Crystalline silica 24 362E-05 37E-02 4% Berzene 24,6760 3.05E-05 1.10E-06 3%									
R150_0 emissions and road dust from detoured vehicles area CO 1,8 1,8 1,8 1,0 1,0 1,0 1,0 1,0 20 4% 1,3 Barzane 24,8700 3.0 1.0 1.0 1.0 0.0 4% 0.0 4% 0.0 4% 0.0 0.0 4% 0.0 0.0 0.0 4% 0.0<		Construction - Tailpipe							
Berzene 24,6700 3.18-05 1.10E-05 1.95-05 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 1.95-06 3% Acrolein 1,24 4.75-00 1.95-06 <td>R15b_Q</td> <td></td> <td></td> <td>СО</td> <td>1, 8</td> <td>1.08E-01</td> <td></td> <td></td> <td></td>	R15b_Q			СО	1, 8	1.08E-01			
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - constructi		from detoured vehicles							
R16_C Construction - Tailpipe emissions and noad dust from detoured vehicles Volume - construction area No. Encode/ PM10 244. 6700 3.28E-06 1.18E-05 3% bit R16_C Construction - Tailpipe emissions and noad dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area Volume - construction area 10 min, 1, 6700 2.38E-02 1.28E-02 1.28E R16_C Construction - Tailpipe emissions and noad dust from detoured vehicles Volume - construction area 1.24 1.38E-02 1.32E-03 7% Volume - construction - Tailpipe emissions and noad dust from detoured vehicles Volume - construction area 1.34 1.38E-04 1.38E-05 10% R17a_Q Construction - Tailpipe emissions and noad dust from detoured vehicles Volume - construction area 1.34E-04 1.38E-04 1.38E-06 1.38E-05 10% R17a_Q Construction - Tailpipe emissions and nead dust from detoured vehicles Volume - construction area 1.34E-04 1.38E-06 1.38E-02 1.38E-05 1.38E-02 1.38E-05 1.38E-02 1.38E-05 1.38E-05 1.38E-02 1.38E-02 1.38E-02 1.38E-0									
Formaldelnyde 24, 6700 5.996-08 1.38-05 4.9% Berzza(a)pyrene 24, 8760 3.996-08 1.38-05 1.9% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction from detoured vehicles Volume - construction rom detoured vehicles Volume - construction rom detoured vehicles Volume - construction rom detoured vehicles So_2 1.07E-00 1.38-02 2.95E-02 4.% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction rom detoured vehicles So_2 1.03E-01 1.9% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction rom detoured vehicles Volume - construction r									
R16_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction from detoured vehicles Volume - construction rom detoured vehicles Volume - constructio									
R16_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO, PM 1,24,8760 4,36E-02 1,52E-02 14% PM10 24,8760 3,38E-03 1,72E-03 7%					24, 8760				
R16_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24,8760 25,82-02 20,82-03 4% PM10 24 10,82-02 50,82-03 5% - PM2.5 24,8760 3,33E-03 1,72E-03 7% - Construction read dust from detoured vehicles volume - construction - 1,3E Jutadiene 24,8760 9,08E-05 3,35E-05 10% Accelate/hyde 30 1,3E Jutadiene 24,9760 8,00E-06 2,78E-06 10% Accelate/hyde 30 min, 24 8,18E-05 2,84E-05 8% - Formaldehyde 24 1,48E-04 6,13E-05 7% - R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1,24,8760 1,30E-02 1,3E-02 1,3E-02 1,3E-02 3% PM2.5 24,8760 8,0E-03 4,76E-03 5% - Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 10,2E-04 10,3E-04				-					
R16_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 1.08E-02 5.99E-03 5% PM22 R16_C Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area Volume - construction - Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area Volume - construction area Solution - 24, 8760 8.08E-05 2.24E-05 8% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution - 24, 8760 1.03E-07 1.31E-05 2.94E-05 8% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Solution - 24, 8760 1.33E-02 1.31E-02 3% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Colume - construction area Colume - 24, 8760 1.38E-02 1.31E-02 3% R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Colume - 24, 8760 1.38E-03 1.24E-03 5% R17b_Q Cons									
R16_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24.8760 3.33E-03 1.72E-03 7% Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 24 1.78E-04 1.78E-04 1.78E-04 3.36 0 Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 24.8760 9.66E-05 3.38E-06 10% - R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area Volume - construction area 1.3E-05 3.92E-06 8% - R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.024,8760 1.38E-04 1.31E-02 9% PM10 24 9.99E-03 4.76E-03 5% - PM2.5 24,8760 2.84F-06 1.24E-03 5% PM2.5 24,8700 1.82E-03 1.24E-03 5% PM2.5 2.48700 1.82E-03 5% - PM2.5 2.									
R16_C emissions and road dust from detoured vehicles Volume - construction area CO 1.8 3.43E-01 1.19E-01 11% Benzene 24,8760 9.66E-05 3.35E-05 10% Acrolein 1,24 1.13E-05 3.35E-05 10% Acrolein 1,24 1.13E-05 3.92E-06 8% Acrolein 1,24 8.19E-05 2.84E-05 8% Acrolein 1,24 8.19E-06 10% 1.05E-07 Benzo(a)pyrene 24,8760 3.47E-02 1.21E-02 9% NO, 1,24,8760 3.47E-02 1.21E-03 5% PM10 24 9.99E-03 4.76E-03 5% Corpstalline silica 24 1.03E-04 1.03E-04 2.97E-06 R17a-02 PM 24.8760 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
R16_C emissions and road dust from detoured vehicles area CO 1,8 3,43:-01 1,19:-01 11%:-01 R17a_Q remissions and road dust from detoured vehicles area Eenzene 24,8760 8,00E-06 2.78E-06 10% Acrolation 1,24 113E-05 2.84E-05 8% - Acetaldehyde 30 min, 24 8.18E-05 2.84E-05 8% - R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area SO2 10 min, 1,8760 2.07E-04 7.19E-05 10% PM 24,8760 3.47E-02 1.31E-02 3% - PM 24,8760 1.34E-02 1.31E-02 3% - PM 24,8760 1.48E-02 1.31E-02 3% - PM 24,8760 1.48E-03 1.24E-03 5% - Construction - Tailpipe emissions and road dust from detoured vehicles in the construction area 1.48 2.97E-06 1.9% - R17a_Q Construction -			Volume - construction		24				
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 24, 8760 0.00E-06 2.78E-06 10% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction form detoured vehicles Volume - construction from detoured vehicles Volume - construction area Volume - construction from detoured vehicles Volume - construction from detoured vehicles Volume - construction area Volume - construction from detoured vehicles Volume -	R16_C								
Acrolein 1.24 1.13E-05 3.92E-06 8% Acetaldehyde 30 min, 24 8.18E-05 2.94E-05 8% Acetaldehyde 24 1.48E-04 5.13E-05 7% Berzo(a)pyrene 24, 8760 1.30E-07 4.52E-08 12% SO2 10 min, 1, 8760 2.07E-04 7.19E-05 10% NO 1, 24, 8760 3.47E-02 1.21E-02 9% PM 24, 8760 1.38E-02 1.31E-02 9% PM10 24, 8760 1.38E-02 1.31E-02 9% PM2.5 24, 8760 1.32E-04 1.03E-04 2% Construction - Tailpipe emissions and road dust from detoured vehicles Orystalline silica 24 1.03E-04 1.03E-04 2% PM2.5 24,8760 8.04E-06 2.79E-06 10% 4.29E-06 8% Actolein 1,24 1.24E-05 4.29E-06 8% 4.29E-06 8% Actolein 1,24 1.24E-05 4.29E-06 10% 4.29E-06		nom detoured vehicles							
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Acataldehyde 30 min, 24 8.18E-05 2.4E-05 8% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area SQ_ 10 min, 1, 8760 2.07E-04 7.19E-05 10% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area Volume - construction area 24, 8760 1.24E-03 5% Q 1,38E-04 1.03E-04 2.79E-05 9% 1.38E-04 2.97E-05 9% PM10 24 9.99E-03 1.24E-03 5% CO 1.38E-04 1.03E-04 2% CO 1,8 2.97E-01 1.03E-01 1.0% 1.38E-04 2.97E-05 9% 1,-3-Butadiene 24, 8760 8.07E-05 2.97E-06 10% 1.38E-04 5.22E-05 8% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.24 1.24E-04 7.44E-05 1.0% 1.38E-04 5.22E-05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Formaldehyde 24 1.48E-04 5.13E-05 7% Berzo(a)pyrene 24,8760 1.30E-07 4.52E-08 12% No. 10.min,1.8760 2.07E-04 7.19E-05 10% No. 1,24,8760 3.47E-02 1.21E-02 9% PM 24,8760 1.38E-02 1.31E-02 3% PM10 24 9.99E-03 4.76E-03 5% PM2.5 24,8760 2.64E-03 1.24E-03 5% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area CO 1,8 2.97E-01 1.03E-04 1.03E-04 Acrolein 1,24 8.760 8.57E-05 2.97E-05 9% Acrolein 1,24 1.24E-04 2.78E-06 8% Acrolein 1,24 1.24E-05 2.97E-05 9% Formaldehyde 20 min, 1.8760 2.97E-05 9% Acrolein 1,24 1.24E-05 4.98E-06 10% Acrolein 1,24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>8.18E-05</td><td></td><td></td><td></td></td<>						8.18E-05			
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO ₂ 10 min, 1, 8760 2.07E-04 7.19E-05 10% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 24 9.99E-03 4.76E-03 5% PM10 24 9.99E-03 4.76E-03 5% Construction 5% Construction 1.03E-04 1.03E-04 2% Construction 1.03E-04 2% Construction 1.3-Butatiene 24.8760 8.57E-05 2.97E-05 9% Construction Construction 1.34E-03 1.04E-04 1.03E-04 2% Construction Construction Construction 1.3-Butatiene 24.8760 8.57E-05 2.97E-05 9% Construction Construc					24				
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Nox PM 1,24,8760 3.47E-02 1.21E-02 9% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1,24,8760 1.34E-03 5% PM2.5 24,8760 2.64E-03 1.24E-03 5% Construction 2% Construction 1.03E-04 1.03E-04 2% Construction 2% Construction 1.34E-03 5% Construction 1.3Butadiene 24,8760 8.07E-05 2.97E-05 9% Construction Construction 1.3Butadiene 24,8760 8.07E-05 2.97E-05 9% Construction									
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24,8760 1.83E-02 1.31E-02 3% R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24,8760 2.64E-03 1.24E-03 5% CO 1,8 2.97E-01 1.03E-04 2% Co 1,3-Butadiene 24,8760 8.07E-05 2.97E-05 9% Accrolein 1,24 1.24E-05 4.29E-06 8% 6 Formaldehyde 24 1.59E-04 5.52E-05 9% 6 Formaldehyde 24,8760 1.01E-07 3.84E-08 10% NO _A 1,24,8760 3.06E-02 1.25E-02 10% PM 24,8760 1.09E-02 1.36E-02 3% <				-					
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 9.99E-03 4.76E-03 5% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area 24 1.03E-04 1.03E-04 2% R17b_Q Volume - construction from detoured vehicles Volume - construction area 1,3-Butatiene 24,8760 8.04E-06 2.79E-05 9% R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area No_x 1,24 1.24E-05 4.29E-06 8% Volume - construction from detoured vehicles Volume - construction area No_x 1,24 1.24E-03 1.00% Volume - construction from detoured vehicles Volume - construction area No_x 1,24 1.04E-02 1.02E-01 10% Volume - construction from detoured vehicles Volume - construction area No_x 1,24,8760 3.06E-02 1.36E-02 3% PM10 24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
R17a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 1.03E-04 1.03E-04 2% R17a_Q Form detoured vehicles Volume - construction from detoured vehicles Volume - construction area Crystalline silica 24 1.03E-04 1.03E-04 2% Benzene 24, 8760 8.57E-05 2.97E-05 9% 1.03E-04 1.03E-04 1.03E-01 10% Accelarine 1.4, 8760 8.04E-06 2.97E-05 9% 1.03E-04 1.03E-04 1.03E-04 1.03E-04 1.03E-01 1.03E-04									
R17a_Q emissions and road dust from detoured vehicles Volume - construction area CO 1,8 2.97E-01 1.03E-01 10% Benzene 24,8760 8.57E-05 2.97E-05 9% 1.3-Butadiene 24,8760 8.04E-06 2.79E-06 10% Acctaldehyde 30 min, 24 8.57E-05 2.97E-05 9% 1.3-Butadiene 24,8760 8.04E-06 2.79E-06 10% Acctaldehyde 30 min, 24 8.57E-05 2.97E-05 9% 1.07E-01 1.03E-01 1.0% 1.07E-05 2.97E-06 10% 1.07E-01 1.03E-01 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.07E-01 1.07K 1.07E-01 1.07K 1.07E-01 1.07K 1.07E-01 1.07K 1.07E-01 1.07K 1.07E-01 1.07K 1.07K 1.07E-01 1.07K 1.02E-02 3.08E-05				PM2.5	24, 8760	2.64E-03	1.24E-03		
R1/A_Q emissions and road dust from detoured vehicles area CO 1,8 2.9/F-01 1.03E-01 10% R1/A_Q from detoured vehicles from detoured vehicles area Eco 1,8 2.9/F-01 1.03E-01 10% Acrolein 1,3-Butadiene 24,8760 8.04E-06 2.97E-05 9% Acrolein 1,24 1.24E-05 4.29E-06 8% Acetaldehyde 30 min,24 8.57E-05 2.97E-05 9% Formaldehyde 24 1.59E-04 5.52E-05 8% Benzo(a)pyrene 24,8760 1.11E-07 3.84E-08 10% MO_x 1,24,8760 3.60E-02 1.25E-02 10% MO_x 1,24,8760 1.90E-02 1.36E-02 3% PM10 24 1.04E-02 4.93E-03 5% PM2.5 24,8760 1.90E-02 1.36E-02 3% PM10 24 1.04E-02 4.93E-03 5% Co 1,3-Butadiene 24,8760 8.37E-05			Volume - construction						
R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 (NO _x) D1.3-Butataiene 24, 8760 8.04E-06 2.79E-06 8% R17b_Q 0 0.071 2.48760 8.04E-06 2.97E-05 9% R17b_Q 0 0.071 2.48760 8.07E-05 2.97E-05 9% R17b_Q 0 0.071 3.84E-08 10% 0.071 3.84E-08 10% Volume - construction - Tailpipe emissions and road dust from detoured vehicles 0 0.02 1.08E-02 1.28E-02 10% PM10 24 1.04E-02 4.93E-03 5% 0.06 0.072 1.36E-02 1.06E-04 2.04E-02 1.06E-04 0.06 0.07	R17a_Q								
R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area SO2 HM 1, 24 (1.59E-04) 1.24E-05 (2.97E-05) 4.29E-06 (9%) 8% (1.59E-04) R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 (1.25E-02) 100 min, 1, 8760 (1.90E-02) 2.14E-04 (1.90E-02) 7.34E-08 (1.90E-02) 1.05E-02 (1.90E-02) 1.076 (1.90E-02) R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction (1.3-Butadiene) 24, 8760 (1.8) 1.04E-02 (1.90E-04) 1.02E-04 (1.07E-01) 2% (1.07E-01) R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction (1.3-Butadiene) 24, 8760 (1.8) 3.08E-04 (1.07E-01) 1.07E-01 (1.07E-01) R17b_Q R17b_Q 1.3-Butadiene) 24, 8760 (1.3-Butadiene) 8.37E-05 (1.9%) 1.07E-01 (1.07E-01) 10% (1.3-Butadiene) R17b_Q R17b_Q 24 1.28E-05 (1.9%) 1.07E-05 (1.9%) 1.07E-05 (1.9%) R17b_Q R17b_Q R17b_Q R17b_Q 2.88E-06 (1.0%) 1.		nom detoured vehicles							
R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area Acetaldehyde 30 min, 24 8.57E-05 2.97E-05 9% R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO_2 10 min, 1, 8760 2.14E-04 7.384E-08 10% R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1, 24, 8760 1.90E-02 1.36E-02 3% PM10 24 1.04E-02 4.93E-03 5% 0% PM2.5 24, 8760 2.73E-03 1.28E-03 6% Co 1, 8 3.08E-04 1.07E-04 2% Co 1, 8 3.08E-05 10% 0% Acetaldehyde 24, 8760 8.37E-05 3.08E-05 10% Acetaldehyde 24, 8760 8.32E-06 10% 0% Acetaldehyde 24, 8760 8.32E-05 3.08E-05 9% Benzo(a)pyrene 24, 8760 1.15E-07									
Benzo(a)pyrene 24,8760 1.11E-07 3.84E-08 10% Benzo(a)pyrene 24,8760 1.11E-07 3.84E-08 10% SO2 10 min, 1,8760 2.14E-04 7.44E-05 10% NOx 1,24,8760 3.60E-02 1.25E-02 10% PM 24,8760 1.90E-02 1.36E-02 3% PM10 24 1.04E-02 4.93E-03 5% PM2.5 24,8760 2.73E-03 1.28E-03 6% Crystalline silica 24 1.06E-04 1.06E-04 2% CO 1,8 3.08E-01 1.07E-01 10% Benzene 24,8760 8.87E-05 3.08E-06 10% Actrolein 1,24 1.28E-06 4.45E-06 9% Actaldehyde 30 min,24 8.87E-05 3.08E-06 10% Actaldehyde 30 min,24 8.87E-05 3.08E-05 9% Actaldehyde 30 min,24 8.87E-05 3.08E-05 9% Benzo(a)pyrene								9%	
Kitz Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 2.14E-04 7.44E-05 10% R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 2.14E-04 7.44E-05 10% R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction area 24, 8760 1.90E-02 1.36E-03 5% PM10 24 1.04E-02 4.93E-03 5% PM2.5 24, 8760 2.73E-03 1.28E-03 6% Construction from detoured vehicles Crystalline silica 24 1.04E-02 1.06E-04 2% Construction from detoured vehicles Construction area 1,3-Butadiene 24,8760 8.87E-05 3.08E-05 10% Actrolein 1,24 1.28E-05 4.45E-06 9% 4.65E-04 5.72E-05 8% Formaldehyde 24 1.65E-04 5.72E-05 8% 88Eo.05 9% 806 Benz									
R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO _x 1, 24, 8760 3, 60E-02 1.25E-02 10% R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 24, 8760 1.90E-02 1.36E-02 3% NO _x 1, 44, 8760 2, 48760 1.08E-04 1.08E-04 2% CO 1, 8 3.08E-01 1.07E-01 10% Benzene 24, 8760 8.37E-05 3.08E-05 10% Accrolein 1, 24 1.28E-05 4.45E-06 9% Formaldehyde 24 1.68E-04 5.72E-05 8% Benzo(a)pyrene 24, 8760 1.15E-07 3.98E-08 10%									
PM 24,8760 1.90E-02 1.36E-02 3% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction 24,8760 2.73E-03 1.28E-03 6% CO 1,8 3.08E-01 1.06E-04 2.06E-04 2% CO 1,8 3.08E-01 1.07E-01 10% Benzene 24,8760 8.37E-05 3.08E-05 10% Acrolein 1,24 1.28E-06 4.45E-06 9% Actraldehyde 30 min, 24 8.87E-05 3.08E-05 10% Benzo(a)pyrene 24 1.65E-04 5% 9%				-					
PM10 24 1.04E-02 4.93E-03 5% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24, 8760 2.73E-03 1.28E-03 6% Corystalline silica 24 1.06E-04 1.06E-04 2% Co 1, 8 3.08E-01 1.07E-01 10% Benzene 24, 8760 8.87E-05 3.08E-05 10% Actolein 1, 24 1.28E-06 4.45E-06 9% Actolein 1, 24 1.28E-05 3.08E-05 10% Benzo(a)pyrene 24, 8760 8.33E-06 2.89E-06 10%									
R17b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 1.06E-04 1.06E-04 2% Loss from detoured vehicles area Co 1,8 3.08E-01 1.07E-01 10% Benzene 24,8760 8.87E-05 3.08E-06 10% Acrolein 1,24 1.28E-05 4.45E-06 9% Acetaldehyde 24 1.65E-04 5.72E-05 8% Benzo(a)pyrene 24,8760 1.15E-07 3.98E-08 10%									
R17b_Q emissions and road dust from detoured vehicles Volume - construction area CO 1,8 3.08E-01 1.07E-01 10% Benzene 24,8760 8.87E-05 3.08E-05 10% Acrolein 1,24 1.28E-05 4.45E-06 9% Acctaldehyde 30 min,24 8.87E-05 3.08E-05 9% Formaldehyde 24 1.65E-04 5.72E-05 8% Benzo(a)pyrene 24,8760 1.15E-07 3.98E-08 10%									
from detoured vehicles Benzene 24,8760 8.87E-05 3.08E-05 10% 1,3-Butadiene 24,8760 8.33E-06 2.89E-06 10% Acrolein 1,24 1.28E-05 3.08E-05 9% Acetaldehyde 30 min, 24 8.87E-05 3.08E-05 9% Formaldehyde 24 1.65E-04 5% 9% Benzo(a)pyrene 24,8760 1.15E-07 3.98E-08 10%	D17h 0		Volume - construction						
Destautatione 24, 8760 8.33E-06 2.89E-06 10% 1.3-Butadiene 24, 8760 8.33E-06 2.89E-06 10% Acrolein 1, 24 1.28E-05 4.45E-06 9% Acetaldehyde 30 min, 24 8.87E-05 3.08E-05 9% Formaldehyde 24 1.65E-04 5.72E-05 8% Benzo(a)pyrene 24, 8760 1.15E-07 3.98E-08 10%	KI/b_Q		area						
Acrolein 1, 24 1.28E-05 4.45E-06 9% Acetaldehyde 30 min, 24 8.87E-05 3.08E-05 9% Formaldehyde 24 1.65E-04 5.72E-05 8% Benzo(a)pyrene 24, 8760 1.15E-07 3.98E-08 10%									
Formaldehyde 24 1.65E-04 5.72E-05 8% Benzo(a)pyrene 24, 8760 1.15E-07 3.98E-08 10%				Acrolein		1.28E-05	4.45E-06	9%	
Benzo(a)pyrene 24, 8760 1.15E-07 3.98E-08 10%									
SO ₂ 10 min, 1, 8760 2.02E-04 7.01E-05 10%						1.15E-07 2.02E-04	3.98E-08 7.01E-05	10%	
NO _x 1, 24, 8760 3.77E-02 1.31E-02 10%									
PM 24, 8760 2.19E-02 1.77E-02 4%				PM				4%	
PM10 24 9.31E-03 5.17E-03 5%					24				
PM2.5 24, 8760 2.88E-03 1.48E-03 6%		Construction Tailning							
R18 C emissions and road dust Volume - construction CO	R18 C	Construction - Tailpipe emissions and road dust							
from detoured vehicles from detoured vehicles area <u>Benzene</u> 24, 8760 8.34E-05 1.02E-01 1.078			area						
1,3-Butadiene 24,8760 6.91E-06 2.40E-06 9%						6.91E-06		9%	
Acrolein 1, 24 9.74E-06 3.38E-06 7%									
Acetaldehyde 30 min, 24 7.08E-05 2.45E-05 7%									
Formaldehyde 24 1.27E-04 4.42E-05 6% Benzo(a)pyrene 24, 8760 1.12E-07 3.90E-08 10%									
SO_2 10 min, 1,8760 7.06E-05 3.3%									
NO _x 1, 24, 8760 1.16E-02 4.01E-03 3%				NO _x				3%	
PM 24,8760 5.97E-03 4.19E-03 1%									
PM10 24 3.34E-03 1.57E-03 2%									
PM2.5 24,8760 8.56E-04 3.98E-04 2% Construction - Tailpipe Crystalline silica 24 3.23E-05 3.23E-05 1%		Construction - Tailnine							
R19a_Q emissions and road dust Volume - construction Originaline since 24 0.221-03 0.221-03 1.70 CO 1, 8 9.82E-02 3.41E-02 3%	R19a_Q	Construction - Tailpipe R19a_Q emissions and road dust							
from detoured vehicles area Benzene 24, 8760 2.89E-05 1.00E-05 3%		from detoured vehicles	area			2.89E-05	1.00E-05	3%	
1,3-Butadiene 24,8760 2.81E-06 9.76E-07 3%		from decoured vehicles							
Acrolein 1, 24 4.42E-06 1.53E-06 3%									
Acetaldehyde 30 min, 24 3.03E-05 1.05E-05 3% Formaldehyde 24 5.66E-05 1.97E-05 3%									
Benzo(a)pyrene 24, 8760 3.61E-08 1.25E-08 3%									

Product Description Solution R108_0 Contraction - Tabley encodes and object of the solution of t	Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case			Note
R198_0 Construction - Taippe measons and read during and find metaured vehicles Volame - construction and find metaured vehicles Volame - construction find metaured						Emission	Emission	Overall	
Pair 24, 670 766-23 532-33 1%				SO ₂	10 min, 1, 8760	8.99E-05	3.12E-05	4%	
R100_0 Construction - Tailpion from debund values Volume - construction area PAGE 2 24 4.112.03 4.112				~	1, 24, 8760				
R189_0 Construction - Taiping this data and add too. discurd vehicles Value: - construction - Taiping too. discurd vehicles Va									
Rite_Q Construction - Tailpop tion deloand vehicles Volume - control of same Operation and cost of same Part of same									
R109_0 emissions and cost dut from debund vehicles volume - costinuction area Construction (13.1.1.adarbos) 1.8 1.92-01 1.94-02 4	Construction - Tailnine								
Rob. 0.0 Construction - Tailoge emissions and read data from defound vehicles from defound v	R19b_Q	R19b_Q emissions and road dust							
R20a_0 Construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - construction - Tailping emissions and road data from debund vehicles Volume - cons			area	Benzene	24, 8760	3.68E-05		4%	
R200_0 Construction - Tailoge remainships 30 mm, 24 3 386:03 138:03 44 44 Construction - Tailoge remainships SO, 10 mm, 124 3 386:03 158:04 44 456:03 158:02 44 456:03 158:02 44 Construction - Tailoge remainships SO, 10 mm, 124 3 386:03 158:02 45 456:03 158:02 45 456:03 158:02 44 Construction - Tailoge remainships SO, 10 mm, 124 3 386:03 118:02 14 456:03 158:02 45 756 PM 0 24 4 926 548:03 158:02 45 756 756 Construction - Tailoge remainships Solo, 10 mm, 124 3 386:03 118:02 76 756 756 PM 0 24 4 926 548:03 158:06 75 756 756 Construction - Tailoge remainships Solo, 10 mm, 1278 3 858:03 158:06 75 756 756 PM 10 24 4 970 1076:07 376:04 10% 756:04 75% 756:04 75% Construction - Tailoge remainships Solo, 10 mm, 1, 170 9 10 858:05 3 286:04 76% 756:05 76 756:04 75% PM 23 24 700 10 108:07 377:04 100:07 737:04 100:07 737:04 100:07 757 776:04 10% 756:05 76 Solo, 10 mm, 1, 170 9 10 100:02 24:05:03 138:06 76 756:04 75% 756:04 75% 756:04 75% PM 23 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Construction - Tailoge emissions and road data from debuned vehicles Construction - Tailoge emissions and road data from debuned vehicles Volume - construction PM2 0 Construction - Tailoge emissions and road data from debuned vehicles Volume - construction PM2 0 Volume - construction PM2 0 Construction - Tailoge emissions and road data from debuned vehicles Volume - construction PM2 0 Construction - Tailoge PM2 0 <									
R201_0 Construction - Taiping from decured vehicles Volume - construction in from decured vehicles Volume - construction in an and in the second									
R20a_Q Construction - Tailoipe from debured vehicles Volume - construction portaline alica 1 24, 6700 17.24, 670 1 24.522 3% PX0b_Q Construction - Tailoipe emissions and read dut from debured vehicles Volume - construction portaline alica 24 0 368-03 1.68-03 5%									
P20a_Q Construction - Tailpipe enissions and read dust from debund vehicles Volume - construction 0 PM.0 2.4, 8760 1.770-02 1.246-00 556-03 556 P20a_Q enissions and read dust from debund vehicles Volume - construction 0 Construction - 1 1.8 2.251-03 1.8 2.251-03 1.56 55				SO ₂	10 min, 1, 8760	2.09E-04	7.25E-05	10%	
R20a_O Construction - Tailping from debund vehicles PM10 24 9.98-03 4.98-03 5.95 R20a_O remission and noise from debund vehicles valume - construction (Coptalinine alica 24 9.98-03 1.98-03 6% — Go 1.8 2016-00 1.016-01				*					
P20a_O Construction - Tailping emissions and road dust from detoured vehicles PMZ 5 24, 4700 2.584-03 1.184-03 9% P20a_O 0 1, 8 2.916-01 10% 566-05 566-05 9% In one detoured vehicles 13-814tadene 24, 6780 5.826-05 2.976-05 9% In one detoured vehicles 12-814tadene 24, 6780 5.826-05 9% 100 Acatadenyta 30 m, 24 6.966-05 10% 1000 100 100 100<									
P20a_D Construction - Tailpide immission and road cast from detoued vehicles Volume - construction area Construction area Construction Participation Construction <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></th<>								-	
R20a_Q emissions and road dust from defoured vehicles Volume - construction area Construction C		Construction - Tailpipe	Mahama a di di						
Prom descuedo venicas Benzame 24, 4700 3.54E-63 2.08E-63 0.00 1-3-Abtadiance 2,4, 6700 3.54E-63 2.08E-63 10% Acroin Acroin 1,2,4 1.31E-53 4.6E-63 0.0% Acroin Acroin 1,2,4 1.26E-70 1.55E-63 1.0% Acroin Browne Construction - Taipipe Moine - construction 2.48 1.16E-62 0.44E-03 2.% PM10 2.4 6.700 3.3E-63 1% Acroin 3.1E-65 4% Acroin Tom detourd venicles area Construction - Taipipe Cystalline ailiaa 2.4 6.700 3.3E-63 4% Acroin Tom detourd venicles area Construction - Taipipe Cystalline ailiaa 2.4	R20a_Q	emissions and road dust				2.91E-01	1.01E-01	10%	
R20b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction from detoured vehicles Volume - construction rom detoured vehicles Volume - constructi		from detoured vehicles	urea						
R20b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction from detoured vehicles									
Particulary Provided 24 1 076-04 5.822-05 9% Benzolicity prefer 24, 8700 1076-07 3.776-06 10% SO, 10 min, 1, 8700 9.476-05 3.776-06 10% SO, 10 min, 1, 8700 9.476-05 3.876-05 4% No, 1, 24, 6700 1.586-02 9.486-03 2% PMI 24, 6700 1.386-02 9.486-03 2% PMI 24, 6700 1.386-02 9.486-03 2% Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction from detoured vehicles 2.48700 3.387-06 1.486-06 4% Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction from detoured vehicles volume - construction from detoured vehicles 1.48, 6700 4.086-08 4.486-08 4.486-08 PMIO 2.48, 6700 1.386-07 2.486-08 4.486-08 4.486-08 PMIO 2.48, 6700 1.986-08 1.486-08 4.486-08 4.486-08 PMIO 2.48, 6700 1.986-08									1
Benzolajprene 24,870 1.07-07 3.71-248 10% R20b_0.0 Construction - Tailpipe emissions and road dust from debuned vehicles volume - construction rom debuned vehicles volume - construction ro									
R20b_0.0 Construction - Tailpipe emissions and road dust from debured vehicles Volume - construction area S02 10 min. 1, 1270 9.47-05 3.28E-03 4% PM 2.4, 8700 1.156-02 3.28E-03 3%									
R20b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24, 4760 1158-02 9.44E-03 2% PM2.5 24, 4760 1358-03 7.17E-04 3%				SO ₂		9.47E-05	3.29E-05	4%	
R20b_0 Construction - Tailpipe emissions and road dut from detoured vehicles PM10 24 62:14:03 238:03 3% mmmm R20b_0 emissions and road dut from detoured vehicles volume - construction area Volume - construction 138:03 7:17:04 3% mmmm R21b_0 Construction - Tailpipe emissions and road dut from detoured vehicles volume - construction 1,24 63:87:05 1.34:05 64:46:05 4% Volume - construction - Tailpipe emissions and road dut from detoured vehicles volume - construction from detoured vehicles 24,8700 1.34:6701 2.44:6703 2% R21b_0 Construction - Tailpipe emissions and road dut from detoured vehicles Volume - construction from detoured vehicles Volume - construction from detoured vehicles Volume - construction from detoured vehicles 24,8700 1.34:6701 2.44:6703 2.% R21b_0 Construction - Tailpipe emissions and road dut from detoured vehicles Volume - constru				A					
R20b_Q Construction - Tailpipe emissions and road dut from detoured vehicles PM2.5 24, 4700 3.382-03 7.17E-04 3% P20b_Q emissions and road dut from detoured vehicles area 1.8 13.482-03 4.014E-05 4.5% P20b_Q 1.8 13.282-01 4.07E-02 4% 13-Butadiance 24, 8760 3.87E-05 1.34E-06 5% P20b_Q 1.3 5.982E-06 4% - Acataldehyde 20, nin, 24 2.06E-06 4% - Acataldehyde 20, nin, 24 2.06E-06 4% - Benzo(a)pyrene 24, 8760 1.38E-08 4% - Benzo(a)pyrene 24, 8760 1.38E-08 4% - PM10 24 4.08E-03 2% - PM10 24 4.08E-03 2% - PM25 2.48760 1.38E-06 4% - Construction - Tailpipe emissions and road dut from detoured vehicles remaint and remaint and rema 24, 7670 1.38E-08									
R20b_Q Construction - Talippe emissions and road dut from detoured vehicles Volume - construction area Construction - Talippe formade/space Construction - Talippe emissions and road dut from detoured vehicles Volume - construction - Talippe formade/space Construction - Talippe emissions and road dut from detoured vehicles Volume - construction - Talippe formade/space Construction - Talippe emissions and road dut from detoured vehicles Volume - construction - Talippe formade/space Construction - Talippe emissions and road dut from detoured vehicles Volume - construction area Construction - Talippe formade/space Construction - Talippe emissions and road dut from detoured vehicles Volume - construction area Construction - Talippe formade/space Construction - Talippe formade/space <thconstruction -="" talippe<br="">formad</thconstruction>									
R20b_0 emissions and road dust from detoured vehicles Volume - construction area Construction 1.32E-01 4.57E-02 44% 1.3-Buardeine 24, 4760 3.37E-06 1.31E-06 5% - Acrolant 1.3-Buardeine 24, 4760 3.37E-06 1.31E-06 5% Acrolant 1.3-Buardeine 24, 4760 3.37E-06 1.41E-05 4% Acrolant 1.3-Buardeine 24, 4760 3.37E-06 1.41E-05 4% Formaddehyde 20 2.44 7.59E-05 1.41E-05 4% Formaddehyde 24 7.59E-06 1.41E-05 4% - Formaddehyde 24 7.69E-06 1.41E-05 4% - Formaddehyde 24 4.06E-06 1.68E-03 4% - Formaddehyde 24 4.06E-03 1.41E-03 2% - FW10 24 4.06E-03 1.18E-03 2% - - Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construct		Construction - Tailpipe					-		
From detoured vehicles Benzene 24,8700 3.37E-05 1.34E-05 4% 1.38-undiame 24,8700 3.37E-05 1.34E-05 4%	R20b_Q								
R21a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Sol NO, NO, NO, NO, NO, NO, NO, NO, NO, NO,		from detoured vehicles	area	Benzene		3.87E-05	1.34E-05	4%	
R21a_O Construction - Tailpipe from detoured vehicles Acetaldehyde 30 min.2 4 4.06E-05 1.41E-05 4% R21a_O Exercical pyrene 24,8760 4.84E-08 1.68E-08 4% NO. 1.24,8760 1.34E-02 4.84E-08 4%									
R21a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - constructi									
Berzo(a)pyrene 24,8760 4.84E-08 1.68E-05 4% R21a_Q Construction - Talipie emissions and road dust from detoured vehicles volume - construction area SO_ 2 10 min., 124, 16760 1.08E-02 4.64E-03 4% PM 24, 8760 1.02E-02 8.14E-03 2%									
R21a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO_u 1,24,8760 1.04E-02 4.64E-03 4% PM2_5 24,8760 1.02E-02 8.14E-03 2%									
R21a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PMI 24, 8760 1.102E-02 8.14E-03 2% PM10 24 4.49E-03 2.44E-03 2% — Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 24 7.02E-05 7.02E-05 1% — R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 1.3E-06 4% — — 4.8760 3.34E-05 1.16E-06 4% R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles volume - construction area 1.2E 000, 1.72E-02 8.92E-03 7% — PM10 24 7.02E-05 2.92E-03 7% — — — Volume - construction from detoured vehicles Volume - construction area 10 24 7.0E-02 9.32E-03 7% — PM2.5 24,8760 1.90E-03 8.82E-04 4% — — — — = 2.77E-0				SO ₂	10 min, 1, 8760	8.16E-05	2.83E-05	4%	
R21a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 4.469E-03 2.44E-03 2.4E				~					
R21a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24, 8760 1.16E-03 6.17E-04 2% CO 1, 8 1.14E-01 3.94E-02 1%									
R21a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 7.02E-05 7.02E-05 1% R21a_Q									
R21a_Q emissions and road dust from detoured vehicles Volume - construction area CO 1,8 1.14E-01 3.94E-02 4% Benzene 24,8760 3.25E-06 1.18E-06 4%		Construction - Tailpipe							
Benzene 24,8760 3.34E-05 1.16E-05 4% 1.3Butatione 24,8760 3.34E-05 1.16E-05 4% Acrolein 1.3Butatione 24,8760 3.34E-05 1.13E-06 4% Acrolein 1.24 5.11E-06 1.77E-06 3% 4% Acrolein 1.24 5.11E-06 1.77E-06 3% 4% Formaldehyde 20 6.54E-05 2.27E-05 3% 4% Formaldehyde 24 6.54E-05 2.77E-01 8.92E-03 7% - Formaldehyde 24,8760 1.35E-04 5.45E-05 7% - - Mon 1,24,8760 2.57E-02 8.92E-03 2% -	R21a_Q	emissions and road dust							
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 1,24 5,11E-06 1.77E-06 3% R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Image: Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Image: Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and road dust from detoured vehicles Image: Construction - Tailpipe emissions and roa		from detoured vehicles	uicu						
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Acetaldehyde SO_2 30 min, 24 3.50E-05 1.22E-05 4% R21b_Q Econstruction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 1.57E-04 3.50E-05 7% 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.90E-02 2.37E-02 8.92E-03 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.8 2.18E-01 7.59E-02 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles NO_x 1.24 9.83E-06 3.41E-06 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles NO_x 1.24, 8760 8.02E-08 2.79E-08 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles NO_x 1.24, 8760 8.02E-08 2.79E-08 7% R22_C C									
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Formaldehyde Benzo(a)pyrene 24 6.54E-05 2.27E-05 3% R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area No_x 1, 24, 8760 2.57E-02 8.92E-03 7% PM 24, 8760 1.30E-02 9.32E-03 2% PM10 24 7.44E-03 3.48E-04 4% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Costalline silica 24 7.19E-05 1% Costalline silica 24 8760 6.42E-05 2.28E-05 7% R22_C Methodured 98 6.41E-06 7% 6.42E-05 2.28E-05 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - constructi									
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - constructi									
Solution Provided in the second sec				Benzo(a)pyrene				4%	
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24, 8760 1.33E-02 9.32E-03 2% R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24, 8760 1.30E-02 9.32E-03 4% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24 7.69E-02 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area SO _Q 10 min, 1, 8760 1.59E-04 4.37E-05 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area 24, 8760 1.22E-04 1.3E-02 8% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1,24,8760 1.72E-04 1.72E-02 8% PM10 24,8760 1.72E-02 1.40E-02 3% M				SO ₂			5.45E-05	7%	
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 7.44E-03 3.48E-03 4% Volume - construction area A FM10 24 7.44E-03 3.48E-03 4% Volume - construction area A FM10 24 7.44E-03 3.48E-03 4% Volume - construction area A FM10 24 7.44E-03 3.48E-03 4% Volume - construction area A FM10 24 7.19E-05 7.19E-05 1% CO 1,8 2.18E-01 7.59E-02 7% FORD 7% Benzene 24,8760 6.42E-05 2.23E-05 7% FORD Acetaldehyde 30 min, 24 6.73E-05 2.34E-05 7% FORD Acetaldehyde 30 min, 24 6.73E-05 2.34E-05 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NO _x 1,24,8760 1.72E-02 1.03E-02 8% PM10 24,8760									
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24, 8760 1.90E-03 8.85E-04 4% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24, 8760 1.90E-03 8.85E-04 4% Crystalline silica 24 7.19E-05 7.19E-05 1% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1,3-Butadiene 24,8760 6.225-06 2.17E-06 8% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO ₂ 10 min, 1,8760 1.59E-04 4.37E-05 6% PM10 24,8760 2.97E-02 1.03E-02 8% PM10 24,8760 2.27E-03 1.17E-03 5% Crystalline silica 24,8760 2.27E-03 1.17E-03 5% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 124,8760 2.27E-03 1.17E-03 5% Crystalline silica 24,8760									
R21b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 7.19E-05 7.19E-05 1% R21b_Q from detoured vehicles Volume - construction area Crystalline silica 24 7.19E-05 7.19E-05 1% Banzene 24, 8760 6.42E-05 2.23E-05 7% Acrolein 1,3-Butadiene 24, 8760 6.25E-06 2.17E-06 8% Acrolein 1,24 9.83E-06 3.41E-06 7% Active 30 min, 24 6.73E-05 2.34E-05 7% Formaldehyde 24 1.26E-04 4.37E-05 6% Benzene 24, 8760 8.02E-08 2.79E-08 7% SO2 10 min, 1, 8760 1.59E-04 5.53E-05 8% PM 24, 8760 1.72E-02 1.40E-02 3% PM10 24, 8760 1.72E-02 1.40E-02 3% PM2.5 24, 8760 2.27E-03 1.17E-03 5% Construction - Tailpipe									
R21b_Q emissions and road dust from detoured vehicles Volume - construction area CO 1,8 2.18E-01 7.59E-02 7% Benzene 24,8760 6.42E-05 2.23E-05 7%		Construction - Tailpipe	Valuma areatoria						
Benzene 24,8760 6.42E-05 2.23E-05 7% 1,3-Butadiene 24,8760 6.25E-06 2.17E-06 8% Acrolein 1,24 9.83E-06 2.17E-06 8% Acrolein 1,24 9.83E-06 2.17E-06 8% Acrolein 1,24 9.83E-06 2.34E-05 7% Acetaldehyde 30 min, 24 6.73E-05 2.34E-05 7% Formaldehyde 24 1.26E-04 4.37E-05 6% Benzo(a)pyrene 24,8760 8.02E-08 2.79E-08 7% SO_2 10 min, 1,8760 1.59E-04 5.53E-05 8% NO _x 1,24,8760 1.27E-02 1.03E-02 8% PM 24,8760 1.27E-02 1.03E-02 8% PM10 24 7.34E-03 4.07E-03 4% PM2.5 24,8760 2.27E-03 1.17E-03 5% Corstruction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24,8760 2.27E-03 1.1	R21b_Q	emissions and road dust				2.18E-01			
Acrolein 1, 24 9.83E-06 3.41E-06 7% Acetaldehyde 30 min, 24 6.73E-05 2.34E-05 7% Formaldehyde 24 1.26E-04 4.37E-05 6% Benzo(a)pyrene 24, 8760 8.02E-08 2.79E-08 7% SO2 10 min, 1, 8760 1.59E-04 5.53E-05 8% NOx 1, 24, 8760 2.97E-02 1.03E-02 8% PM 24, 8760 1.72E-02 1.40E-02 3% PM10 24 7.34E-03 4.07E-03 3% PM2.5 24, 8760 2.27E-03 1.17E-03 5% Crystalline silica 24 1.22E-04 1.22E-04 2% Co 1, 8 2.34E-01 8.11E-02 8% Graphalie silica 24 7.28F-03 1.17E-03 5% Co 1, 8 2.34E-01 8.11E-02 8% Graphaline silica 24, 8760 5.45E-06 1.89E-06 7%			0.00						
Ketaldehyde 30 min, 24 6.73E-05 2.34E-05 7% Formaldehyde 24 1.26E-04 4.37E-05 6% Benzo(a)pyrene 24, 8760 8.02E-08 2.79E-08 7% SO2 10 min, 1, 8760 1.59E-04 5.53E-05 8% NOx 1, 24, 8760 2.97E-02 1.03E-02 8% PM 24, 8760 1.72E-02 1.40E-02 3% PM10 24 7.34E-03 4.07E-03 4% PM2.5 24, 8760 2.27E-03 1.74E-03 5% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24 7.34E-03 4.07E-03 4% PM2.5 24, 8760 2.27E-03 1.7E-03 5% Crystalline silica 24 1.22E-04 1.28E-04 2% CO 1, 8 2.34E-01 8.11E-02 8% Co Co 1.8 2.28E-05 7% Co 1.3-Butadiene 24, 8760 5.45E-06 1.89E-06 7% Co									
Formaldehyde 24 1.26E-04 4.37E-05 6% Benzo(a)pyrene 24, 8760 8.02E-08 2.79E-08 7% SO2 10 min, 1, 8760 1.59E-04 5.53E-05 8% NOx 1, 24, 8760 2.97E-02 1.03E-02 8% PM 24, 8760 1.72E-02 1.04E-02 3% PM10 24 7.34E-03 4.07E-03 4% PM2.5 24, 8760 2.27E-03 1.17E-03 5% Crystalline silica 24 1.22E-04 1.22E-04 2% CO 1, 8 2.34E-01 8.11E-02 8% Enzene 24, 8760 6.57E-05 2.28E-05 7%									
Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Volume - construction area 24,8760 1,24,8760 8.02E-08 2.79E-08 7% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO ₂ 10 min, 1, 8760 1.59E-04 5.53E-05 8% R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction area 24,8760 2.27E-03 1.17E-03 5% Crystalline silica 24 1.22E-04 1.22E-04 22% 2% Image: Construction - Tailpipe emissions and road dust from detoured vehicles Trystalline silica 24 1.22E-04 1.22E-04 2% Correstance 24,8760 6.57E-05 2.28E-05 7% 1.3-Butadiene 24,8760 5.45E-06 1.89E-06 7%									
R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 1.59E-04 5.53E-05 8% Volume - construction from detoured vehicles Volume - construction area 10 min, 1, 8760 2.97E-02 1.03E-02 8% Volume - construction from detoured vehicles Volume - construction area 24, 8760 2.27E-03 1.17E-03 5% Crystalline silica 24 1.28E-04 1.22E-04 2% 2% Co 1, 8 2.34E-01 8.11E-02 8% Horizon 24, 8760 5.57E-05 7%									
PM 24,8760 1.72E-02 1.40E-02 3% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 7.34E-03 4.07E-03 4% PM2.5 24,8760 2.27E-03 1.17E-03 5% Crystalline silica 24 1.22E-04 1.22E-04 2% CO 1,8 2.34E-01 8.11E-02 8% Benzene 24,8760 6.57E-05 2.82E-05 7% 1,3-Butadiene 24,8760 5.45E-06 1.89E-06 7% 1.34E-01 1.84E-04 1.22E-04 1.22E-04 2%				-	10 min, 1, 8760				
R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 7.34E-03 4.07E-03 4% PM2.5 24, 8760 2.27E-03 1.17E-03 5% 5% 5% Crystalline silica area 24 1.22E-04 1.22E-04 2% 5% Image: Construction - Tailpipe emissions and road dust from detoured vehicles 6.57E-05 2.28E-05 7% Image: Construction - Tailpipe emissions and road dust from detoured vehicles 24, 8760 6.57E-05 2.28E-05 7%									
R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24, 8760 2.27E-03 1.17E-03 5% Crystalline silica 24 1.22E-04 1.22E-04 2% 2% Co 1, 8 2.34E-01 8.11E-02 8% Benzene 24, 8760 5.45E-06 1.89E-06 7%									
R22_C Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 1.22E-04 1.22E-04 2% Benzene 24, 8760 6.57E-05 2.28E-05 7% 1,3-Butadiene 24, 8760 5.45E-06 1.89E-06 7%									
R22_C emissions and road dust from detoured vehicles volume - construction area CO 1, 8 2.34E-01 8.11E-02 8% Benzene 24, 8760 6.57E-05 2.28E-05 7% 1,3-Butadiene 24, 8760 5.45E-06 1.89E-06 7%		Construction - Tailpipe							
from detoured vehicles Benzene 24, 8760 6.57E-05 2.28E-05 7% 1,3-Butadiene 24, 8760 5.45E-06 1.89E-06 7%	R22_C								
		from detoured vehicles	urea						
Acrolein 1, 24 7.68E-06 2.67E-06 5%		nom detoured vehicles							
Accetaldehyde 30 min, 24 5.56E-05 1.93E-05 6% Formaldehyde 24 1.00E-04 3.49E-05 5%									
Benzo(a)pyrene 24, 8760 8.866-08 3.08E-08 5%									

Rate Interval Interval Interval Interval Interval Interval Interval Interval Reg Constants Tag Solution	Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case	Scenario for	Modelling*	Note
R020 Construction - reging missions and read data into electric interface into electric interface intelectric interface intelectrinterface into electric in						Emission	Emission	Overall	
Production - training matrix in the source of the									
R02h_0 Contraction - Injury from deloarde vehicle from deloarde vehicle from deloarde vehicle MM0 124/4 128/261 <th128 261<="" th=""> <th128 261<="" th=""> 128</th128></th128>									
R23. D Construction - Trelpo means and read offset time sources where a read of the sources where a re									
R20. 0 Construction in Taippe from discuss and read and set in the set		Construction - Tailpipe							
R23., 0. emission and odds from decard under and model scard under and scard biologies 000000000000000000000000000000000000									
Prind Michael Weineles Dermater 24, 8700 1.01.64 3.08.64 1.2% Research 24, 8700 1.01.64 3.08.74 1.05.64 3.5% of 1.05.64 Research 3.07.08, 24 1.00.64 3.5% of 1.05.64 1.5% of 1.05.64 Research 3.07.08, 24 1.05.64 3.5% of 1.05.64 1.5% of 1.05.64 Research 3.07.08, 24 1.05.64 3.5% of 1.05.64	R23a_Q			СО	1, 8	4.05E-01	1.41E-01		
R28.0.0 Construction - Taippe emissions and out of out from decard wholes Arrain (Arrain (Arrain) 1/2 </td <td></td> <td>from detoured vehicles</td> <td>urou</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		from detoured vehicles	urou						
R200_0 Construction - Taipinge measures and road data from decound wherein and data from decound wherein and road data from decound wherein and data from decound wherein and data from decound wherein and decound wherein and data from decound wherein and decound wherein and decound wherein and data from decound wherein and decound wherein and data from decound wherein and data from decound wherein and data from decound wherein and decound wherein and data from decound wherein and decound wherein and data from decound wherein and da									
Formation 24 1.88-04 6.58-05 6% 1 Bezuca (prove 42, 670 1.51-07 1.52-07 1.75 1									
R250_0 Construction - Tailpipe emissions and road dat from debuned vehicles Sop									
R238_0 Construction - Tailping emissions and road data from dotumed vehicles in the form dotumed vehicles and the form dotumed vehicles in the form dotumed vehicles and the form dotumed vehicles in the form d					24, 8760				
R230_0 Construction - Taiping model webcies PM 22.8 200 2.376.02 776.02 776.04 PM R230_0.0 PM2.5 2.4,8700 3.385.03 1.682.41 746. PM2.5 2.4,8700 3.385.03 1.682.41 746. 746. PM2.5 2.4,8700 1.482.04 2.385.03 1.68.7 746. PM2.5 2.4,8700 1.782.40 1.782.40 1.786.40 746.40 PM2.5 2.4,8700 1.782.40 1.785.40 1.785.40 746.40 746.40 PM2.5 2.4,8700 1.785.40 1.785.40 1.785.40 746.40 746.40 746.40 746.40 746.40 746.40 <				-					
Participant									
R239_0 Construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping emissions and road data from debund wheldes Molare - construction - Tailping e									
R28b_Q emissions and road dual Volume - construction area Construction - Tailoge emissions and road dual area Construction - Tailoge emissions and road dual area Total construction - Tailoge emissions and road dual from debuned vehicles Volume - construction area Construction - Tailoge emissions and road dual from debuned vehicles Volume - construction area Volume - construction area Volume - construction area Volume - construction from debuned vehicles Volume - construction area Volume - construction area Volume - construction from debuned vehicles									
R28_0_0 areasing and road data from debuned vehicles areasing areasing and road data from debuned vehicles areasing and road data from debuned vehicles areas			Volume - construction		24				
R24_00 2-945-01 22% 9 Acceladerlyde 30 mn, 24 9.86-04 2.96-06 2% Acceladerlyde 30 mn, 1, 870 1.46-01 6.026-05 6% Berozolajoyene 24 1.76-04 6.286-05 6% Berozolajoyene 24 1.76-04 5.06-08 6% Mon, 1.724 7.86-04 6.286-05 6% Mon, 1.724 7.86-04 6.286-05 6% Mon, 1.724 7.864-03 1.662-0 6% Mon, 1.724 7.864-03 4.96 6% 6% PAD 24.6700 1.262-03 1.268-03 6% 6% PAD 24.6700 1.262-03 1.268-03 6%	R23b_Q								
R24_0 Construction - Taipipe emissions and cod dut from debunde vehicles Accisitation - Network of the second method second second to method vehicles Accisitation - Network of the second method second method second method method second method		nom deloured vehicles							
R24_0 Construction - Tailoin from debund vehicles Actaldabyte From debund vehicles Solution - Tailoin Print Solution - Tailoin Print <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
R24_C Construction - Tailpipe emissions and road dust from debused vehicles Formaldebyde Barozologiprene 24, 6700 1.48E-07 5.0E-05 8% R24_CC Construction - Tailpipe emissions and road dust from debused vehicles Volume - construction area S0, 10 nm. 1, 8700 1.88E-02 3% — R24_CC Construction - Tailpipe emissions and road dust from debused vehicles Volume - construction area Construction - Tailpipe emissions and road dust from debused vehicles Volume - construction area 24, 8700 1.88E-02 24, 8700 1.88E-02 8% R25_C_Q Construction - Tailpipe emissions and road dust from debused vehicles Volume - construction area 24, 8700 1.28E-03 6% — R255_Q_Q Construction - Tailpipe emissions and road dust from debused vehicles Volume - construction area S0, 10 nm. 1, 8700 2.28E-03 6% = R256_Q_Q Construction - Tailpipe emissions and road dust from debused vehicles Volume - construction area S0, 10 nm. 1, 8700 2.28E-03 7% = R256_Q_Q Construction - Tailpipe emissions and road dust from debused vehicles Volume - construction area S0, 0 10 nm. 1, 8700 2.88E-03									
R24_C Construction - Tailpipe emissions and road dust from detoured vehicles SO_ Volume - construction area SO_ NO_ (C) 10 mm, 1,8700 24,8700 176E-02 1104E-02 99% (H) (m) PM10 24,8700 1.98E-02 9% (H) (H) (H)<									
R24_CC Construction - Tailpipe emissions and road dust from detoured vehicles from detoured vehicles NO, HM 2 1,24,6780 1,10E-02 9/%									
R24_C Construction - Tallpipe emissions and road dust from detoured vehicles PMI0 24, 9760 7.48E-03 4.35E-03 4.3% R25_C_Q Construction - Tallpipe emissions and road dust from detoured vehicles Volume - construction area 1.8 2.4, 9760 2.42E-03 7.3% - R256_Q Final Additional and the area 2.4, 8760 7.02E-05 2.44E-06 8% - R256_Q Construction - Tallpipe emissions and road dust from detoured vehicles Volume - construction area 2.4, 8760 9.46E-03 2.02E-06 8% - R256_Q Construction - Tallpipe emissions and road dust from detoured vehicles Volume - construction area 2.4, 8760 9.46E-01 2.02E-06 8% - R256_Q Construction - Tallpipe emissions and road dust from detoured vehicles Volume - construction area 1.01C-14 3.72E-06 6% -<				-					
R24_C Construction - Talipip emissions and odd but from detoured vehicles PM10 24 7.84.203 1.326-03 4% R25_C_O First and									
R24_C Construction - Tailpipe from debuned vehicles Volume - construction area Crystalline silea 24 1.30E-04 1.30E-04 2.97 Berzene 2.4.8F-01 6.06F-02 8% — 6.06F-02 8% Berzene 24.8F-00 5.81E-06 2.02E-06 7% — Acrolein 1,24 8.20E-06 2.88E-00 6% — Acrolein 1,24 8.20E-06 2.88E-00 6% — Formaldehyde 204 1.07E-04 3.72E-05 6% — Formaldehyde 204 1.02E-04 1.84E-00 1.64E-02 1.2% PM 24.6760 9.46E-06 3.82E-03 6% — Construction - Tailpipe emissions and road dust from debuned vehicles Volume - construction area 24,6760 1.32E-03 1.64E-03 7% R256_0 Construction - Tailpipe emissions and road dust from debuned vehicles Volume - construction area 1.394E-04 1.02E-04 1.28E-01 1.28E-01 1.64E-03 2% — R256_0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R24_C emissions and road dist from delound vehicles Volume - construction area column area emergen emergen 1.8 2.4.8700 7.821-01 8.881-02 8% R25_0_Q Pressort 2.4.8700 7.821-02 2.4.8700 7.821-02 2.4.8700 7.821-02 2.851-00 7.95 R250_Q Construction - Tailpipe emissions and road dist from delouned vehicles Volume - construction area SO, 10 1.821-8700 7.821-02 8.951-00 7.95 R250_Q Construction - Tailpipe emissions and road dist from delouned vehicles Volume - construction area 7.917-02 2.925-04 8.841-05 1.24 7.950 2.925-02 8.954-03 7.954 R250_Q Construction - Tailpipe emissions and road dist from delouned vehicles Volume - construction area 2.4.9700 3.285-03 8.940-00 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04 1.926-04				PM2.5	24, 8760	2.42E-03	1.25E-03	5%	
R26_0 emissions and road dats from debound vehicles from debound vehicles area from debound vehicles CO 1,8 2,48-00 2,48-10 8,08-10 2,24-625 8% Actaidame 24,8760 7,82-05 2,48-103 2,246-25 8% ()) Actaidamyde 24,8760 7,82-05 2,846-05 2,862-06 6% Actaidamyde 24,8760 1,780 2,782-05 6% ()) Actaidamyde 24,9760 1,870 2,882-05 8% ()) Bernzologypare 24,8760 1,286-07 3,282-03 8,84-05 1,2% Construction - Tailpipe from debuned vehicles Volume - construction area 24,8760 1,286-01 2,88-02 1,88-03 7% Construction - Tailpipe from debuned vehicles Volume - construction area 24,8760 1,28-04 286-04 286-04 1,28-04 PM10 24 1,2760 3,282-03 6,776-05 1,38-04 6,706-05 1,76 1,38-04 6,706-05 1,38-04 6,706-05 1,76			Volume - construction						
R25a_0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Subsection Formal delayage for the formal delayage formal delayage for the formal delayage formal delayage for the formal delayage for the formal delayage formal delayage for the formal delayage for the formal delayage for the formal delayage formal delayage for the formal delayage formal delayage	R24_C								
R25a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Acrolen Acrolen Promadebyde 1,24 8,202-06 2,82E-06 6% R25a_Q Construction - Tailpipe emissions and road dust from detoured vehicles No. 10,24,8760 2,98E-04 8,84E-05 12% Volume - construction from detoured vehicles Volume - construction from detoured vehicles Volume - construction from detoured vehicles Volume - construction area 2,48700 1,28E-04 1,28E-04 2,28E-06 6% PM10 2,48700 1,28E-04 1,28E-04 2,28E-03 6% PM10 2,48700 1,28E-04 1,28E-04 2,28E-03 6% PM2.5 2,48700 1,28E-04 1,28E-04 2,28E-03 6% PM2.6 2,48700 1,28E-04 1,28E-04 2,28E-04		from detoured vehicles							
P25a_0 Construction - Tailpipe emissions and road dust from detoured vehicles Acentatichyde 300 min, 24 5.948-05 2.062-05 6% P25a_0 Benzo(0)pyrene 24,8760 9.486-708 3.282-05 8%									
R256_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area SO ₂ (Volume - construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction - Tailpipe PM1								6%	
R25a_0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO_2 PMI 10 min. 1.8700 2.35E-04 8.84E-05 12% R25a_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO_2 10 min. 1.8700 1.38E-03 1.08E-04 1.28E-03 1.28E-03 R25b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO_2 10 min. 1.8700 1.38E-04 6.89E-05 9% PM2 2.48,0700 3.35E-02 1.18E-02 9% 9% 1.08E-04 0.89E-06 10% PM10 2.48,0700 1.38E-04 6.89E-05 9% 1.08E-04 9% 1.08E-04 0.89E-04 1.88E-03 7% PM10 2.48,0700 1.38E-04 6.89E-05 9% 1.									
R25a_0 Construction - Tailpipe emissions and road dust from detoured vehicles NO, PM. 2, S. 22, 4, 8760 1,24, 8760 2,28E-02 1,48E-02 12% PM. 2, S. 24, 8760 R25a_0.0 from detoured vehicles Volume - construction area Gostalline ailica 24 1,23E-02 5,87E-03 6% PM. 25 24,8760 3,28E-04 2/W									
R25a_0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM1 24, 8760 2.28E-02 1.64E-02 4% R25a_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24, 8760 1.28E-04 1.28E-04 2% R25a_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24, 8760 1.08E-04 3.87E-05 11% R25b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 24, 8760 1.38E-04 6.70E-05 10% R25b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.24 1.98E-04 6.38E-05 9% R25b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.24 1.98E-04 3.88E-05 9% R25b_0.0 Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 2.48760 1.38E-05 2.88E-05 9% R26a_0.0 Construction - Tailpipe emissions and road dust from detoure				-					
R25a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 128E-Q2 5.87E-03 6% CO 1.8 3.68E-01 1.28E-04 1.29E-04 1.29E-04 2% CO 1.8 3.68E-01 1.28E-04 1.29E-04 2% CO 1.8 3.68E-01 1.28E-04 2% Berzzene 24,8760 9.82E-06 3.41E-06 12% Acrolein 1.24 1.05E-05 5.02E-06 10% Acetaldehyde 30 min.24 1.04E-04 3.62E-05 10% Acetaldehyde 30 min.24 1.04E-04 3.62E-02 10% Berzo(a)prene 24,8760 1.38E-07 4.80E-03 12% Mon_ 1.928-04 6.80E-05 9% 9% PM 24,8760 1.38E-07 4.80E-03 10% PM 24,8760 1.28E-03 1.02E-03 5% PM10 24 9.05E-03 1.02E-03 5%									
R25a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Cystalline silica 24 12.9E-04 12.9E-04 2% Co 1,8 3.69E-01 1.28E-01 12% 1 Demote one of the second from detoured vehicles interval 24,8760 9.82E-06 3.41E-06 12% Actaldehyde 30 min, 24 1.04E-04 3.62E-05 10% 1 Actaldehyde 30 min, 24 1.04E-04 3.62E-05 10% 1 Formaldehyde 24 1.93E-04 6.70E-05 10% 1 Benzo(a)pyrene 24,8760 1.38E-04 6.89E-05 9% 1 Volume - construction from detoured vehicles Volume - construction area 24,8760 1.78E-02 1.18E-02 3% PM10 24 9.26E-03 1.20E-03 5% 1 2.26E-05 9% Construction - Tailpipe emissions and road dust from detoured vehicles intervalue 1.98E-04 1.98E-04 1.98E-04 1.98E-04 1.98E-04 1.98E-04 1.98E				PM10				6%	
R25a_Q emissions and road dust from detoured vehicles Volume - construction area Co 1,8 3.08E-01 1.28E-01 12% Benzene 24,8760 1.06E-04 3.07E-05 11% 1 Home detoured vehicles 1.3Butadiene 24,8760 1.06E-04 3.07E-05 11% Acrolein 1,24 1.50E-05 5.20E-06 10% 1 Acrolein 1,24 1.93E-04 6.70E-05 10% 1 Acrolein 1,24 1.93E-04 6.70E-05 10% 1 Acrolein 1.24,8760 1.38E-07 4.08E-05 9% 1 Monto 1.24,8760 1.78E-02 1.16E-02 9% 1 NO, 1.24,8760 1.78E-02 1.16E-02 9% 1 PM 24,8760 1.78E-02 1.16E-02 9% 1 PM10 24 9.56E-03 4.08E-05 9% 1 PM2.5 2.48760 8.28E-01 9.99E-02 10% 1 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
R25b_Q Construction - Tailpipe emissions and road dutik from detoured vehicles Volume - construction area Volume - construct	P25a 0		Volume - construction						
R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles 1.38-unadiene 24, 8760 9, 82E-06 3, 41E-06 10% R25b_Q No 1.024 1.05E-05 5.02E-06 10% R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles No 1.38E-04 6.07E-05 10% R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles No 1.24 1.98E-04 6.89E-05 9% Volume - construction from detoured vehicles Volume - construction from detoured vehicles 1.98E-04 6.89E-05 9% Volume - construction from detoured vehicles Volume - construction from detoured vehicles 1.98E-01 1.98E-04 1.08E-02 3% PM0 24,8760 1.24,8760 1.38E-02 3.5% 1.08E-04 2.08E-03 4.58E-03 5% PM10 24 9.56E-03 4.58E-03 5% 1.08E-04 1.08E-04 2.08E-05 9% R25b_Q 1.8 2.88E-01 9.99E-02 10% 1.08E-02 8.08E-05 9% 1.08E-07	10258_0		area						
R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Acetaldehyde 30 min, 24 1.04E-04 3.62E-05 10% R25b_Q Expension and road dust from detoured vehicles Xolume - construction area X									
R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Formaldehyde Benzo(a)pyrene 24 1.93E-04 6.70E-05 10% R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles No. 1.24,8760 3.35E-02 1.18E-02 9% R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area Construction - Tailpipe emissions and road dust Volume - construction area					1, 24				
Benzo(a)pyrene 24, 8760 1.38E-07 4.80E-08 12% Benzo(a)pyrene 24, 8760 1.98E-07 4.80E-08 10% SD2 10 min, 1, 8760 1.98E-04 6.89E-05 9% NQ 1,24, 8760 1.78E-02 1.16E-02 9% PM 24, 8760 1.78E-02 1.28E-02 9% PM10 24 9.50E-03 4.58E-03 5% PM2.5 24, 8760 1.78E-02 1.28E-02 3% PM2.5 24, 8760 1.58E-03 4.58E-03 5% CO 1, 8 2.88E-01 9.99E-02 10% Benzore 24, 8760 7.66E-05 2.66E-05 9% 1.3-Butadiene 24, 8760 7.66E-06 10% 4.628140hyde Acetaldehyde 30 min, 24 8.17E-05 4.06E-06 8% Acetaldehyde 30 min, 24 8.12E-05 7% Benzo(a)pyrene 24, 8760 1.36E-02 6.40E-03 5% PM 24, 8760									
R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 1.98E-04 6.89E-05 9% R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 10 min, 1, 8760 1.98E-04 6.89E-05 9% R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 10 min, 1, 8760 1.98E-04 1.01E-04 2% Volume - construction from detoured vehicles Volume - construction area 24 8760 8.25E-05 2.88E-01 9.99E-02 10% R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1,3E utadiene 24, 8760 1.08E-07 3.74E-08 10% R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.24, 8760 1.38E-04 3% 2 PM10 24 6.21E-03 3.29E-03 5% 2 7% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles NO_ 1, 24, 8760 3.35E-02 1.16E-02 9% Volume - construction area Volume - construction area Volume - construction area Volume - construction area 24, 8760 3.35E-02 1.16E-02 3% PM1:0 24 9.56E-03 4.58E-03 5% CO 1,8 2.48760 1.01E-04 1.01E-04 2% CO 1,8 2.88E-01 9.99E-02 10% Benzene 24, 8760 7.66E-06 2.66E-05 9%6 1.3-Butadiene 24, 8760 7.66E-06 2.66E-06 10% Acctaldehyde 30 min, 24 8.13E-05 2.82E-05 8% Formaldehyde 24 1.50E-04 5.22E-05 7% Benzo(a)pyrene 24, 8760 1.08E-07 3.74E-08 10% Volume - construction from detoured vehicles Volume - construction area NO_ 1.24, 8760 1.84E-02 6.40E-03 5% PM 24, 8760 1.57E-03 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24,8760 1.78E-02 1.28E-02 3% R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM 24,8760 2.55E-03 1.20E-03 5% R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area 1.3EUadeine 24 1.01E-04 1.01E-04 2% R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles SO2 10 min, 1,8760 1.08E-07 3.74E-08 10% R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles SO2 10 min, 1,8760 1.08E-07 3.74E-08 10% R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1,8760 1.08E-02 6.40E-03 5% PM10 24 6.21E-03 3.29E-03 3% Construction PM2.5 24,8760 1.58E-04 3% Construction 5% PM2									
P25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24,8760 2.55E-03 1.20E-03 5% Cystalline silica 24 1.01E-04 1.01E-04 2% Co 1,8 2.88E-01 9.99E-02 10% Benzene 24,8760 8.28E-05 2.80E-05 9% 1,3-Butadiene 24,8760 7.66E-06 2.66E-06 10% Accrolein 1,24 1.17E-05 4.00E-06 8% Acctaldehyde 30 min, 24 8.13E-05 2.82E-05 8% Formaldehyde 24 1.05E-04 5.22E-05 7% Benzo(a)pyrene 24,8760 1.08E-07 3.74E-08 10% Nox 1,24,8760 1.38E-04 3.94E-05 5% PM10 24 6.21E-03 3.29E-03 3% PM10 24 6.21E-03 3.29E-03 3% Construction - Tailpipe emissions and road dust from detoured vehicles CO 1,8 1.53E-01 5.32E-02				PM		1.78E-02	1.28E-02		
R25b_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 1.01E-04 1.01E-04 2% R25b_Q from detoured vehicles Volume - construction area Crystalline silica 24 1.01E-04 1.01E-04 2% R25b_Q from detoured vehicles Volume - construction area Crystalline silica 24 1.01E-04 1.01E-04 2% R26a_Q Co 1,8 2.88E-01 9.99E-02 10% 10% R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 1.08E-07 3.74E-08 10% Volume - construction from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 1.08E-02 6.40E-03 5% PM10 24 6.21E-03 3.29E-03 3% Crystalline silica 24 9.08E-05 1% CO 1,8 1.53E-01 5.52E-02 5% 1.3Eutadiene 24,8760 1.57E-03 8.28E-04 3% <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
R25b_Q emissions and road dust from detoured vehicles Volume - construction area CO 1,8 2.88E-01 9.99E-02 10% Benzene 24,8760 8.25E-05 2.86E-06 9%		Construction - Tailpipe							
from detoured vehicles area Benzene 24,8760 8.25E-05 2.86E-05 9% Acrolein 1,3-Butadiene 24,8760 7.66E-06 2.66E-06 10% Acrolein 1,24 1.17E-05 4.06E-06 8% Acrolein 1,24 1.17E-05 4.06E-06 8% Acrolein 1,24 1.50E-04 5.22E-05 8% Formaldehyde 24 1.50E-04 5.22E-05 7% Benzo(a)pyrene 24,8760 1.08E-07 3.74E-08 10% Mox 1,24,8760 1.38E-02 1.07E-02 5% PM 24,8760 1.36E-02 1.07E-02 2% PM 24,8760 1.36E-02 1.07E-02 2% PM10 24 6.21E-03 3.29E-03 3% PM2.5 24,8760 1.57E-03 8.28E-04 3% Construction - Tailpipe emissions and road dust from detoured vehicles CO 1,8 1.53E-01 5.32E-02 5% Benzene 24,8760 <td>R25b Q</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	R25b Q								
R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - constructi			area						
R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Acetaldehyde Formaldehyde 30 min, 24 8.13E-05 2.82E-05 8% Volume - Construction from detoured vehicles SO2 10 min, 1, 8760 1.08E-07 3.74E-08 10% Volume - construction from detoured vehicles SO2 10 min, 1, 8760 1.18E-04 3.94E-05 5% PM10 24, 8760 1.38E-02 6.40E-03 5% PM10 24 6.21E-03 3.92E-03 3% PM10 24 8.760 1.57E-03 8.28E-04 3% Construction - Tailpipe emissions and road dust from detoured vehicles Crystalline silica 24 9.08E-05 9.08E-05 1% Coc 1,8 1.53E-01 5.32E-02 5% Benzene 24,8760 4.57E-06 1.59E-05 5% Acctaldehyde 30 min, 24 9.48E-05 5% Benzene 24,8760 4.57E-06 1.59E-06 6%				1,3-Butadiene		7.66E-06		10%	
R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - constructi									
R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Volume - construction (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)									
R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area SO2 10 min, 1, 8760 1.13E-04 3.94E-05 5% VO.x 1, 24, 8760 1.34E-02 6.40E-03 5% PM 24, 8760 1.36E-02 1.07E-02 2% PM10 24 6.21E-03 3.29E-03 3% Crystalline silica 24 9.08E-05 9.08E-05 1% Crystalline silica 24, 8760 1.57E-03 8.28E-04 3% Crystalline silica 24, 8760 4.57E-05 1.59E-05 5% Benzene 24, 8760 4.57E-06 1.59E-06 5% Acrolein 1, 24 7.29E-06 1.59E-06 5% Accelatdehyde 30 min, 24 9.08E-05 5% 5%									
R26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area NOx 1, 24, 8760 1.84E-02 6.40E-03 5% PM 24, 8760 1.36E-02 1.07E-02 2% PM10 24 6.21E-03 3.29E-03 3% PM2.5 24, 8760 1.57E-03 8.28E-04 3% Crystalline silica 24 9.08E-05 1% CO 1, 8 1.53E-01 5.32E-02 5% Benzene 24, 8760 4.57E-05 1.59E-05 5% Acrolein 1, 24 7.29E-06 2.53E-06 6% Acrolein 1, 24 7.29E-06 1.59E-05 5% Formaldehyde 30 min, 24 4.96E-05 1.72E-05 5%									
PR26a_Q Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM10 24 6.21E-03 3.29E-03 3% PM2.5 24,8760 1.57E-03 8.28E-04 3% - CO 1,8 1.53E-01 5.32E-02 5% Benzene 24,8760 4.57E-05 1.59E-05 5% Acrolein 1,24 7.29E-06 1.59E-06 6% Accelaldehyde 30 min, 24 4.96E-05 1.72E-05 5% Formaldehyde 24 9.31E-05 3.28E-05 5%				NO _x				5%	
PM2.5 24,8760 1.57E-03 8.28E-04 3% Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area PM2.5 24,8760 1.57E-03 8.28E-04 3% Cystalline silica 24 9.08E-05 9.08E-05 1% 0 Construction 1,8 1.53E-01 5.32E-02 5% Benzene 24,8760 4.57E-06 1.59E-06 6% Acrolein 1,24 7.29E-06 1.59E-06 5% Acrolein 1,24 9.08E-05 5% 0 Formaldehyde 30 min, 24 4.90E-05 1.72E-05 5%									
Construction - Tailpipe emissions and road dust from detoured vehicles Volume - construction area Crystalline silica 24 9.08E-05 9.08E-05 1% R26a_Q model from detoured vehicles Volume - construction area Crystalline silica 24 9.08E-05 9.08E-05 1% 1.53E-01 5.32E-02 5% 5% 5% 5% Acrolein 1,24 7.29E-06 1.59E-05 5% Acrolein 1,24 7.29E-06 2.53E-06 5% Acrolein 1,24 9.08E-05 1.72E-05 5% Formaldehyde 20 9.31E-05 3.28E-05 5%									
R26a_Q emissions and road dust from detoured vehicles volume - construction area CO 1, 8 1.53E-01 5.32E-02 5% Benzene 24, 8760 4.57E-05 1.59E-05 5% Acrolein 1, 24 7.29E-06 2.58E-06 5% Acrolein 1, 24 7.29E-06 1.72E-05 5% Formaldehyde 30 min, 24 4.96E-05 1.72E-05 5%		Construction - Tailnine							
from detoured vehicles Benzene 24,8760 4.57E-05 1.59E-05 5% 1,3-Butadiene 24,8760 4.57E-06 1.59E-06 6% Acrolein 1,24 7.29E-06 2.58E-06 5% Accelaidehyde 30 min, 24 4.96E-05 1.72E-05 5% Formaldehyde 24 9.31E-05 3.28E-05 5%	R26a_Q								
Acrolein 1, 24 7.29E-06 2.53E-06 5% Acetaldehyde 30 min, 24 4.96E-05 1.72E-05 5% Formaldehyde 24 9.31E-05 3.23E-05 5%		from detoured vehicles	area			4.57E-05	1.59E-05	5%	
Acetaldehyde 30 min, 24 4.96E-05 1.72E-05 5% Formaldehyde 24 9.31E-05 3.23E-05 5%		nom detoured vehicles							
Formaldehyde 24 9.31E-05 3.23E-05 5%									
Benzo(a)pyrene 24, 8760 5.72E-08 1.99E-08 5%				Benzo(a)pyrene	24, 8760	5.72E-08	1.99E-08	5%	

SD2 10 min, 1, 8760 1.40E-04 4.86E-05 79 NO _x 1, 24, 8760 2.28E-02 7.90E-03 69 PM 24, 8760 1.68E-02 1.32E-02 39 PM10 24, 8760 1.98E-03 4.07E-03 4.07E-03 4.07E-03 PM2.5 24, 8760 1.32E-02 39 9 90.5 24, 8760 1.98E-03 1.02E-03 49 PM2.5 24, 8760 1.32E-04 1.12E-04 1.12E-04 1.12E-04 1.12E-04 1.12E-04 2.9 Construction - Tailpipe emissions and road dust volume - construction area Crystalline silica 24 1.12E-04 1.12E-04 2.9	all ons
NOx 1, 24, 8760 2.28E-02 7.90E-03 69 PM 24, 8760 1.68E-02 1.32E-02 39 PM10 24 7.67E-03 4.07E-03 49 PM2.5 24, 8760 1.93E-03 1.02E-03 49 PM2.5 24, 8760 1.93E-03 1.02E-03 49 Crystalline silica 24 1.12E-04 1.12E-04 29 CO 1, 8 1.89E-01 6.57E-02 69	
PM 24,8760 1.68E-02 1.32E-02 39 PM10 24 7.67E-03 4.07E-03 49 PM2.5 24,8760 1.93E-03 1.02E-03 49 PM2.5 24,8760 1.93E-03 1.02E-03 49 Crystalline silica 24 1.12E-04 1.12E-04 29 Crystalline silica 24 1.89E-01 6.57E-02 69	
PM10 24 7.67E-03 4.07E-03 49 PM2.5 24,8760 1.93E-03 1.02E-03 49 PM2.5 24,8760 1.93E-03 1.02E-03 49 Crystalline silica 24 1.12E-04 1.12E-04 29 Crystalline silica 24 1.8 1.89E-01 6.57E-02 69	
R26b_Q Construction - Tailpipe emissions and road dust Volume - construction 2762 PM2.5 24, 8760 1.93E-03 1.02E-03 49 CO 1, 8 1.12E-04 1.12E-04 29 29 20 29 20 29 20 29 20 29 20 29 20 29 20	
R26b_Q Construction - Tailpipe emissions and road dust volume - construction Crystalline silica 24 1.12E-04 1.12E-04 29 CO 1, 8 1.89E-01 6.57E-02 69	
R26b_Q emissions and road dust area CO 1, 8 1.89E-01 6.57E-02 69	
trom detoured venicies Benzene 24, 8760 5.64E-05 1.96E-05 69	
1,3-Butadiene 24, 8760 5.64E-06 1.96E-06 7% Acrolein 1, 24 9.00E-06 3.13E-06 6%	
Acrolein 1, 24 9.00E-06 3.13E-06 69 Acetaldehyde 30 min, 24 6.12E-05 2.13E-05 69	
Formaldehyde 24 1.15E-04 3.99E-05 69	
Benzo(a)pyrene 24, 8760 7.07E-08 2.45E-08 6%	
SO2 10 min, 1, 8760 1.47E-04 5.12E-05 79	
NOx 1, 24, 8760 2.75E-02 9.54E-03 7% PM 24, 8760 2.59E-02 2.29E-02 4%	
PM 24, 8760 2.59E-02 2.29E-02 49 PM10 24 8.70E-03 5.67E-03 49	
PM2.5 24,8760 2.57E-03 1.56E-03 5%	
Construction - Tailpipe Volume - construction	
R27_C emissions and road dust area CO 1, 8 2.16E-01 7.51E-02 79	
Bonzene 24,0700 0.00E 00 2.11E 00 17	
1,3-Butadiene 24, 8760 5.04E-06 1.75E-06 69 Acrolein 1, 24 7.11E-06 2.47E-06 59	
Acetaldehyde 30 min, 24 5.15E-05 1.79E-05 59	
Formaldehyde 24 9.30E-05 3.23E-05 59	
Benzo(a)pyrene 24, 8760 8.20E-08 2.85E-08 79	
SO2 10 min, 1, 8760 7.09E-05 2.46E-05 3% NO2 1.24.8760 1.23E-02 4.28E-03 3%	
NOx 1, 24, 8760 1.23E-02 4.28E-03 3% PM 24, 8760 1.06E-02 8.93E-03 2%	
PM10 24,0700 1.000-02 6.520-03 2.4 PM10 24 4.090-03 2.420-3 2.9	
PM2.5 24, 8760 1.13E-03 6.42E-04 29	
Construction Tailpipe Volume - construction Crystalline silica 24 8.01E-05 8.01E-05 19	
R28a_Q emissions and road dust area CO 1, 8 1.08E-01 3.76E-02 49	
from detoured vehicles Benzene 24, 8760 3.04E-05 1.05E-05 39 1,3-Butadiene 24, 8760 2.60E-06 9.03E-07 39	
Acrolein 1,24 3.74E-06 1.30E-06 3.3	
Acetaldehyde 30 min, 24 2.67E-05 9.28E-06 39	
Formaldehyde 24 4.87E-05 1.69E-05 2%	
Benzo(a)pyrene 24, 8760 4.02E-08 1.40E-08 49	
SO2 10 min, 1, 8760 7.65E-05 2.65E-05 49 NOx 1, 24, 8760 1.33E-02 4.62E-03 49	
PM 24,8760 1.14E-02 9.64E-03 29	
PM10 24 4.41E-03 2.61E-03 29	
PM2.5 24, 8760 1.22E-03 6.93E-04 3%	
R28b_Q Construction - Tailpipe emissions and road dust Volume - construction Crystalline silica 24 8.65E-05 8.65E-05 19 CO 1.8 1.17E-01 4.06E-02 49	
R28b_Q emissions and road dust from detoured vehicles road dust area CO 1,8 1.17E-01 4.06E-02 49 Benzene 24,8760 3.27E-05 1.14E-05 49	
1,3-Butadiene 24,8760 2.81E-06 9.74E-07 39	
Acrolein 1, 24 4.03E-06 1.40E-06 39	
Acetaldehyde 30 min, 24 2.88E-05 1.00E-05 39	
Formaldehyde 24 5.25E-05 1.82E-05 39 Benzo(a)pyrene 24, 8760 4.34E-08 1.51E-08 49	
Benzo(a)pyrene 24, 8760 4.34E-08 1.51E-08 49 SO2 10 min, 1, 8760 3.05E-05 1.06E-05 19	
NO _x 1,24,8760 4.85E-03 1.66E-03 19	
PM 24, 8760 6.93E-03 6.14E-03 19	
PM10 24 2.31E-03 1.51E-03 19	
PM2.5 24, 8760 5.72E-04 3.77E-04 1% Construction - Tailpipe Crystalline silica 24 5.69E-05 5.69E-05 1%	
R29a O emissions and road dust Volume - construction	
area area area area 24, 8760 1.17E-05 4.08E-06 19	
1,3-Butadiene 24, 8760 1.27E-06 4.40E-07 29	
Acrolein 1, 24 2.11E-06 7.33E-07 19	
Acetaldehyde 30 min, 24 1.41E-05 4.89E-06 19 Formaldehyde 24 2.67E-05 9.28E-06 19	
Benzo(a)pyrene 24, 8760 1.48E-08 5.14E-09 19	
SO ₂ 10 min, 1, 8760 1.23E-05 4.27E-06 19	
NO _x 1, 24, 8760 1.96E-03 6.79E-04 1%	
PM 24,8760 2.80E-03 2.48E-03 0.9	
PM10 24 9.32E-04 6.11E-04 09 PM2.5 24, 8760 2.31E-04 1.52E-04 09	
Construction - Tailoine	
R29b_Q emissions and road dust Volume - construction CO 1, 8 1.51E-02 5.26E-03 19	
from detoured vehicles Benzene 24, 8760 4.74E-06 1.65E-06 19	
1,3-Butadiene 24, 8760 5.11E-07 1.78E-07 19	
Acrolein 1, 24 8.52E-07 2.96E-07 19 Acetaldehyde 30 min, 24 5.68E-06 1.97E-06 19	
Formaldehyde 24 1.08E-05 3.75E-06 19	
Benzo(a)pyrene 24, 8760 5.98E-09 19	

Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case			Note
					1-hr Emission Rate (g/s)	24-hr Emission Rate (g/s)	% of Overall Emissions	
			SO ₂	10 min, 1, 8760	2.52E-05	8.76E-06	1%	
			NO _x	1, 24, 8760	4.03E-03	1.40E-03	1%	
			PM	24, 8760	2.67E-03	2.02E-03	0%	
			PM10 PM2.5	24 24, 8760	1.32E-03 3.27E-04	6.66E-04 1.66E-04	1% 1%	
	Construction - Tailpipe		Crystalline silica	24, 8760	1.67E-04	1.66E-04	0%	
R30_Q	emissions and road dust	Volume - construction area	CO	1, 8	3.17E-02	1.10E-02	1%	
	from detoured vehicles	area	Benzene	24, 8760	9.81E-06	3.41E-06	1%	
			1,3-Butadiene	24, 8760	1.04E-06	3.61E-07	1%	
			Acrolein	1, 24	1.72E-06	5.97E-07	1%	
			Acetaldehyde Formaldehyde	30 min, 24 24	1.15E-05 2.18E-05	4.00E-06 7.57E-06	1% 1%	
			Benzo(a)pyrene	24, 8760	1.24E-08	4.29E-09	1%	
			SO ₂	10 min, 1, 8760	1.47E-05	5.12E-06	1%	
			NO _x	1, 24, 8760	2.75E-03	9.54E-04	1%	
			PM	24, 8760	2.59E-03	2.29E-03	0%	
			PM10 PM2.5	24	8.70E-04	5.67E-04	0% 1%	
	Construction - Tailpipe		Crystalline silica	24, 8760 24	2.57E-04 2.12E-05	1.56E-04 2.12E-05	0%	
R31_C	emissions and road dust	Volume - construction	CO	1, 8	2.12E-03	7.51E-03	1%	
_	from detoured vehicles	area	Benzene	24, 8760	6.08E-06	2.11E-06	1%	
			1,3-Butadiene	24, 8760	5.04E-07	1.75E-07	1%	
			Acrolein	1, 24	7.11E-07	2.47E-07	0%	
			Acetaldehyde Formaldehyde	30 min, 24 24	5.15E-06 9.30E-06	1.79E-06 3.23E-06	1% 0%	
			Benzo(a)pyrene	24 24, 8760	8.20E-00	2.85E-00	1%	
			SO ₂	10 min, 1, 8760	9.15E-05	3.18E-05	4%	
			NO _x	1, 24, 8760	1.71E-02	5.92E-03	5%	
			PM	24, 8760	1.61E-02	1.42E-02	3%	
			PM10	24	5.40E-03	3.52E-03	3%	
	Construction Tailning		PM2.5 Crystalline silica	24, 8760 24	1.60E-03 1.31E-04	9.66E-04 1.31E-04	3% 2%	
R32 C	Construction - Tailpipe emissions and road dust	Volume - construction	CO	1, 8	1.31E-04 1.34E-01	4.66E-02	4%	
	from detoured vehicles	area	Benzene	24, 8760	3.78E-05	1.31E-05	4%	
			1,3-Butadiene	24, 8760	3.13E-06	1.09E-06	4%	
			Acrolein	1, 24	4.42E-06	1.53E-06	3%	
			Acetaldehyde	30 min, 24	3.20E-05	1.11E-05	3%	
			Formaldehyde Benzo(a)pyrene	24 24, 8760	5.77E-05 5.09E-08	2.00E-05 1.77E-08	3% 5%	
			SO ₂	10 min, 1, 8760	2.00E-05	6.96E-06	1%	
		Volume - construction area	NO _x	1, 24, 8760	3.28E-03	1.14E-03	1%	
			PM	24, 8760	5.95E-03	5.44E-03	1%	
			PM10	24	1.76E-03	1.26E-03	1%	
			PM2.5	24, 8760	4.46E-04	3.16E-04	1%	
R33a Q	Construction - Tailpipe emissions and road dust		Crystalline silica CO	24	5.15E-05 2.79E-02	5.15E-05 9.68E-03	1% 1%	
rioou_u	from detoured vehicles		Benzene	24, 8760	8.19E-02	2.85E-06	1%	
			1,3-Butadiene	24, 8760	7.98E-07	2.77E-07	1%	
			Acrolein	1, 24	1.25E-06	4.35E-07	1%	
			Acetaldehyde	30 min, 24	8.59E-06	2.98E-06	1%	
			Formaldehyde Benzo(a)pyrene	24	1.61E-05 1.02E-08	5.58E-06 3.55E-09	1% 1%	
			SO ₂	24, 8760 10 min, 1, 8760	2.46E-05	8.54E-09	1%	
			NO _x	1, 24, 8760	4.02E-03	1.40E-03	1%	
			PM	24, 8760	3.07E-03	2.45E-03	1%	
			PM10	24	1.35E-03	7.35E-04	1%	
	0		PM2.5	24, 8760	3.45E-04	1.86E-04	1%	
R33b_Q	Construction - Tailpipe emissions and road dust	Volume - construction	Crystalline silica CO	24	2.12E-05	2.12E-05	0%	
1.000_0	from detoured vehicles	area	Benzene	1, 8 24, 8760	3.42E-02 1.01E-05	1.19E-02 3.49E-06	1% 1%	
			1,3-Butadiene	24, 8760	9.79E-07	3.40E-00	1%	
			Acrolein	1, 24	1.54E-06	5.35E-07	1%	
			Acetaldehyde	30 min, 24	1.05E-05	3.66E-06	1%	
			Formaldehyde	24	1.97E-05	6.85E-06	1%	
			Benzo(a)pyrene SO ₂	24, 8760	1.26E-08 6.06E-05	4.36E-09 2.11E-05	1% 3%	
			NO _x	10 min, 1, 8760 1, 24, 8760	1.03E-05	2.11E-05 3.58E-03	3%	
			PM	24, 8760	2.01E-02	1.86E-02	3%	
			PM10	24	5.70E-03	4.19E-03	3%	
			PM2.5	24, 8760	1.48E-03	1.07E-03	3%	
Dat O	Construction - Tailpipe	Volume - construction	Crystalline silica	24	1.77E-04	1.77E-04	3%	
R34_Q	emissions and road dust from detoured vehicles	area	CO Benzene	1, 8 24, 8760	8.86E-02 2.53E-05	3.08E-02 8.78E-06	3% 3%	
			1,3-Butadiene	24, 8760	2.53E-05 2.32E-06	8.07E-00	3%	
			Acrolein	1, 24	3.52E-06	1.22E-06	2%	
			Acetaldehyde	30 min, 24	2.46E-05	8.53E-06	2%	
			Formaldehyde	24	4.54E-05	1.58E-05	2%	
			Benzo(a)pyrene	24, 8760	3.33E-08	1.16E-08	3%	

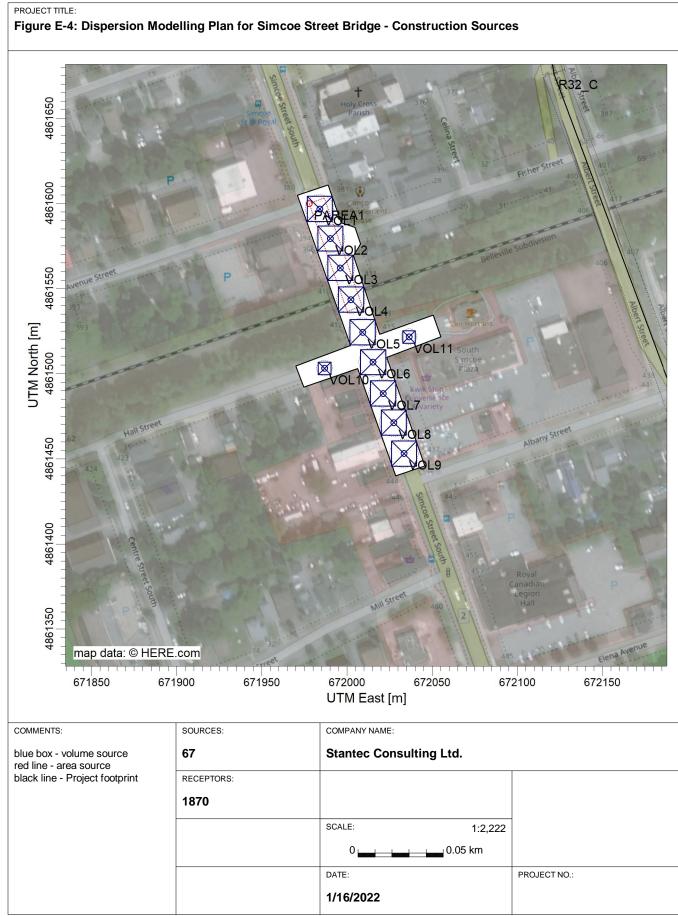
Source ID	Source Description	Type of Source and Location	Contaminant	Averaging Period (hours)	Worst-case	Scenario fo	r Modelling*	Note
					1-hr	24-hr	% of	
					Emission	Emission	Overall	
					Rate (g/s)	Rate (g/s)	Emissions	
			SO ₂	10 min, 1, 8760	7.54E-05	2.62E-05	4%	
			NO _x	1, 24, 8760	1.41E-02	4.88E-03	4%	
			PM	24, 8760	3.49E-02	3.34E-02	6%	
			PM10	24	8.58E-03	7.03E-03	4%	
			PM2.5	24, 8760	2.35E-03	1.83E-03	5%	
	Construction - Tailpipe		Crystalline silica	24	3.24E-04	3.24E-04	5%	
R35_C	emissions and road dust	Volume - construction area	со	1, 8	1.11E-01	3.84E-02	4%	
	from detoured vehicles	alea	Benzene	24, 8760	3.11E-05	1.08E-05	3%	
			1,3-Butadiene	24, 8760	2.58E-06	8.96E-07	3%	
			Acrolein	1, 24	3.64E-06	1.26E-06	2%	
			Acetaldehyde	30 min, 24	2.64E-05	9.15E-06	3%	
			Formaldehyde	24	4.76E-05	1.65E-05	2%	
			Benzo(a)pyrene	24, 8760	4.20E-08	1.46E-08	4%	
			SO ₂	10 min, 1, 8760	1.64E-05	5.71E-06	1%	
			NO _x	1, 24, 8760	2.60E-03	9.03E-04	1%	
		Volume - construction area	PM	24, 8760	3.55E-03	3.11E-03	1%	
			PM10	24	1.22E-03	7.81E-04	1%	
			PM2.5	24, 8760	2.99E-04	1.94E-04	1%	
	Construction - Tailpipe		Crystalline silica	24	2.87E-05	2.87E-05	0%	
R36 Q	emissions and road dust		CO	1, 8	1.98E-02	6.87E-03	1%	
	from detoured vehicles		Benzene	24, 8760	6.26E-06	2.18E-06	1%	
			1,3-Butadiene	24, 8760	6.88E-07	2.39E-07	1%	
			Acrolein	1, 24	1.16E-06	4.02E-07	1%	
			Acetaldehyde	30 min, 24	7.69E-06	2.67E-06	1%	
			Formaldehyde	24	1.46E-05	5.08E-06	1%	
			Benzo(a)pyrene	24, 8760	7.92E-09	2.75E-09	1%	
			SO ₂	10 min, 1, 8760	1.63E-05	5.66E-06	1%	
			NO _x	1, 24, 8760	3.04E-03	1.06E-03	1%	
			PM	24, 8760	7.55E-03	7.21E-03	1%	
			PM10	24	1.86E-03	1.52E-03	1%	
			PM2.5	24, 8760	5.08E-04	3.95E-04	1%	
	R37_C Construction - Tailpipe emissions and road dust from detoured vehicles	Volume construction	Crystalline silica	24	7.01E-05	7.01E-05	1%	
R37_C		Volume - construction area	со	1, 8	2.39E-02	8.31E-03	1%	
			Benzene	24, 8760	6.73E-06	2.34E-06	1%	
			1,3-Butadiene	24, 8760	5.57E-07	1.94E-07	1%	
			Acrolein	1, 24	7.86E-07	2.73E-07	1%	
			Acetaldehyde	30 min, 24	5.70E-06	1.98E-06	1%	
			Formaldehyde	24	1.03E-05	3.57E-06	1%	
			Benzo(a)pyrene	24, 8760	9.07E-09	3.15E-09	1%	

Appendix E: Summary of Air Dispersion Modelling Inputs Location: Simcoe Street - Bridge Replacement

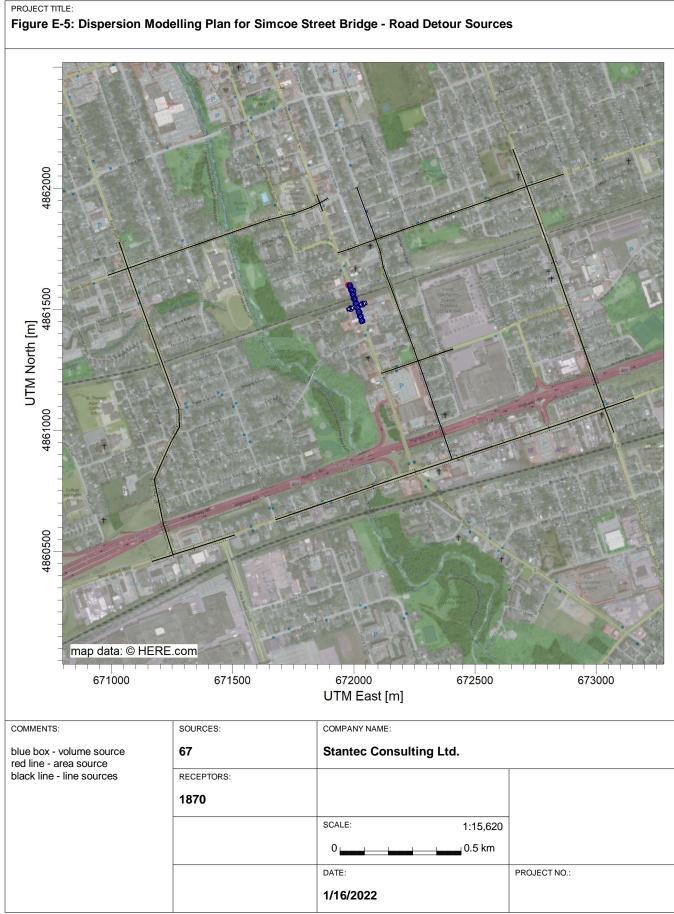
Dispersion Modelling Parameters for Area Polygon Source

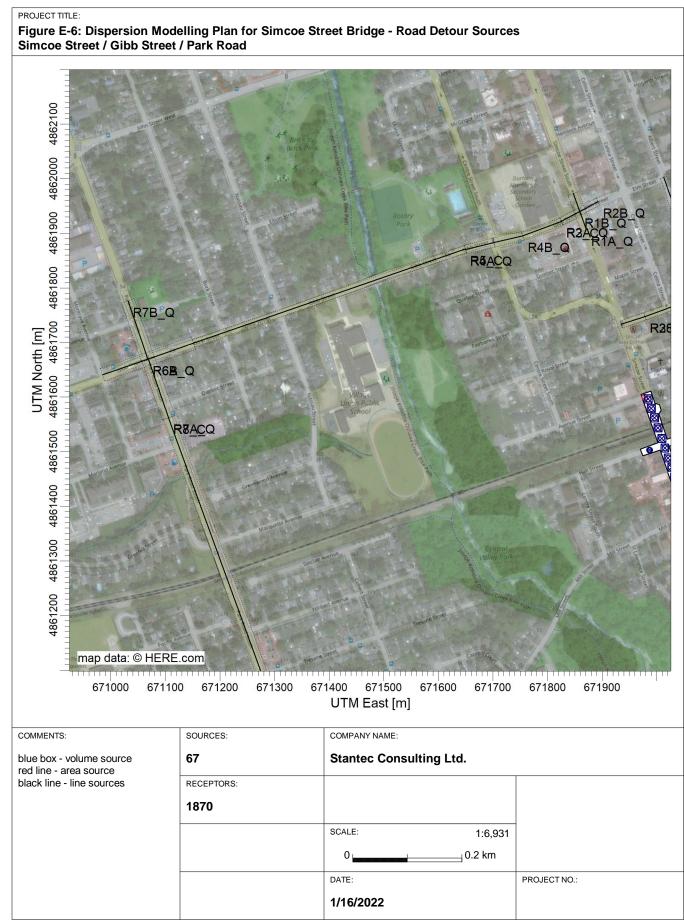
Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	PAREA1		
No. of vertices	4		
Area	634	m2	assumed active construction area for worst- case scenario
Release Height	1.0	m	assumed release height of dust
Vehicle Height	3.5	m	assumed average construction vehicle height
Initial Vertical Dimension	1.63	m	(Plume Height) / 2.15

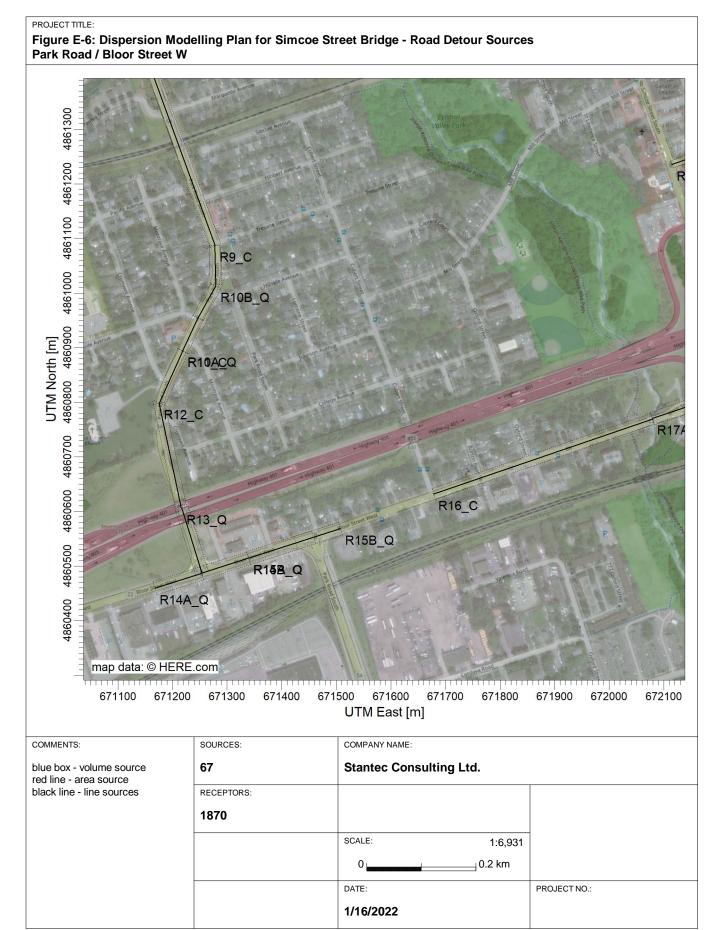
Dispersion Modelling Parameters for Volume Sources

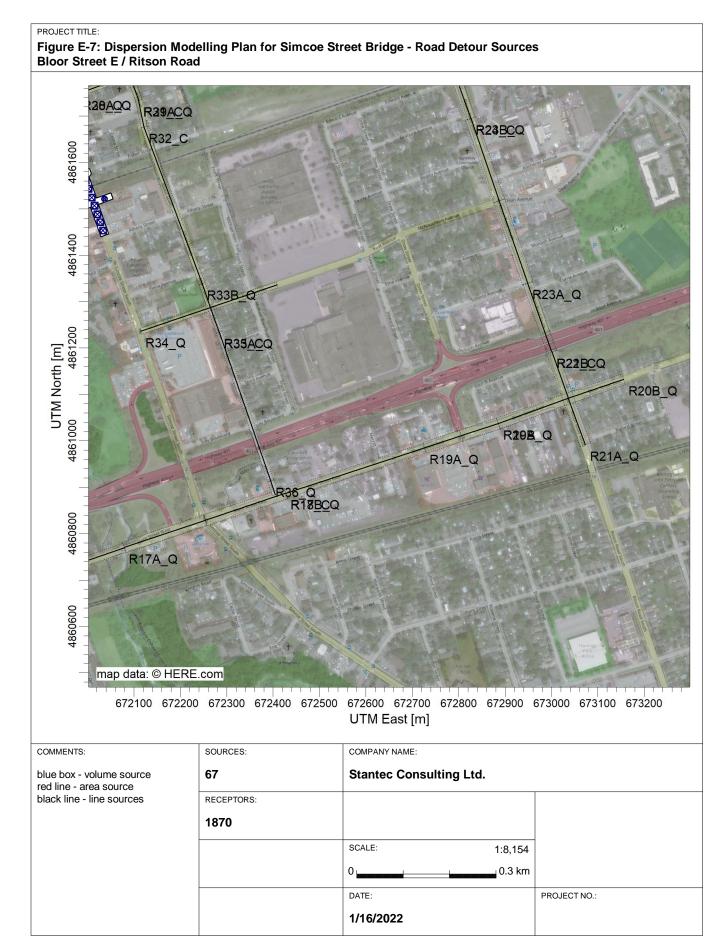

Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	VOL1 - VOL9		
Length of x side	14.8	m	truck travel on 4 lanes with each lane assumed
			to be 3.7 m wide
Vehicle Height	3.5	m	assumed average construction vehicle height
Release Height	3.0	m	assumed height of exhaust for construction
			vehicles
Initial Lateral Dimension	3.44	m	(Length of side) / 4.3
		m	for elevated release height: (Plume Height) /
Initial Vertical Dimension	0.81	111	4.3
Model Source ID	VOL10 - VOL11		
Length of x side	7.4	m	truck travel on 2 lanes with each lane assumed
		111	to be 3.7 m wide
Vehicle Height	3.5	m	assumed average construction vehicle height
Release Height	3.0	m	assumed height of exhaust for construction
Release height	5.0	111	vehicles
Initial Lateral Dimension	1.72	m	(Length of side) / 4.3
		m	for elevated release height: (Plume Height) /
Initial Vertical Dimension	0.81	111	4.3

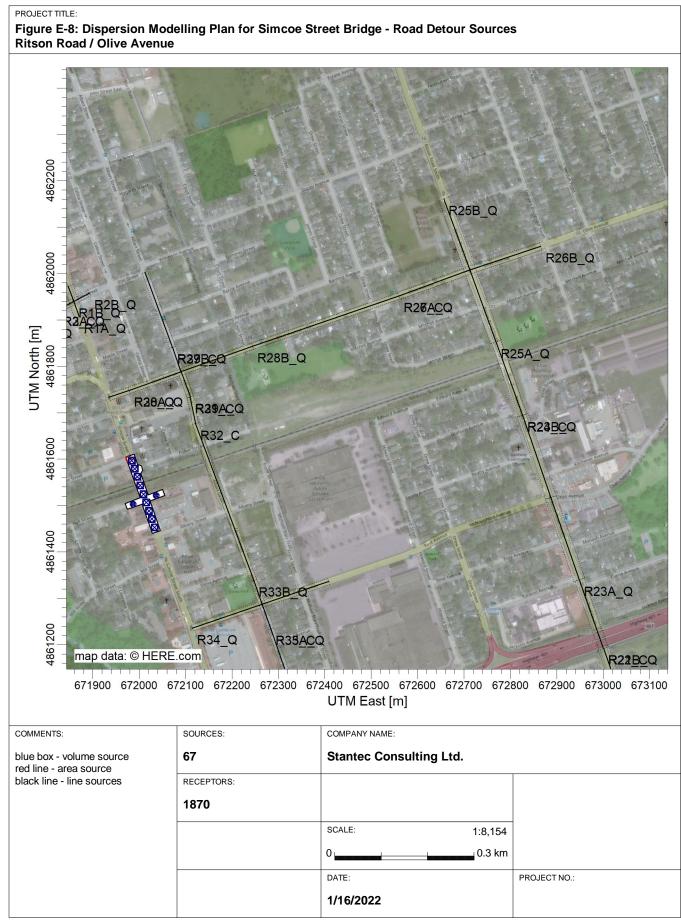
Dispersion Modelling Parameters for Line Source


Parameter	Values	Unit	Notes
Construction Area			
Model Source ID	R1 - R38		
Car Height	1.5	m	assumed height of a passenger car
Truck Height	3	m	assumed based on US EPA haul road memorandum 2012
Release Height	0.24	m	assumed tailpipe release height
Width	variable		assumed width of modelled roadway + 6 m
Initial Vertical Dimension	0.36		(Plume Height) / 2.15


Background Ozone concentrations used for Ozone Limiting Method in AERMOD model


Hour	Background ozone concentrations (ppb)				
	Winter	Spring	Summer	Fall	
1	34	38	33	26	
2	34	37	32	26	
3	34	36	30	26	
4	33	34	26	26	
5	32	34	24	25	
6	30	31	21	24	
7	29	31	21	22	
8	29	33	25	22	
9	31	36	30	22	
10	33	40	38	24	
11	34	44	45	27	
12	36	47	49	29	
13	37	50	53	30	
14	39	53	56	31	
15	39	55	55	32	
16	39	55	56	32	
17	39	54	55	31	
18	37	53	55	28	
19	35	51	51	27	
20	34	49	46	27	
21	33	44	40	27	
22	34	42	37	26	
23	33	40	35	27	
24	34	39	33	26	




D:\2021\Mx_BMV\Simcoe_c_multi_1h\Simcoe_c_multi_1h.isc

Appendix E1.2: Summary of Air Dispersion Modelling Inputs Location: Project Operations Oshawa, Courtice and Bowmanville Segments

Dispersion Modelling Parameters for Area Sources

Model Source ID	Release Height	Area
Model Source ID	m	m ²
B1_PPUDO	0.15	3,964
B2_LOT	0.15	34,213
B2_PPUDO1	0.15	2,768
B2_PPUDO2	0.15	2,039
B3_LOT	0.15	21,417
EX_LOT1	0.15	4,824
B3_PPUDO	0.15	4,676
B4_LOT	0.15	31,993
B4_PPUDO	0.15	1,917
EX_LOT2	0.15	2,091

Note: Release height is assumed for a passenger car.

Dispersion Modelling Parameters for Volume Sources

Parameter	Values	Unit	Notes
Model Source ID	GO_IDLEB1A, GO_IDLEB1E	3, GO_IDLEB2A, GO_IDLE	B2B, GO_IDLEB3A, GO_IDLEB3B, GO_IDLEB4A and GO_IDLEB4B
Vertical dimension	4.72	m	locomotive height
Release Height	2.36	m	calculated height (= 0.5* vertical dimension)
Length of side	8.20	m	squareroot of the area of a single MP40 locomotive structure
Initial lateral dimension	1.91	m	calculated (= length of side / 4.3)
Initial vertical dimension	1.10	m	calculated (= vertical dimension / 4.3)
Model Source ID	EX_BUS_IDL1, EX_BUS_IDI	LE2, FB_BUS_IDLE	
Vertical dimension	3.5	m	assumed bus height
Release Height	1.75	m	calculated height (= 0.5* vertical dimension)
Length of side	15	m	assumed bus idling area
Initial lateral dimension	3.49	m	calculated (= length of side / 4.3)
Initial vertical dimension	0.81	m	calculated (= vertical dimension / 4.3)

Dispersion Modelling Parameters for Line Volume Sources

Parameter	Values	Unit	Notes
Model Source ID	CP0, CP1A, CP2B, GO2B, C	O3A, GO4B	
Configuration	Separated		
Vehicle Height	4.72	m	assumed locomotive height
Plume height	8.02	m	calculated height of plume (= 1.7 * vehicle height)
Release Height	4.01	m	calculated height of exhaust (= 0.5* Plume height)
# of Rails	Two lanes		Google Earth Imagery and Study Area map
Rail Width	7.50	m	measured in Google Earth imagery
Plume width	13.50	m	calculated width of plume (= road width + 6m)
Model Source ID	GM1, GM2, CP1B, GO1, GC	2A, CP2A, CP2C, GO3B,	CP3, GO4A, CP4
Configuration	Separated		
Vehicle Height	4.72	m	assumed locomotive height
Plume height	8.02	m	calculated height of plume (= 1.7 * vehicle height)
Release Height	4.01	m	calculated height of exhaust (= 0.5* Plume height)
# of Rails	Single lane		Google Earth Imagery and Study Area map
Rail Width	3.24	m	width of MP40 locomotive
Plume width	9.24	m	calculated width of plume (= road width + 6m)
Model Source ID	EX_BUS1, EX_BUS2, FB_B	US_B4	
Configuration	Separated		
Vehicle Height	3.5	m	assumed bus height
Plume height	5.95	m	calculated height of plume (= 1.7 * vehicle height)
Release Height	2.98	m	calculated height of exhaust (= 0.5* Plume height)
Lane Type	Single lane		assumed
Road Width	3.50	m	assumed width of travelled way
Plume width	9.50	m	calculated width of plume (= road width + 6m)

Background Ozone concentrations used for Ozone Limiting Method in AERMOD model

Hour		Background ozone concentrations (ppb)									
Hour	Winter	Spring	Summer	Fall							
1	34	38	33	26							
2	34	37	32	26							
3	34	36	30	26							
4	33	34	26	26							
5	32	34	24	25							
6	30	31	21	24							
7	29	31	21	22							
8	29	33	25	22							
9	31	36	30	22							
10	33	40	38	24							
11	34	44	45	27							
12	36	47	49	29							
13	37	50	53	30							
14	39	53	56	31							
15	39	55	55	32							
16	39	55	56	32							
17	39	54	55	31							
18	37	53	55	28							
19	35	51	51	27							
20	34	49	46	27							
21	33	44	40	27							
22	34	42	37	26							
23	33	40	35	27							
24	34	39	33	26							

Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst	-case Scenario for Mod	elling ¹	
				(nours)	Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emissions	
Baseline					(37			
			SO ₂	10-min, 1, 8760	5.24E-04	9.35E-05	4%	
			NO _x	1, 24, 8760	3.20E-01	5.72E-02	4%	
			PM	24, 8760	4.35E-03	7.77E-04	4%	
			PM10	24	4.18E-03	7.46E-04	4%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	3.92E-03	6.99E-04	4%	
CP0	trains west of study area	line volume	CO	1, 8	5.36E-03	9.57E-04 7.06E-05	3%	
	trains west of study area		Benzene 1,3-Butadiene	24, 8760 24, 8760	3.96E-04 1.36E-05	2.43E-06	4% 4%	
			Acrolein	1, 24	1.37E-04	2.43E-00 2.44E-05	4%	
			Acetaldehyde	0.5, 24	7.60E-04	1.36E-04	4%	
			Formaldehyde	24	2.13E-03	3.81E-04	4%	
			Benzo(a)pyrene	24, 8760	2.90E-08	5.18E-09	4%	
			SO ₂	10-min, 1, 8760	6.55E-04	1.17E-04	5%	
			NO _x	1, 24, 8760	4.00E-01	7.15E-02	5%	
			PM	24, 8760	5.44E-03	9.71E-04	5%	
			PM10	24	5.22E-03	9.33E-04	5%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	4.90E-03	8.74E-04	5%	
CP1A	Trains along main	line volume	CO	1, 8	6.70E-03	1.20E-03	4%	
	railway corridor in		Benzene	24, 8760	4.94E-04	8.83E-05	5%	
	Oshawa		1,3-Butadiene	24, 8760	1.70E-05	3.04E-06	5%	
			Acrolein	1, 24	1.71E-04	3.05E-05	5%	
			Acetaldehyde	0.5, 24	9.50E-04	1.70E-04	5%	
			Formaldehyde	24	2.67E-03	4.77E-04	5%	
	↓		Benzo(a)pyrene	24, 8760	3.63E-08	6.48E-09	5%	
			SO ₂	10-min, 1, 8760	3.00E-03	5.35E-04	24%	
			NO _x	1, 24, 8760	1.83E+00	3.27E-01	24%	
			PM	24, 8760	2.49E-02	4.45E-03	24%	
			PM10	24	2.39E-02	4.27E-03	24%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	2.24E-02	4.00E-03	24%	
CP1B	Trains along main railway corridor in	line volume	CO	1, 8	3.07E-02	5.48E-03	17%	
	Oshawa		Benzene	24, 8760	2.26E-03	4.04E-04	24%	
			1,3-Butadiene Acrolein	24, 8760	7.78E-05 7.82E-04	1.39E-05 1.40E-04	23% 24%	
			Acetaldehyde	1, 24 0.5, 24	4.35E-03	7.77E-04	24%	
			Formaldehyde	24	1.22E-02	2.18E-03	24%	
			Benzo(a)pyrene	24, 8760	1.66E-07	2.97E-08	21%	
			SO ₂	10-min, 1, 8760	1.95E-04	2.44E-05	2%	
			NO _x		1.20E-01	1.49E-02	2%	
				1, 24, 8760				
			PM	24, 8760	1.62E-03	2.03E-04	2%	
			PM10	24	1.56E-03	1.95E-04	2% 2%	
	EX/FNB - GM Trains on		PM2.5 CO	24, 8760	1.46E-03 2.00E-03	1.83E-04 2.50E-04	1%	
GM1	Existing Railway Tracks		Benzene	24, 8760	1.48E-04	1.84E-05	2%	
			1,3-Butadiene	24, 8760	5.07E-06	6.34E-07	1%	
			Acrolein	1, 24	5.10E-05	6.38E-06	2%	
			Acetaldehyde	0.5, 24	2.84E-04	3.55E-05	2%	
			Formaldehyde	24	7.97E-04	9.96E-05	2%	
			Benzo(a)pyrene	24, 8760	1.08E-08	1.35E-09	1%	
			SO ₂	10-min, 1, 8760	1.83E-03	3.26E-04	15%	
			NO _x	1, 24, 8760	1.12E+00	1.99E-01	15%	
			PM	24, 8760	1.52E-02	2.71E-03	14%	
			PM10	24	1.46E-02	2.60E-03	15%	
			PM2.5	24, 8760	1.37E-02	2.44E-03	15%	
CP2A	EX/FNB/FB - GM/CP trains along main railway	line volume	СО	1, 8	1.87E-02	3.34E-03	11%	
	corridor in Courtice		Benzene	24, 8760	1.38E-03	2.46E-04	15%	
			1,3-Butadiene	24, 8760	4.74E-05	8.46E-06	14%	
			Acrolein	1, 24	4.77E-04	8.51E-05	15%	
			Acetaldehyde	0.5, 24	2.65E-03	4.73E-04	15%	
			Formaldehyde	24	7.44E-03	1.33E-03	15%	
	++		Benzo(a)pyrene	24, 8760	1.01E-07	1.81E-08	13%	
			SO ₂	10-min, 1, 8760	1.73E-03	3.14E-04	14%	
			NO _x	1, 24, 8760	1.06E+00	1.92E-01	14%	
			PM	24, 8760	1.44E-02	2.61E-03	14%	
			PM10	24	1.38E-02	2.50E-03	14%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	1.29E-02	2.35E-03	14%	
CP2B	trains along main railway	line volume	CO	1, 8	1.77E-02	3.21E-03	10%	
	corridor in Courtice		Benzene	24, 8760	1.30E-03	2.37E-04	14%	
			1,3-Butadiene	24, 8760	4.48E-05	8.15E-06	13%	
			Acrolein Acetaldehyde	1, 24 0.5, 24	4.51E-04 2.51E-03	8.19E-05 4.55E-04	14% 14%	
			Formaldehyde	0.5, 24	2.51E-03 7.04E-03	4.55E-04 1.28E-03	14%	
			Benzo(a)pyrene	24, 8760	9.57E-08	1.74E-08	14%	
	+ +		SO ₂	10-min, 1, 8760	1.80E-03	3.23E-04	12 %	
			NO _x		1.10E+00	1.98E-01	14%	
			PM	1, 24, 8760	1.50E-02	2.68E-03	14%	
				24, 8760	1.50E-02 1.44E-02			
			PM10 PM2.5	24	-	2.58E-03	14%	
	EX/FNB/FB - GM/CP		CO	24, 8760	1.35E-02 1.84E-02	2.42E-03 3.30E-03	14% 10%	
CP2C	trains along main railway	line volume	Benzene	1, 8	1.84E-02 1.36E-03	3.30E-03 2.44E-04	10%	
	corridor in Courtice		1,3-Butadiene	24, 8760	4.68E-05	8.39E-06	14%	
			Acrolein	1, 24	4.08E-03 4.70E-04	8.43E-05	14%	
			Acetaldehyde	0.5, 24	2.62E-03	4.69E-04	14%	
			Formaldehyde	24	7.34E-03	1.32E-03	14%	

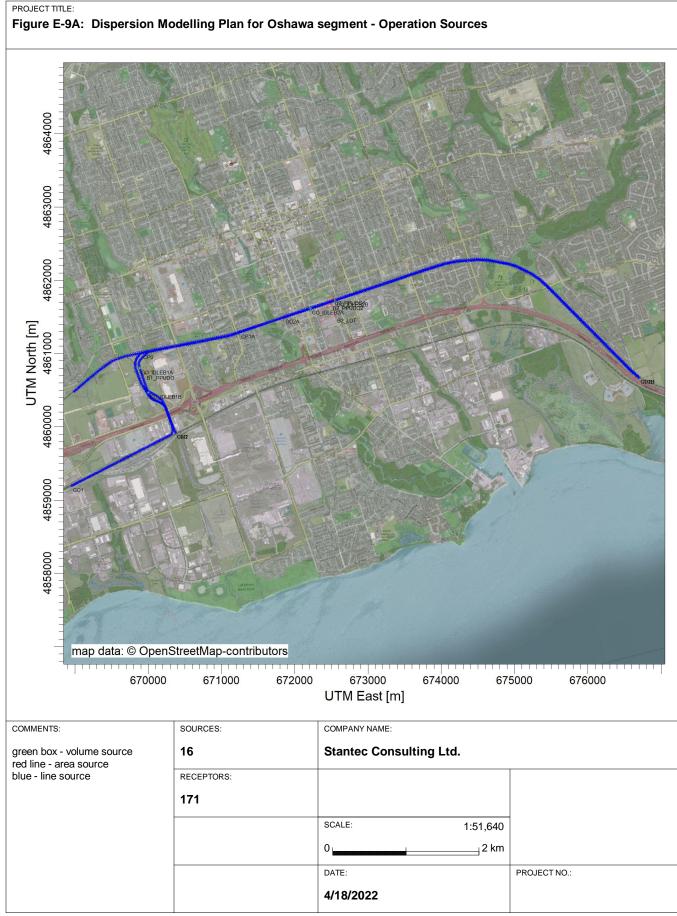
Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst-case Scenario for Modelling ¹			
				(nours)	Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emissions	
			SO ₂	10-min, 1, 8760	1.25E-05	3.52E-06	0%	
			NO _x	1, 24, 8760	1.34E-03	2.59E-04	0%	
		PM	24, 8760	6.88E-04	2.55E-03	1%		
			PM10	24	3.57E-04	5.60E-04	0%	
			PM2.5	24, 8760	1.57E-04	1.43E-04	0%	
EX_LOT1	EX/FNB - vehicles in	area	CO	1, 8	2.73E-02	6.97E-03	16%	
	existing parking lot		Benzene	24, 8760	6.65E-05	9.47E-06	1%	
			1,3-Butadiene	24, 8760	8.28E-06	1.12E-06	2%	
		Acrolein	1, 24	1.81E-06	2.54E-07	0%		
			Acetaldehyde Formaldehyde	0.5, 24	2.73E-05 1.83E-05	3.83E-06 2.77E-06	0%	
			Benzo(a)pyrene	24 24, 8760	4.53E-05	6.52E-09	6%	
			SO ₂	10-min, 1, 8760	1.85E-06	4.63E-07	0%	
			NO _x		1.44E-03	3.61E-04	0%	
			PM	1, 24, 8760 24, 8760	3.32E-04	1.56E-03	0%	
			PM10	24	1.24E-04	3.13E-04	0%	
			PM2.5	24, 8760	4.80E-05	8.25E-05	0%	
EX_BUS1	EX/FNB - existing station bus loop (travelling	line volume	CO	1, 8	6.48E-04	1.62E-04	0%	
LX_D031	busicop (travening buses)		Benzene	24, 8760	7.04E-07	1.76E-07	0%	
			1,3-Butadiene	24, 8760	2.51E-07	6.27E-08	0%	
			Acrolein	1, 24	6.13E-07	1.53E-07	0%	
			Acetaldehyde	0.5, 24	3.46E-06	8.66E-07	0%	
			Formaldehyde	24	7.44E-06	1.86E-06	0%	
			Benzo(a)pyrene	24, 8760	1.55E-09	3.87E-10	0%	
			SO ₂	10-min, 1, 8760	1.91E-06	4.77E-07	0%	
			NO _x	1, 24, 8760	2.08E-03	5.20E-04	0%	
			PM	24, 8760	3.60E-05	9.01E-06	0%	
			PM10	24	3.60E-05	9.01E-06	0%	
	EX/FNB - existing GO		PM2.5	24, 8760	3.31E-05	8.29E-06	0%	
EX_BUS_IDL1	buses idling at loop	volume	CO	1, 8	8.05E-04	2.01E-04	0%	
	a a coop		Benzene 1,3-Butadiene	24, 8760 24, 8760	1.27E-06 4.53E-07	3.19E-07 1.13E-07	0%	
			Acrolein	1, 24	1.10E-06	2.76E-07	0%	
			Acetaldehyde	0.5, 24	6.22E-06	1.55E-06	0%	
			Formaldehyde	24	1.34E-05	3.36E-06	0%	
			Benzo(a)pyrene	24, 8760	1.96E-09	4.90E-10	0%	
			SO ₂	10-min, 1, 8760	2.19E-03	3.91E-04	18%	
			NO _x	1, 24, 8760	1.34E+00	2.39E-01	18%	
			PM	24, 8760	1.82E-02	3.25E-03	17%	
			PM10	24	1.75E-02	3.12E-03	18%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	1.64E-02	2.93E-03	18%	
CP3	trains along main railway	line volume	CO	1, 8	2.24E-02	4.00E-03	13%	
	corridor in Bowmanville		Benzene	24, 8760	1.65E-03	2.95E-04	17%	
			1,3-Butadiene	24, 8760	5.69E-05	1.02E-05	17%	
			Acrolein	1, 24	5.72E-04	1.02E-04	18%	
			Acetaldehyde	0.5, 24	3.18E-03	5.68E-04	18%	
			Formaldehyde	24	8.93E-03 1.21E-07	1.59E-03 2.17E-08	18% 16%	
			Benzo(a)pyrene SO ₂	24, 8760	-		4%	
				10-min, 1, 8760	4.84E-04	8.64E-05		
			NO _x	1, 24, 8760	2.96E-01	5.29E-02	4%	
			PM DM10	24, 8760	4.02E-03	7.18E-04	4%	
			PM10 PM2.5	24 24, 8760	3.86E-03 3.62E-03	6.89E-04 6.46E-04	4% 4%	
051	EX/FNB/FB - GM/CP	,	CO	1, 8	4.95E-03	8.84E-04	3%	
CP4	trains east of study area	line volume	Benzene	24, 8760	3.65E-04	6.53E-05	4%	
			1,3-Butadiene	24, 8760	1.26E-05	2.24E-06	4%	
			Acrolein	1, 24	1.26E-04	2.26E-05	4%	
			Acetaldehyde	0.5, 24	7.03E-04	1.25E-04	4%	
			Formaldehyde	24	1.97E-03	3.52E-04	4%	
			Benzo(a)pyrene	24, 8760	2.68E-08	4.79E-09	3%	
			SO ₂	10-min, 1, 8760	1.09E-06	3.19E-07	0%	
			NO _x	1, 24, 8760	8.54E-04	2.49E-04	0%	
			РМ	24, 8760	3.01E-04	1.55E-03	0%	
			PM10	24	9.31E-05	3.07E-04	0%	
	EX/FNB - existing station		PM2.5	24, 8760	3.34E-05	7.97E-05	0%	
EX_BUS2	bus loop (travelling	line volume	со	1, 8	3.83E-04	1.12E-04	0%	
	buses)		Benzene	24, 8760	4.16E-07	1.21E-07	0%	
			1,3-Butadiene	24, 8760	1.48E-07	4.32E-08	0%	
			Acrolein	1, 24	3.62E-07	1.06E-07	0%	
			Acetaldehyde Formaldehyde	0.5, 24	2.05E-06 4.40E-06	5.97E-07 1.28E-06	0%	
			Benzo(a)pyrene	24 24, 8760	9.14E-10	2.66E-10	0%	
			SO ₂		7.63E-06	2.23E-06	0%	
			NO _x	10-min, 1, 8760	8.32E-03		0%	
				1, 24, 8760		2.43E-03		
			PM PM10	24, 8760 24	1.44E-04 1.44E-04	4.20E-05 4.20E-05	0%	
			PM10 PM2.5	24 24, 8760	1.44E-04 1.33E-04	4.20E-05 3.87E-05	0%	
	EX/FNB - existing GO		CO	1, 8	3.22E-03	9.39E-04	2%	
EX_BUS_IDL2	buses idling at loop	volume	Benzene	24, 8760	5.10E-06	1.49E-06	0%	
			1,3-Butadiene	24, 8760	1.81E-06	5.28E-07	1%	
			Acrolein	1, 24	4.42E-06	1.29E-06	0%	
			Acetaldehyde	0.5, 24	2.49E-05	7.25E-06	0%	
			Formaldehyde	24	5.38E-05	1.57E-05	0%	
			Benzo(a)pyrene	24, 8760	7.85E-09	2.29E-09	1%	

Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst	-case Scenario for Mod	elling ¹
				(nours)	Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emission
			SO ₂	10-min, 1, 8760	7.00E-06	1.28E-06	0%
			NO _x	1, 24, 8760	9.45E-04	1.37E-04	0%
			PM	24, 8760	2.20E-04	5.32E-04	0%
			PM10	24, 8760	1.52E-04	1.25E-04	0%
			PM10 PM2.5	24 24, 8760	1.02E-04	3.81E-05	0%
	EX/FNB - existing GO		CO	1, 8	1.66E-02	2.80E-03	9%
EX_LOT2	vehicle parking lot	area	Benzene	24, 8760	5.27E-05	6.82E-06	1%
	· · · · · · · · · · · · · · · · · · ·			,			
			1,3-Butadiene	24, 8760	6.65E-06	8.50E-07	2%
			Acrolein	1, 24	1.45E-06	1.86E-07	0%
			Acetaldehyde	0.5, 24	2.17E-05	2.80E-06	0%
			Formaldehyde	24	1.43E-05	1.88E-06	0%
			Benzo(a)pyrene	24, 8760	3.58E-08	4.65E-09	5%
uture No Build	1						
			SO ₂	10-min, 1, 8760	5.24E-04	9.35E-05	4%
			NO _x	1, 24, 8760	3.20E-01	5.72E-02	4%
			PM	24, 8760	4.35E-03	7.77E-04	4%
			PM10	24	4.18E-03	7.46E-04	4%
			PM2.5	24, 8760	3.92E-03	6.99E-04	4%
CP0	EX/FNB/FB - GM/CP	line volume	СО	1, 8	5.36E-03	9.57E-04	3%
CFU	trains west of study area		Benzene	24, 8760	3.96E-04	7.06E-05	4%
			1,3-Butadiene	24, 8760	1.36E-05	2.43E-06	4%
			Acrolein	1, 24	1.37E-04	2.44E-05	4%
			Acetaldehyde	0.5, 24	7.60E-04	1.36E-04	4%
			Formaldehyde	24	2.13E-03	3.81E-04	4%
				24 24, 8760	2.13E-03 2.90E-08	5.18E-09	4%
	<u> </u>		Benzo(a)pyrene				
			SO ₂	10-min, 1, 8760	6.55E-04	1.17E-04	5%
			NO _x	1, 24, 8760	4.00E-01	7.15E-02	5%
			PM	24, 8760	5.44E-03	9.71E-04	5%
			PM10	24	5.22E-03	9.33E-04	5%
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	4.90E-03	8.74E-04	5%
CP1A	Trains along main	line volume	СО	1, 8	6.70E-03	1.20E-03	4%
	railway corridor in		Benzene	24, 8760	4.94E-04	8.83E-05	5%
	Oshawa		1,3-Butadiene	24, 8760	1.70E-05	3.04E-06	5%
			Acrolein	1, 24	1.71E-04	3.05E-05	5%
		Acetaldehyde	0.5, 24	9.50E-04	1.70E-04	5%	
			Formaldehyde	24	2.67E-03	4.77E-04	5%
			Benzo(a)pyrene	24, 8760	3.63E-08	6.48E-09	5%
			SO ₂	10-min, 1, 8760	3.00E-03	5.35E-04	24%
					1		
			NO _x	1, 24, 8760	1.83E+00	3.27E-01	24%
		PM	24, 8760	2.49E-02	4.45E-03	24%	
		PM10	24	2.39E-02	4.27E-03	24%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	2.24E-02	4.00E-03	24%
CP1B	Trains along main	line volume	СО	1, 8	3.07E-02	5.48E-03	17%
	railway corridor in		Benzene	24, 8760	2.26E-03	4.04E-04	24%
	Oshawa		1,3-Butadiene	24, 8760	7.78E-05	1.39E-05	23%
			Acrolein	1, 24	7.82E-04	1.40E-04	24%
			Acetaldehyde	0.5, 24	4.35E-03	7.77E-04	24%
			Formaldehyde	24	1.22E-02	2.18E-03	24%
			Benzo(a)pyrene	24, 8760	1.66E-07	2.97E-08	21%
			SO ₂	10-min, 1, 8760	1.95E-04	2.44E-05	2%
			NO _x	1, 24, 8760	1.20E-01	1.49E-02	2%
			PM	24, 8760	1.62E-03	2.03E-04	2%
			PM10	24	1.56E-03	1.95E-04	2%
	EX/FNB - GM Trains on		PM2.5	24, 8760	1.46E-03	1.83E-04	2%
GM1	Existing Railway Tracks	line volume	CO	1,8	2.00E-03	2.50E-04	1%
			Benzene	24, 8760	1.48E-04	1.84E-05	2%
			1,3-Butadiene	24, 8760	5.07E-06	6.34E-07	1%
			Acrolein	1, 24	5.10E-05	6.38E-06	2%
			Acetaldehyde	0.5, 24	2.84E-04	3.55E-05	2%
			Formaldehyde	24	7.97E-04	9.96E-05	2%
			Benzo(a)pyrene	24, 8760	1.08E-08	1.35E-09	1%
			SO ₂	10-min, 1, 8760	1.83E-03	3.26E-04	15%
			NO _x	1, 24, 8760	1.12E+00	1.99E-01	15%
			PM	24, 8760	1.52E-02	2.71E-03	14%
			PM10	24	1.46E-02	2.60E-03	15%
			PM2.5	24, 8760	1.37E-02	2.44E-03	15%
0504	EX/FNB/FB - GM/CP	19	CO	1,8	1.87E-02	3.34E-03	11%
CP2A	trains along main railway	line volume	Benzene	24, 8760	1.38E-03	2.46E-04	15%
	corridor in Courtice		1,3-Butadiene	24, 8760	4.74E-05	8.46E-06	14%
			Acrolein	1, 24	4.77E-04	8.51E-05	15%
			Acetaldehyde	0.5, 24	2.65E-03	4.73E-04	15%
			Formaldehyde	24	7.44E-03	1.33E-03	15%
			Benzo(a)pyrene	24 24, 8760	1.01E-07	1.81E-08	13%
			SO ₂		1.73E-03	3.14E-04	13%
				10-min, 1, 8760			
			NO _x	1, 24, 8760	1.06E+00	1.92E-01	14%
			PM	24, 8760	1.44E-02	2.61E-03	14%
			PM10	24	1.38E-02	2.50E-03	14%
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	1.29E-02	2.35E-03	14%
CP2B	trains along main railway	line volume	CO	1, 8	1.77E-02	3.21E-03	10%
2. 20	corridor in Courtice		Benzene	24, 8760	1.30E-03	2.37E-04	14%
			1,3-Butadiene	24, 8760	4.48E-05	8.15E-06	13%
			Acrolein	1, 24	4.51E-04	8.19E-05	14%
		Acetaldehyde	0.5, 24	2.51E-03	4.55E-04	14%	
			Acelaidenyde	0.5, 24			
			Formaldehyde	24	7.04E-03	1.28E-03	14%

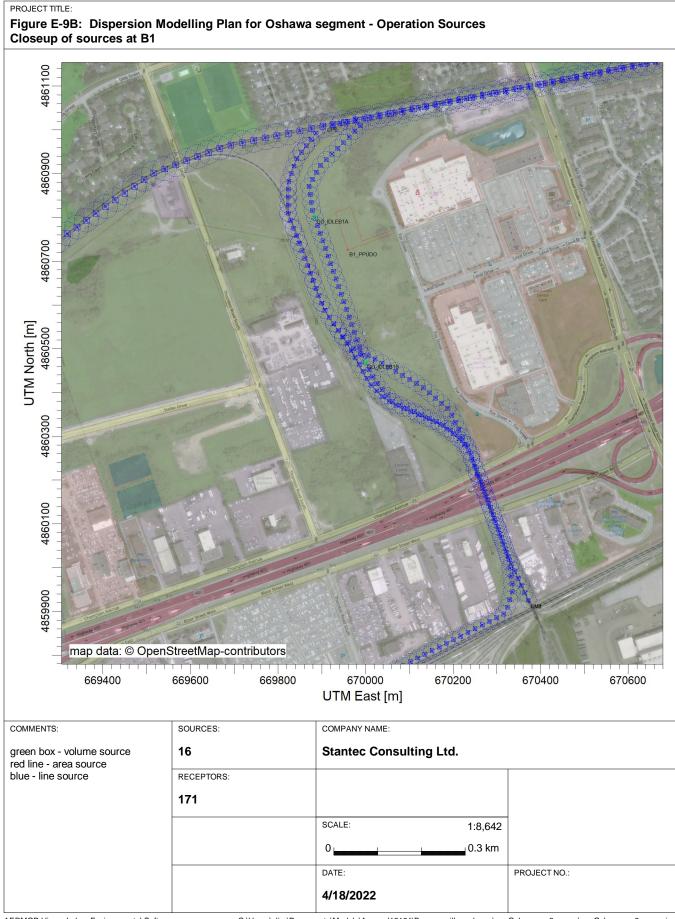
Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst	-case Scenario for Mod	lelling ¹
				(nours)	Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emissions
			SO ₂	10-min, 1, 8760	1.80E-03	3.23E-04	14%
			NO _x	1, 24, 8760	1.10E+00	1.98E-01	14%
			PM	24, 8760	1.50E-02	2.68E-03	14%
		PM10	24	1.44E-02	2.58E-03	14%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	1.35E-02	2.42E-03	14%
CP2C	trains along main railway	line volume	со	1, 8	1.84E-02	3.30E-03	10%
	corridor in Courtice		Benzene	24, 8760	1.36E-03	2.44E-04	14%
		1,3-Butadiene	24, 8760	4.68E-05	8.39E-06	14%	
			Acrolein	1, 24	4.70E-04	8.43E-05	14%
			Acetaldehyde Formaldehyde	0.5, 24	2.62E-03 7.34E-03	4.69E-04 1.32E-03	14% 14%
			Benzo(a)pyrene	24 24, 8760	9.99E-08	1.79E-08	13%
			SO ₂		1.25E-05	3.52E-06	0%
			NO _x	10-min, 1, 8760		2.59E-04	0%
			PM	1, 24, 8760 24, 8760	1.34E-03 6.88E-04	2.55E-03	1%
			PM PM10	24, 8760	3.57E-04	2.55E-03 5.60E-04	0%
			PM2.5	24, 8760	1.57E-04	1.43E-04	0%
	EX/FNB - vehicles in		CO	1, 8	2.73E-02	6.97E-03	16%
EX_LOT1	existing parking lot	area	Benzene	24, 8760	6.65E-05	9.47E-06	1%
			1,3-Butadiene	24, 8760	8.28E-06	1.12E-06	2%
			Acrolein	1, 24	1.81E-06	2.54E-07	0%
			Acetaldehyde	0.5, 24	2.73E-05	3.83E-06	0%
			Formaldehyde	24	1.83E-05	2.77E-06	0%
			Benzo(a)pyrene	24, 8760	4.53E-08	6.52E-09	6%
			SO ₂	10-min, 1, 8760	1.85E-06	4.63E-07	0%
			NO _x	1, 24, 8760	1.44E-03	3.61E-04	0%
			PM	24, 8760	3.32E-04	1.56E-03	0%
			PM10	24, 0700	1.24E-04	3.13E-04	0%
	EX/END oviction at the		PM2.5	24, 8760	4.80E-05	8.25E-05	0%
EX_BUS1	EX/FNB - existing station bus loop (travelling	line volume	СО	1, 8	6.48E-04	1.62E-04	0%
2.2001	bus loop (travelining buses)		Benzene	24, 8760	7.04E-07	1.76E-07	0%
			1,3-Butadiene	24, 8760	2.51E-07	6.27E-08	0%
			Acrolein	1, 24	6.13E-07	1.53E-07	0%
			Acetaldehyde	0.5, 24	3.46E-06	8.66E-07	0%
		Formaldehyde	24	7.44E-06	1.86E-06	0%	
			Benzo(a)pyrene	24, 8760	1.55E-09	3.87E-10	0%
			SO ₂	10-min, 1, 8760	1.91E-06	4.77E-07	0%
			NO _x	1, 24, 8760	2.08E-03	5.20E-04	0%
		PM	24, 8760	3.60E-05	9.01E-06	0%	
		PM10	24	3.60E-05	9.01E-06	0%	
			PM2.5	24, 8760	3.31E-05	8.29E-06	0%
EX_BUS_IDL1	EX/FNB - existing GO	volume	CO	1, 8	8.05E-04	2.01E-04	0%
	buses idling at loop		Benzene	24, 8760	1.27E-06	3.19E-07	0%
			1,3-Butadiene	24, 8760	4.53E-07	1.13E-07	0%
			Acrolein	1, 24	1.10E-06	2.76E-07	0%
			Acetaldehyde	0.5, 24	6.22E-06	1.55E-06	0%
			Formaldehyde	24	1.34E-05	3.36E-06	0%
			Benzo(a)pyrene	24, 8760	1.96E-09	4.90E-10	0%
			SO ₂	10-min, 1, 8760	2.19E-03	3.91E-04	18%
			NO _x	1, 24, 8760	1.34E+00	2.39E-01	18%
			PM	24, 8760	1.82E-02	3.25E-03	17%
			PM10	24	1.75E-02	3.12E-03	18%
	EX/FNB/FB - GM/CP		PM2.5 CO	24, 8760	1.64E-02	2.93E-03	18%
CP3	trains along main railway	line volume	Benzene	1, 8 24, 8760	2.24E-02 1.65E-03	4.00E-03 2.95E-04	13% 17%
	corridor in Bowmanville		1,3-Butadiene	24, 8760	1.65E-03 5.69E-05	2.95E-04 1.02E-05	17%
			Acrolein	1, 24	5.72E-04	1.02E-03	17%
			Acetaldehyde	0.5, 24	3.18E-03	5.68E-04	18%
			Formaldehyde	24	8.93E-03	1.59E-03	18%
			Benzo(a)pyrene	24, 8760	1.21E-07	2.17E-08	16%
			SO ₂	10-min, 1, 8760	4.84E-04	8.64E-05	4%
			NO _x	1, 24, 8760	2.96E-01	5.29E-02	4%
			PM	24, 8760	4.02E-03	7.18E-04	4%
			PM10	24	3.86E-03	6.89E-04	4%
			PM2.5	24, 8760	3.62E-03	6.46E-04	4%
CP4	EX/FNB/FB - GM/CP	line volume	СО	1, 8	4.95E-03	8.84E-04	3%
• • •	trains east of study area		Benzene	24, 8760	3.65E-04	6.53E-05	4%
			1,3-Butadiene	24, 8760	1.26E-05	2.24E-06	4%
			Acrolein	1, 24	1.26E-04	2.26E-05	4%
			Acetaldehyde	0.5, 24	7.03E-04	1.25E-04	4%
			Formaldehyde	24	1.97E-03	3.52E-04	4%
			Benzo(a)pyrene	24, 8760	2.68E-08	4.79E-09	3%
			SO ₂	10-min, 1, 8760	1.09E-06	3.19E-07	0%
			NO _x	1, 24, 8760	8.54E-04	2.49E-04	0%
			PM	24, 8760	3.01E-04	1.55E-03	0%
			PM10	24	9.31E-05	3.07E-04	0%
	EX/FNB - existing station		PM2.5	24, 8760	3.34E-05	7.97E-05	0%
EX_BUS2	bus loop (travelling	line volume	CO	1, 8	3.83E-04	1.12E-04	0%
	buses)		Benzene	24, 8760	4.16E-07	1.21E-07	0%
			1,3-Butadiene	24, 8760	1.48E-07	4.32E-08	0%
			Acrolein	1, 24	3.62E-07	1.06E-07	0%
			Acetaldehyde	0.5, 24	2.05E-06	5.97E-07	0%
			Formaldehyde Benzo(a)pyrene	24 24, 8760	4.40E-06 9.14E-10	1.28E-06 2.66E-10	0%

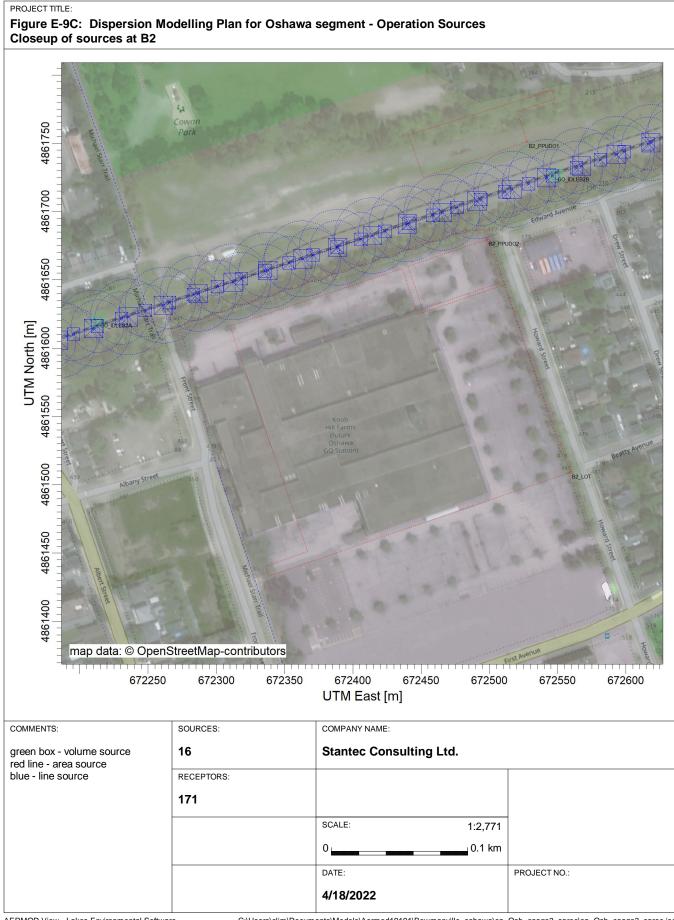
Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst	-case Scenario for Mod	elling ¹	
				(nours)	Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emission	
			SO ₂	10-min, 1, 8760	7.63E-06	2.23E-06	0%	
			NO _x	1, 24, 8760	8.32E-03	2.43E-03	0%	
			PM	24, 8760	1.44E-04	4.20E-05	0%	
			PM10	24	1.44E-04	4.20E-05	0%	
			PM2.5	24, 8760	1.33E-04	3.87E-05	0%	
EX_BUS_IDL2	EX/FNB - existing GO	volume	CO	1, 8	3.22E-03	9.39E-04	2%	
	buses idling at loop		Benzene	24, 8760	5.10E-06	1.49E-06	0%	
			1,3-Butadiene	24, 8760	1.81E-06	5.28E-07	1%	
			Acrolein	1, 24	4.42E-06	1.29E-06	0%	
			Acetaldehyde	0.5, 24	2.49E-05	7.25E-06	0%	
			Formaldehyde	24	5.38E-05	1.57E-05	0%	
			Benzo(a)pyrene	24, 8760	7.85E-09 7.00E-06	2.29E-09 1.28E-06	0%	
			SO ₂	10-min, 1, 8760				
			NO _x	1, 24, 8760	9.45E-04	1.37E-04	0%	
			PM PM10	24, 8760 24	2.20E-04 1.52E-04	5.32E-04 1.25E-04	0%	
			PM10 PM2.5	24 24, 8760	1.02E-04	3.81E-05	0%	
	EX/FNB - existing GO		CO	1, 8	1.66E-02	2.80E-03	9%	
EX_LOT2	vehicle parking lot	area	Benzene	24, 8760	5.27E-05	6.82E-06	1%	
			1,3-Butadiene	24, 8760	6.65E-06	8.50E-07	2%	
			Acrolein	1, 24	1.45E-06	1.86E-07	0%	
			Acetaldehyde	0.5, 24	2.17E-05	2.80E-06	0%	
			Formaldehyde	24	1.43E-05	1.88E-06	0%	
			Benzo(a)pyrene	24, 8760	3.58E-08	4.65E-09	5%	
uture Build	·							
			SO ₂	10-min, 1, 8760	5.24E-04	9.35E-05	2%	
			NO _x	1, 24, 8760	3.20E-01	5.72E-02	2%	
			PM	24, 8760	4.35E-03	7.77E-04	2%	
			PM10	24	4.18E-03	7.46E-04	2%	
			PM2.5	24, 8760	3.92E-03	6.99E-04	2%	
CP0	EX/FNB/FB - GM/CP	line volume	СО	1, 8	5.36E-03	9.57E-04	0%	
	trains west of study area		Benzene	24, 8760	3.96E-04	7.06E-05	2%	
			1,3-Butadiene	24, 8760	1.36E-05	2.43E-06	2%	
			Acrolein	1, 24	1.37E-04	2.44E-05	2%	
			Acetaldehyde	0.5, 24	7.60E-04	1.36E-04	2%	
		Formaldehyde	24	2.13E-03	3.81E-04	2%		
			Benzo(a)pyrene	24, 8760	2.90E-08	5.18E-09	1%	
			SO ₂	10-min, 1, 8760	6.55E-04	1.17E-04	2%	
			NO _x	1, 24, 8760	4.00E-01	7.15E-02	2%	
		PM	24, 8760	5.44E-03	9.71E-04	2%		
			PM10	24	5.22E-03	9.33E-04	2%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	4.90E-03	8.74E-04	2%	
CP1A	Trains along main railway corridor in	line volume	со	1, 8	6.70E-03	1.20E-03	0%	
	Oshawa		Benzene	24, 8760	4.94E-04	8.83E-05	2%	
			1,3-Butadiene	24, 8760	1.70E-05	3.04E-06	2% 2%	
			Acrolein Acetaldehyde	1, 24 0.5, 24	1.71E-04 9.50E-04	3.05E-05 1.70E-04	2%	
			Formaldehyde	24	2.67E-03	4.77E-04	2%	
			Benzo(a)pyrene	24, 8760	3.63E-08	6.48E-09	1%	
			SO ₂	10-min, 1, 8760	3.00E-03	5.35E-04	11%	
			NO _x	1, 24, 8760	1.83E+00	3.27E-01	11%	
			PM	24, 8760	2.49E-02	4.45E-03	9%	
			PM10	24, 0700	2.39E-02	4.27E-03	9%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	2.24E-02	4.00E-03	9%	
CP1B	Trains along main	lino volume	CO	1, 8	3.07E-02	5.48E-03	2%	
CF IB	railway corridor in	line volume	Benzene	24, 8760	2.26E-03	4.04E-04	10%	
	Oshawa		1,3-Butadiene	24, 8760	7.78E-05	1.39E-05	9%	
			Acrolein	1, 24	7.82E-04	1.40E-04	10%	
			Acetaldehyde	0.5, 24	4.35E-03	7.77E-04	10%	
			Formaldehyde	24	1.22E-02	2.18E-03	10%	
			Benzo(a)pyrene	24, 8760	1.66E-07	2.97E-08	6%	
			SO ₂	10-min, 1, 8760	1.95E-04	2.44E-05	1%	
			NO _x	1, 24, 8760	1.20E-01	1.49E-02	1%	
			PM	24, 8760	1.62E-03	2.03E-04	1%	
			PM10	24	1.56E-03	1.95E-04	1%	
	FB - GM Trains on		PM2.5	24, 8760	1.46E-03	1.83E-04	1%	
GM2	Future Build Railway	line volume	со	1, 8	2.00E-03	2.50E-04	0%	
	Tracks		Benzene	24, 8760	1.48E-04	1.85E-05	1%	
			1,3-Butadiene	24, 8760	5.08E-06	6.35E-07	1%	
			Acrolein	1, 24	5.10E-05 2.84E-04	6.38E-06 3.55E-05	<u> </u>	
			Acetaldehyde Formaldehyde	0.5, 24	2.84E-04 7.97E-04	3.55E-05 9.96E-05	1%	
			Benzo(a)pyrene	24 24, 8760	1.08E-08	9.96E-05 1.35E-09	0%	
			SO ₂		2.96E-03	2.22E-03	11%	
			NO _x	10-min, 1, 8760			11%	
			PM	1, 24, 8760 24, 8760	1.83E+00 2.98E-02	1.37E+00 2.23E-02	11%	
			PM PM10	24, 8760	2.98E-02 2.86E-02	2.23E-02 2.14E-02	11%	
			PM10 PM2.5	24 24, 8760	2.68E-02 2.68E-02	2.14E-02 2.01E-02	11%	
001	FB - GO Trains from	Provide P	CO	1, 8	9.60E-02	7.20E-02	7%	
GO1	Oshawa GO Station to	line volume	Benzene	24, 8760	2.41E-03	1.80E-02	10%	
	main railway in Oshawa		1,3-Butadiene	24, 8760	8.27E-05	6.20E-05	9%	
			Acrolein	1, 24	8.31E-04	6.23E-03	11%	
			Acetaldehyde	0.5, 24	4.62E-03	3.47E-03	11%	
						9.74E-03	11%	
			Formaldehyde	24	1.30E-02	9.740-03	1170	

Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst	-case Scenario for Mod	elling ¹
				(nours)	Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emission
			SO ₂	10-min, 1, 8760	1.01E-03	7.58E-04	4%
			NO _x	1, 24, 8760	6.23E-01	4.67E-01	4%
		PM	24, 8760	1.02E-02	7.61E-03	4%	
			PM10	24	9.74E-03	7.31E-03	4%
	FB - GO Trains along		PM2.5	24, 8760	9.14E-03	6.85E-03	4%
GO2A	main railway corridor in	line volume	CO	1, 8	3.28E-02	2.46E-02	2%
	Oshawa		Benzene	24, 8760	8.20E-04	6.15E-04	4%
			1,3-Butadiene	24, 8760	2.82E-05	2.11E-05	3%
			Acrolein	1, 24	2.83E-04	2.13E-04	4%
			Acetaldehyde	0.5, 24	1.58E-03	1.18E-03	4%
							4%
			Formaldehyde	24	4.43E-03	3.32E-03	
			Benzo(a)pyrene	24, 8760	6.77E-08	5.08E-08	3%
			SO ₂	10-min, 1, 8760	2.83E-03	2.12E-03	10%
			NO _x	1, 24, 8760	1.74E+00	1.31E+00	10%
			PM	24, 8760	2.84E-02	2.13E-02	10%
			PM10	24	2.73E-02	2.04E-02	10%
			PM2.5	24, 8760	2.56E-02	1.92E-02	11%
	FB - GO Trains along						
GO2B	main railway corridor in	line volume	СО	1, 8	9.16E-02	6.87E-02	6%
	Oshawa		Benzene	24, 8760	2.29E-03	1.72E-03	10%
			1,3-Butadiene	24, 8760	7.89E-05	5.92E-05	9%
			Acrolein	1, 24	7.93E-04	5.95E-04	10%
			Acetaldehyde	0.5, 24	4.41E-03	3.31E-03	10%
				24	1.24E-02	9.29E-03	10%
			Formaldehyde				
	ļ		Benzo(a)pyrene	24, 8760	1.89E-07	1.42E-07	7%
			SO ₂	10-min, 1, 8760	8.93E-05	6.70E-05	0%
			NO _x	1, 24, 8760	8.04E-02	6.03E-02	0%
			PM	24, 8760	2.37E-03	1.77E-03	1%
			PM10	24	2.27E-03	1.70E-03	1%
			PM2.5	24, 8760	2.13E-03	1.60E-03	1%
GO IDLEB1A	FB - GO train idling at B1	volume	CO	1, 8	1.44E-02	1.08E-02	1%
00_10220111	Station	Volumo	Benzene	24, 8760	1.70E-04	1.27E-04	1%
			1,3-Butadiene	24, 8760	5.84E-06	4.38E-06	1%
			Acrolein	1, 24	5.87E-05	4.40E-05	1%
					3.27E-04	2.45E-04	1%
		Acetaldehyde	0.5, 24				
			Formaldehyde	24	9.17E-04	6.88E-04	1%
			Benzo(a)pyrene	24, 8760	1.58E-08	1.18E-08	1%
			SO ₂	10-min, 1, 8760	8.93E-05	6.70E-05	0%
			NO _x	1. 24. 8760	8.04E-02	6.03E-02	0%
			PM	1 1			1%
			24, 8760	2.37E-03	1.77E-03		
		PM10	24	2.27E-03	1.70E-03	1%	
			PM2.5	24, 8760	2.13E-03	1.60E-03	1%
GO IDLEB1B	FB - GO train idling at B1	volume	со	1, 8	1.44E-02	1.08E-02	1%
GO_IDLED ID	Station	Volume	Benzene	24, 8760	1.70E-04	1.27E-04	1%
			1,3-Butadiene	24, 8760	5.84E-06	4.38E-06	1%
							1%
			Acrolein	1, 24	5.87E-05	4.40E-05	
			Acetaldehyde	0.5, 24	3.27E-04	2.45E-04	1%
			Formaldehyde	24	9.17E-04	6.88E-04	1%
			Benzo(a)pyrene	24, 8760	1.58E-08	1.18E-08	1%
			SO ₂	10-min, 1, 8760	8.93E-05	6.70E-05	0%
			NO _x	1, 24, 8760	8.04E-02	6.03E-02	0%
			PM		2.37E-03	1.77E-03	1%
				24, 8760			
			PM10	24	2.27E-03	1.70E-03	1%
			PM2.5	24, 8760	2.13E-03	1.60E-03	1%
GO IDLEB2A	FB - GO train idling at B2	volume	CO	1, 8	1.44E-02	1.08E-02	1%
	Station	, sidillo	Benzene	24, 8760	1.70E-04	1.27E-04	1%
			1,3-Butadiene	24, 8760	5.84E-06	4.38E-06	1%
			Acrolein	1, 24	5.87E-05	4.40E-05	1%
			Acetaldehyde	0.5, 24	3.27E-04	2.45E-04	1%
			Formaldehyde	24	9.17E-04	6.88E-04	1%
			Benzo(a)pyrene	24, 8760	1.58E-08	1.18E-08	1%
			SO ₂	10-min, 1, 8760	8.93E-05	6.70E-05	0%
			NO _x	1, 24, 8760	8.04E-02	6.03E-02	0%
			PM				
				24, 8760	2.37E-03	1.77E-03	1%
			11.18.04()	24	2.27E-03	1.70E-03	1%
			PM10				1%
			PM2.5	24, 8760	2.13E-03	1.60E-03	
	FB - GO train idling at B2	volume			2.13E-03 1.44E-02	1.08E-02	1%
GO_IDLEB2B	FB - GO train idling at B2 Station	volume	PM2.5	24, 8760 1, 8	2.13E-03		
GO_IDLEB2B		volume	PM2.5 CO Benzene	24, 8760 1, 8 24, 8760	2.13E-03 1.44E-02 1.70E-04	1.08E-02 1.27E-04	1% 1%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene	24, 8760 1, 8 24, 8760 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06	1.08E-02 1.27E-04 4.38E-06	1% 1% 1%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein	24, 8760 1, 8 24, 8760 24, 8760 1, 24	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05	1.08E-02 1.27E-04 4.38E-06 4.40E-05	1% 1% 1% 1%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04	1% 1% 1% 1% 1%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04	1% 1% 1% 1% 1% 1%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04	1% 1% 1% 1% 1%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24 24 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08	1% 1% 1% 1% 1% 1%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO ₂	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24 24, 8760 10-min, 1, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05	1% 1% 1% 1% 1% 1% 1% 0%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO ₂ NO _x	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24 24, 8760 10-min, 1, 8760 1, 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04	1% 1% 1% 1% 1% 1% 0% 0%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03	1% 1% 1% 1% 1% 1% 0% 0% 0%
GO_IDLEB2B		volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO ₂ NO _x	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24 24, 8760 10-min, 1, 8760 1, 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04	1% 1% 1% 1% 1% 1% 0% 0%
GO_IDLEB2B	Station	volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24, 8760 24	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03	1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0%
_	Station FB - B1 station		PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10 PM2.5	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04 1.08E-04	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03 3.10E-04	1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
GO_IDLEB2B B1_PPUDO	Station FB - B1 station passenger drop off and	volume	PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10 PM2.5 CO	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 1, 8	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04 1.08E-04 5.41E-02	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03 3.10E-04 3.31E-02	1% 1% 1% 1% 1% 1% 0%
_	Station FB - B1 station		PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10 PM2.5 CO Benzene	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24, 8760 24 24, 8760 1, 8 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04 1.08E-04 5.41E-02 1.15E-05	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03 3.10E-04 3.31E-02 7.05E-06	1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
_	Station FB - B1 station passenger drop off and		PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10 PM2.5 CO	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 1, 8	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04 1.08E-04 5.41E-02 1.15E-05 8.83E-10	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03 3.10E-04 3.31E-02 7.05E-06 5.40E-10	1% 1% 1% 1% 1% 1% 0%
_	Station FB - B1 station passenger drop off and		PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10 PM2.5 CO Benzene	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24, 8760 24 24, 8760 1, 8 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04 1.08E-04 5.41E-02 1.15E-05	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03 3.10E-04 3.31E-02 7.05E-06	1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
_	Station FB - B1 station passenger drop off and		PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10 PM2.5 CO Benzene 1,3-Butadiene	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 1, 8 24, 8760 1, 8 24, 8760 1, 24, 8760 24, 8760 1, 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760 24, 8760	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04 1.08E-04 5.41E-02 1.15E-05 8.83E-10	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03 3.10E-04 3.31E-02 7.05E-06 5.40E-10	1% 1% 1% 1% 1% 1% 0%
_	Station FB - B1 station passenger drop off and		PM2.5 CO Benzene 1,3-Butadiene Acrolein Acetaldehyde Formaldehyde Benzo(a)pyrene SO2 NOx PM PM10 PM2.5 CO Benzene 1,3-Butadiene Acrolein	24, 8760 1, 8 24, 8760 24, 8760 1, 24 0.5, 24 24, 8760 10-min, 1, 8760 1, 24, 8760 24, 8760 24 24, 8760 1, 8 24, 8760 24,	2.13E-03 1.44E-02 1.70E-04 5.84E-06 5.87E-05 3.27E-04 9.17E-04 1.58E-08 6.62E-05 2.23E-04 7.66E-04 4.72E-04 1.08E-04 5.41E-02 1.15E-05 8.83E-10 2.17E-07	1.08E-02 1.27E-04 4.38E-06 4.40E-05 2.45E-04 6.88E-04 1.18E-08 4.05E-05 1.36E-04 5.59E-03 1.27E-03 3.10E-04 3.31E-02 7.05E-06 5.40E-10 1.32E-07	1% 1% 1% 1% 1% 1% 0%

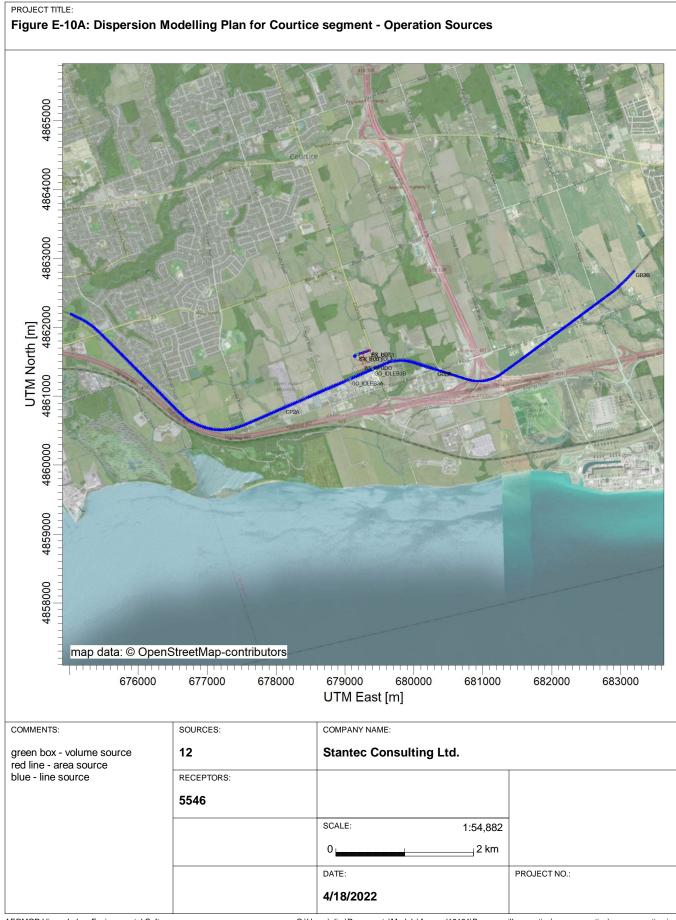

Source ID Source Description		Type of Source	Contaminant	Averaging Period (hours)	Worst-case Scenario for Modelling ¹			
				(Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emission	
			SO ₂	10-min, 1, 8760	7.49E-05	1.97E-05	0%	
			NO _x	1, 24, 8760	6.54E-03	8.95E-04	0%	
			PM	24, 8760	3.25E-03	6.84E-03	1%	
			PM10	24	2.42E-03	1.84E-03	1%	
FB - B2 station vehicles		PM2.5	24, 8760	1.26E-03	5.02E-04	1%		
		CO	1, 8	1.11E-01	2.57E-02	8%		
B2_LOT	in parking lot	area	Benzene	24, 8760	3.87E-04	5.08E-05	2%	
	1 3		1,3-Butadiene	24, 8760	4.75E-05	5.94E-06	5%	
			Acrolein	1, 24	1.09E-05	1.40E-06	0%	
			Acetaldehyde	0.5, 24	1.68E-04	2.15E-05	0%	
			· · · ·				0%	
			Formaldehyde	24 24, 8760	8.68E-05 3.06E-07	1.18E-05 4.02E-08	11%	
			Benzo(a)pyrene					
			SO ₂	10-min, 1, 8760	1.32E-04	1.61E-04	0%	
			NO _x	1, 24, 8760	3.86E-04	4.72E-04	0%	
			PM	24, 8760	4.93E-04	2.41E-03	0%	
			PM10	24	3.85E-04	8.15E-04	0%	
			PM2.5	24, 8760	1.29E-04	2.43E-04	0%	
B2 PPUDO1	FB - GO buses idling at	volume	CO	1, 8	1.03E-01	1.26E-01	7%	
-	B4 TOC		Benzene	24, 8760	2.21E-05	2.71E-05	0%	
			1,3-Butadiene	24, 8760	1.69E-09	2.07E-09	0%	
			Acrolein	1, 24	4.15E-07	5.07E-07	0%	
			Acetaldehyde	0.5, 24	4.78E-06	5.84E-06	0%	
			Formaldehyde	24	8.94E-06	1.09E-05	0%	
			Benzo(a)pyrene	24, 8760	2.18E-08	2.66E-08	1%	
			SO ₂	10-min, 1, 8760	1.32E-04	1.61E-04	0%	
			NO _x	1, 24, 8760	3.86E-04	4.72E-04	0%	
			PM	24, 8760	4.93E-04	2.41E-03	0%	
			PM10	24, 0700	3.85E-04	8.15E-04	0%	
			PM2.5	24, 8760	1.29E-04	2.43E-04	0%	
B2 PPUDO2	FB - B2 station PPUDO	_ // · · ·	CO	1, 8	1.03E-01	1.26E-01	7%	
B2_PPUD02	area 2	area	Benzene	24, 8760	2.21E-05	2.71E-05	0%	
			1,3-Butadiene	24, 8760	1.69E-09	2.07E-09	0%	
			Acrolein	1, 24	4.15E-07	5.07E-07	0%	
		Acetaldehyde	0.5, 24	4.78E-06	5.84E-06	0%		
		Formaldehyde	24	8.94E-06	1.09E-05	0%		
			Benzo(a)pyrene	24, 8760	2.18E-08	2.66E-08	1%	
			SO ₂	10-min, 1, 8760	1.83E-03	3.26E-04	7%	
			NO _x		1.12E+00	1.99E-01	7%	
		PM	1, 24, 8760			5%		
		PM10	24, 8760 24	1.52E-02 1.46E-02	2.71E-03 2.60E-03	6%		
			PM10 PM2.5	24 24, 8760	1.40E-02	2.00E-03	6%	
	EX/FNB/FB - GM/CP		CO	1, 8	1.87E-02	2.44E-03 3.34E-03	1%	
CP2A	trains along main railway	line volume	Benzene	,	1.37E-02	2.46E-04	6%	
	corridor in Courtice			24, 8760				
			1,3-Butadiene	24, 8760	4.74E-05	8.46E-06	5%	
			Acrolein Acetaldehyde	1, 24	4.77E-04	8.51E-05 4.73E-04	6% 6%	
			Formaldehyde	0.5, 24	2.65E-03 7.44E-03	1.33E-03	6%	
			Benzo(a)pyrene	24 24, 8760	1.01E-07	1.81E-08	4%	
			SO ₂		1.73E-03	3.14E-04	6%	
				10-min, 1, 8760				
			NO _x	1, 24, 8760	1.06E+00	1.92E-01	6%	
			PM	24, 8760	1.44E-02	2.61E-03	5%	
			PM10	24	1.38E-02	2.50E-03	5%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	1.29E-02	2.35E-03	5%	
CP2B	trains along main railway	line volume	CO	1, 8	1.77E-02	3.21E-03	1%	
	corridor in Courtice		Benzene	24, 8760	1.30E-03	2.37E-04	6%	
			1,3-Butadiene	24, 8760	4.48E-05	8.15E-06	5%	
			Acrolein	1, 24	4.51E-04	8.19E-05	6%	
			Acetaldehyde	0.5, 24	2.51E-03	4.55E-04	6%	
			Formaldehyde	24	7.04E-03	1.28E-03	6%	
			Benzo(a)pyrene	24, 8760	9.57E-08	1.74E-08	4%	
			SO ₂	10-min, 1, 8760	1.80E-03	3.23E-04	6%	
			NO _x	1, 24, 8760	1.10E+00	1.98E-01	7%	
			PM	24, 8760	1.50E-02	2.68E-03	5%	
			PM10	24	1.44E-02	2.58E-03	5%	
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	1.35E-02	2.42E-03	6%	
CP2C	trains along main railway	line volume	со	1, 8	1.84E-02	3.30E-03	1%	
	corridor in Courtice		Benzene	24, 8760	1.36E-03	2.44E-04	6%	
			1,3-Butadiene	24, 8760	4.68E-05	8.39E-06	5%	
			Acrolein	1, 24	4.70E-04	8.43E-05	6%	
			Acetaldehyde	0.5, 24	2.62E-03	4.69E-04	6%	
			Formaldehyde	24	7.34E-03	1.32E-03	6%	
			Benzo(a)pyrene	24, 8760	9.99E-08	1.79E-08	4%	
			SO ₂	10-min, 1, 8760	3.11E-03	2.34E-03	11%	
			NO _x	1, 24, 8760	1.92E+00	1.44E+00	11%	
			PM	24, 8760	3.13E-02	2.35E-02	11%	
			PM10	24	3.00E-02	2.25E-02	11%	
	FB - GO trains along		PM2.5	24, 8760	2.82E-02	2.11E-02	12%	
GO3A	main railway corridor in	line volume	СО	1, 8	1.01E-01	7.57E-02	7%	
	Courtice		Benzene	24, 8760	2.53E-03	1.90E-03	11%	
			1,3-Butadiene	24, 8760	8.69E-05	6.52E-05	10%	
			Acrolein	1, 24	8.74E-04	6.55E-04	11%	
			Acetaldehyde	0.5, 24	4.86E-03	3.64E-03	11%	
			Formaldehyde	24	1.36E-02	1.02E-02	11%	
			Benzo(a)pyrene	24, 8760	2.09E-07	1.56E-07	8%	

Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst	t-case Scenario for Mod	lelling ¹
				(nouro)	Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emission
			SO ₂	10-min, 1, 8760	1.75E-03	1.31E-03	6%
			NO _x	1, 24, 8760	1.08E+00	8.07E-01	6%
			PM	24, 8760	1.75E-02	1.32E-02	6%
		PM10	24	1.68E-02	1.26E-02	6%	
			PM2.5	24, 8760	1.58E-02	1.18E-02	7%
	FB - GO trains along		CO	1, 8	5.66E-02	4.24E-02	4%
GO3B	main railway corridor in	line volume		24, 8760	1.42E-03	1.06E-03	6%
	Courtice		Benzene 1,3-Butadiene	24, 8760	4.87E-05	3.65E-05	5%
							6%
			Acrolein	1, 24	4.90E-04	3.67E-04	
			Acetaldehyde	0.5, 24	2.72E-03	2.04E-03	6%
			Formaldehyde	24	7.65E-03	5.74E-03	6%
			Benzo(a)pyrene	24, 8760	1.17E-07	8.77E-08	4%
			SO ₂	10-min, 1, 8760	8.93E-05	6.70E-05	0%
			NO _x	1, 24, 8760	8.04E-02	6.03E-02	0%
			PM	24, 8760	2.37E-03	1.77E-03	1%
			PM10	24	2.27E-03	1.70E-03	1%
			PM2.5	24, 8760	2.13E-03	1.60E-03	1%
GO IDLEB3A	FB - GO train idling at B3	volume	СО	1, 8	1.44E-02	1.08E-02	1%
00_102200,1	station	Volumo	Benzene	24, 8760	1.70E-04	1.27E-04	1%
			1,3-Butadiene	24, 8760	5.84E-06	4.38E-06	1%
			Acrolein	1, 24	5.87E-05	4.40E-05	1%
			Acetaldehyde	0.5, 24	3.27E-04	2.45E-04	1%
			Formaldehyde	24	9.17E-04	6.88E-04	1%
			Benzo(a)pyrene	24, 8760	1.58E-08	1.18E-08	1%
			SO ₂	10-min, 1, 8760	8.93E-05	6.70E-05	0%
			NO _x	1, 24, 8760	8.04E-02	6.03E-02	0%
			PM	1, 24, 8760	2.37E-03	6.03E-02	1%
			PM PM10		2.37E-03 2.27E-03	1.77E-03 1.70E-03	1%
			PM10 PM2.5	24			1%
	FB - GO train idling at B3		CO	24, 8760	2.13E-03 1.44E-02	1.60E-03	1%
GO_IDLEB3B	station	volume	Benzene	1, 8 24, 8760	1.44E-02 1.70E-04	1.08E-02 1.27E-04	1%
	olation		1,3-Butadiene			4.38E-06	1%
				24, 8760	5.84E-06		
			Acrolein	1, 24	5.87E-05	4.40E-05	1%
		Acetaldehyde	0.5, 24	3.27E-04	2.45E-04	1%	
		Formaldehyde	24	9.17E-04	6.88E-04	1%	
			Benzo(a)pyrene	24, 8760	1.58E-08	1.18E-08	1%
			SO ₂	10-min, 1, 8760	8.04E-05	2.60E-05	0%
			NO _x	1, 24, 8760	5.40E-03	7.94E-04	0%
		PM	24, 8760	4.12E-03	1.04E-02	1%	
		PM10	24	2.84E-03	2.72E-03	1%	
			PM2.5	24, 8760	1.16E-03	6.76E-04	0%
B3_LOT	FB - B3 TOC vehicles in	area	CO	1, 8	1.12E-01	3.22E-02	8%
	parking lot		Benzene	24, 8760	3.15E-04	4.31E-05	1%
			1,3-Butadiene	24, 8760	3.81E-05	4.77E-06	4%
			Acrolein	1, 24	8.81E-06	1.17E-06	0%
			Acetaldehyde	0.5, 24	1.36E-04	1.78E-05	0%
			Formaldehyde	24	7.15E-05	1.05E-05	0%
			Benzo(a)pyrene	24, 8760	2.49E-07	3.41E-08	9%
			SO ₂	10-min, 1, 8760	4.69E-05	5.74E-05	0%
			NO _x	1, 24, 8760	1.79E-04	2.19E-04	0%
			PM	24, 8760	8.65E-04	1.81E-03	0%
			PM10	24	5.24E-04	7.83E-04	0%
			PM2.5	24, 8760	1.05E-04	1.64E-04	0%
	FB - B3 station		CO	1, 8	4.00E-02	4.89E-02	3%
B3_PPUDO	passenger drop off and	area	Benzene	24, 8760	8.49E-06	1.04E-05	0%
	pick up area		1,3-Butadiene	24, 8760	6.51E-10	7.96E-10	0%
			Acrolein	1, 24	1.60E-07	1.95E-07	0%
			Acetaldehyde	0.5, 24	1.84E-06	2.25E-06	0%
			Formaldehyde	24	3.44E-06	4.21E-06	0%
			Benzo(a)pyrene	24, 8760	7.91E-09	9.67E-09	0%
			SO ₂	-	2.19E-03	3.91E-04	8%
				10-min, 1, 8760			
			NO _x	1, 24, 8760	1.34E+00	2.39E-01	8%
			PM	24, 8760	1.82E-02	3.25E-03	7%
			PM10	24	1.75E-02	3.12E-03	7%
	EX/FNB/FB - GM/CP		PM2.5	24, 8760	1.64E-02	2.93E-03	7%
CP3	trains along main railway	line volume	СО	1, 8	2.24E-02	4.00E-03	2%
	corridor in Bowmanville		Benzene	24, 8760	1.65E-03	2.95E-04	7%
			1,3-Butadiene	24, 8760	5.69E-05	1.02E-05	6%
			Acrolein	1, 24	5.72E-04	1.02E-04	7%
			Acetaldehyde	0.5, 24	3.18E-03	5.68E-04	7%
			Formaldehyde	24	8.93E-03	1.59E-03	7%
			Benzo(a)pyrene	24, 8760	1.21E-07	2.17E-08	5%
			SO ₂	10-min, 1, 8760	4.84E-04	8.64E-05	2%
			NO _x	1, 24, 8760	2.96E-01	5.29E-02	2%
			PM	24, 8760	4.02E-03	7.18E-04	1%
			PM10	24	3.86E-03	6.89E-04	1%
			PM2.5	24, 8760	3.62E-03	6.46E-04	2%
			CO	1, 8	4.95E-03	8.84E-04	0%
~~ <i>i</i>	EX/FNB/FB - GM/CP	line volume			3.65E-04	6.53E-05	2%
CP4	EX/FNB/FB - GM/CP trains east of study area		Benzene	24 8760			
CP4		line volume	Benzene 1,3-Butadiene	24, 8760 24, 8760	1.26E-05	2.24E-06	1%
CP4		line volume		24, 8760	1.26E-05	2.24E-06	1%
CP4		line volume	1,3-Butadiene Acrolein	24, 8760 1, 24			
CP4		line volume	1,3-Butadiene	24, 8760	1.26E-05 1.26E-04	2.24E-06 2.26E-05	1% 2%

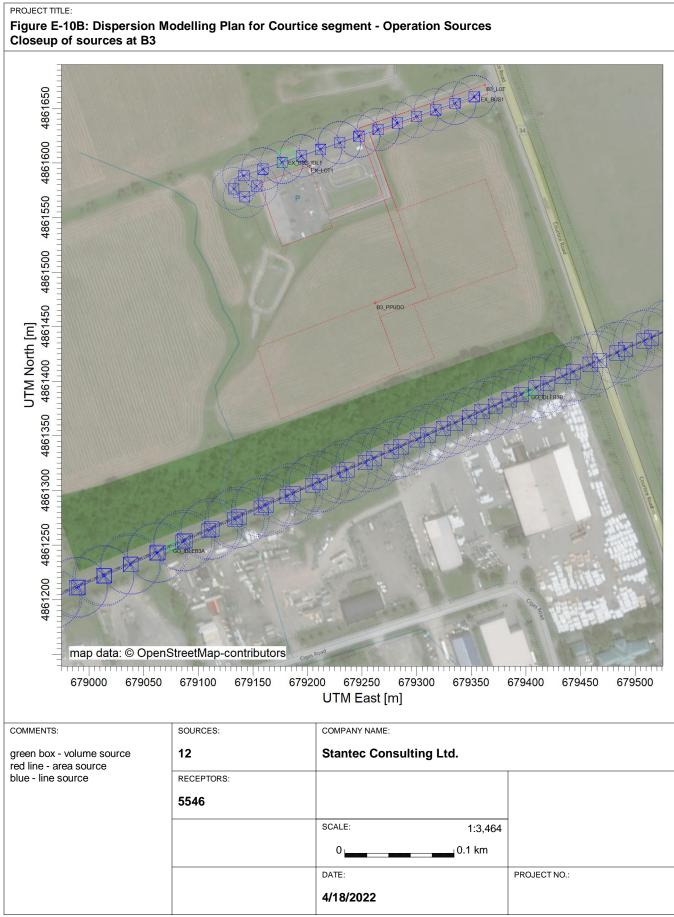

Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst-case Scenario for Modelling ¹		
					Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emission
			SO ₂	10-min, 1, 8760	2.02E-03	1.51E-03	7%
			NO _x	1, 24, 8760	1.25E+00	9.34E-01	7%
			PM		2.03E-02	1.52E-02	7%
				24, 8760			
		line volume	PM10	24	1.95E-02	1.46E-02	7%
	FB - GO trains along		PM2.5	24, 8760	1.83E-02	1.37E-02	8%
GO4A	main railway corridor in		CO	1, 8	6.55E-02	4.91E-02	5%
00 // (Bowmanville		Benzene	24, 8760	1.64E-03	1.23E-03	7%
	Bowmanville		1,3-Butadiene	24, 8760	5.64E-05	4.23E-05	6%
			Acrolein	1, 24	5.67E-04	4.25E-04	7%
			Acetaldehyde	0.5, 24	3.15E-03	2.36E-03	7%
			Formaldehyde	24	8.85E-03	6.64E-03	7%
			Benzo(a)pyrene	24, 8760	1.35E-07	1.02E-07	5%
			SO ₂	10-min, 1, 8760	2.79E-04	2.09E-04	1%
			NO _x	1, 24, 8760	1.72E-01	1.29E-01	1%
			PM	24, 8760	2.80E-03	2.10E-03	1%
				,			
			PM10	24	2.69E-03	2.02E-03	1%
	FB - GO trains along		PM2.5	24, 8760	2.52E-03	1.89E-03	1%
GO4B	main railway corridor in	line volume	СО	1, 8	9.04E-03	6.78E-03	1%
0040	Bowmanville		Benzene	24, 8760	2.26E-04	1.70E-04	1%
			1,3-Butadiene	24, 8760	7.79E-06	5.84E-06	1%
							1%
			Acrolein	1, 24	7.83E-05	5.87E-05	
			Acetaldehyde	0.5, 24	4.35E-04	3.26E-04	1%
			Formaldehyde	24	1.22E-03	9.17E-04	1%
			Benzo(a)pyrene	24, 8760	1.87E-08	1.40E-08	1%
			SO ₂	10-min, 1, 8760	8.93E-05	6.70E-05	0%
		volume	NO _x				
				1, 24, 8760	8.04E-02	6.03E-02	0%
			PM	24, 8760	2.37E-03	1.77E-03	1%
			PM10	24	2.27E-03	1.70E-03	1%
			PM2.5	24, 8760	2.13E-03	1.60E-03	1%
	GO trains idling at station		СО	1, 8	1.44E-02	1.08E-02	1%
GO_IDLEB4A	B4		Benzene	24, 8760	1.70E-04	1.27E-04	1%
			1,3-Butadiene			4.38E-06	1%
				24, 8760	5.84E-06		
			Acrolein	1, 24	5.87E-05	4.40E-05	1%
			Acetaldehyde	0.5, 24	3.27E-04	2.45E-04	1%
			Formaldehyde	24	9.17E-04	6.88E-04	1%
			Benzo(a)pyrene	24, 8760	1.58E-08	1.18E-08	1%
			SO ₂	· · · · · ·	8.93E-05	6.70E-05	0%
				10-min, 1, 8760			
	GO trains idling at station B4	volume	NO _x	1, 24, 8760	8.04E-02	6.03E-02	0%
GO_IDLEB4B			PM	24, 8760	2.37E-03	1.77E-03	1%
			PM10	24	2.27E-03	1.70E-03	1%
			PM2.5	24, 8760	2.13E-03	1.60E-03	1%
			СО	1,8	1.44E-02	1.08E-02	1%
			Benzene	24, 8760	1.70E-04	1.27E-04	1%
			1,3-Butadiene	24, 8760	5.84E-06	4.38E-06	1%
			Acrolein	1, 24	5.87E-05	4.40E-05	1%
			Acetaldehyde	0.5, 24	3.27E-04	2.45E-04	1%
			Formaldehyde	24	9.17E-04	6.88E-04	1%
			Benzo(a)pyrene	24, 8760	1.58E-08	1.18E-08	1%
			SO ₂		8.28E-05	2.50E-05	0%
	FB - B4 vehicles in parking lot	area		10-min, 1, 8760			
			NO _x	1, 24, 8760	6.14E-03	8.77E-04	0%
			PM	24, 8760	4.02E-03	9.63E-03	1%
			PM10	24	2.84E-03	2.54E-03	1%
			PM2.5	24, 8760	1.26E-03	6.47E-04	1%
B / 1			CO	1, 8	1.18E-01	3.15E-02	8%
B4_LOT			Benzene				2%
				24, 8760	3.60E-04	4.85E-05	
			1,3-Butadiene	24, 8760	4.39E-05	5.48E-06	5%
			Acrolein	1, 24	1.01E-05	1.33E-06	0%
			Acetaldehyde	0.5, 24	1.56E-04	2.02E-05	0%
			Formaldehyde	24	8.14E-05	1.16E-05	0%
			Benzo(a)pyrene	24, 8760	2.85E-07	3.83E-08	11%
			SO ₂		1.12E-04	1.36E-04	0%
				10-min, 1, 8760			
			NO _x	1, 24, 8760	3.20E-04	3.91E-04	0%
			PM	24, 8760	4.24E-04	2.84E-03	0%
	FB - B4 station passenger drop off and pick up area	area	PM10	24	2.84E-04	7.90E-04	0%
			PM2.5	24, 8760	1.05E-04	2.39E-04	0%
D/ 55.55			CO	1, 8	8.67E-02	1.06E-01	6%
B4_PPUDO			Benzene	24, 8760	1.86E-05	2.28E-05	0%
			1,3-Butadiene	24, 8760	1.42E-09	1.74E-09	0%
			Acrolein	1, 24	3.49E-07	4.26E-07	0%
			Acetaldehyde	0.5, 24	4.02E-06	4.91E-06	0%
			Formaldehyde	24	7.52E-06	9.19E-06	0%
			Benzo(a)pyrene	24, 8760	1.84E-08	2.25E-08	1%
			SO ₂	10-min, 1, 8760	1.48E-06	7.11E-07	0%
				1, 24, 8760	6.97E-04	3.34E-04	0%
			NO _x				00/
			NO _x PM	24, 8760	2.81E-04	2.73E-03	0%
					2.81E-04 8.99E-05	2.73E-03 5.39E-04	0%
			РМ РМ10	24, 8760 24	8.99E-05	5.39E-04	
	FB - B4 station bus loop		PM PM10 PM2.5	24, 8760 24 24, 8760	8.99E-05 2.20E-05	5.39E-04 1.35E-04	0% 0%
FB_BUS_B4		line volume	PM PM10 PM2.5 CO	24, 8760 24 24, 8760 1, 8	8.99E-05 2.20E-05 3.89E-04	5.39E-04 1.35E-04 1.86E-04	0% 0% 0%
FB_BUS_B4	FB - B4 station bus loop (travelling buses)	line volume	PM PM10 PM2.5 CO Benzene	24, 8760 24 24, 8760 1, 8 24, 8760	8.99E-05 2.20E-05 3.89E-04 1.23E-07	5.39E-04 1.35E-04 1.86E-04 5.88E-08	0% 0% 0% 0%
FB_BUS_B4		line volume	PM PM10 PM2.5 CO Benzene 1,3-Butadiene	24, 8760 24 24, 8760 1, 8 24, 8760 24, 8760 24, 8760	8.99E-05 2.20E-05 3.89E-04 1.23E-07 4.10E-08	5.39E-04 1.35E-04 1.86E-04 5.88E-08 1.97E-08	0% 0% 0% 0%
FB_BUS_B4		line volume	PM PM10 PM2.5 CO Benzene 1,3-Butadiene Acrolein	24, 8760 24 24, 8760 1, 8 24, 8760 24, 8760 24, 8760 1, 24	8.99E-05 2.20E-05 3.89E-04 1.23E-07 4.10E-08 1.27E-07	5.39E-04 1.35E-04 1.86E-04 5.88E-08 1.97E-08 6.07E-08	0% 0% 0% 0% 0%
FB_BUS_B4		line volume	PM PM10 PM2.5 CO Benzene 1,3-Butadiene	24, 8760 24 24, 8760 1, 8 24, 8760 24, 8760 24, 8760	8.99E-05 2.20E-05 3.89E-04 1.23E-07 4.10E-08	5.39E-04 1.35E-04 1.86E-04 5.88E-08 1.97E-08	0% 0% 0% 0%
FB_BUS_B4		line volume	PM PM10 PM2.5 CO Benzene 1,3-Butadiene Acrolein	24, 8760 24 24, 8760 1, 8 24, 8760 24, 8760 24, 8760 1, 24	8.99E-05 2.20E-05 3.89E-04 1.23E-07 4.10E-08 1.27E-07	5.39E-04 1.35E-04 1.86E-04 5.88E-08 1.97E-08 6.07E-08	0% 0% 0% 0% 0%

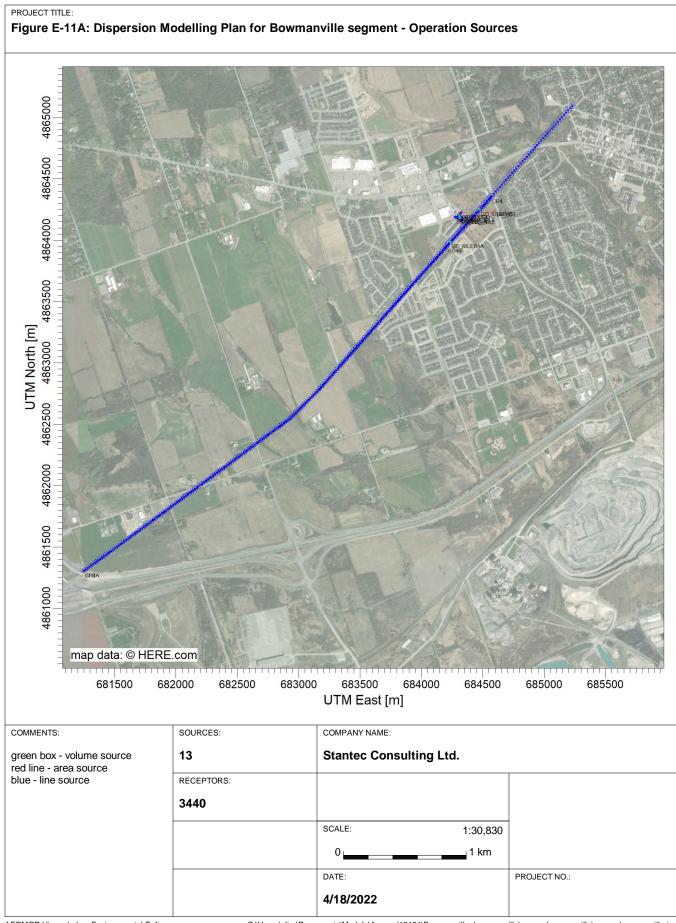

Source ID	Source Description	Type of Source	Contaminant	Averaging Period (hours)	Worst-case Scenario for Modelling ¹		
					Hourly Emission Rate (g/s)	Daily Emission Rate (g/s)	% of Overall Emissions
	FB - GO buses idling at B4 TOC	volume	SO ₂	10-min, 1, 8760	6.31E-06	3.02E-06	0%
			NO _x	1, 24, 8760	4.46E-03	2.14E-03	0%
			PM	24, 8760	1.19E-04	5.70E-05	0%
			PM10	24	1.19E-04	5.70E-05	0%
			PM2.5	24, 8760	2.88E-05	1.38E-05	0%
FB_BUS_IDLE			CO	1, 8	1.83E-03	8.79E-04	0%
			Benzene	24, 8760	9.86E-07	4.72E-07	0%
			1,3-Butadiene	24, 8760	3.28E-07	1.57E-07	0%
			Acrolein	1, 24	1.01E-06	4.83E-07	0%
			Acetaldehyde	0.5, 24	6.70E-06	3.21E-06	0%
			Formaldehyde	24	1.20E-05	5.77E-06	0%
			Benzo(a)pyrene	24, 8760	1.55E-09	7.44E-10	0%

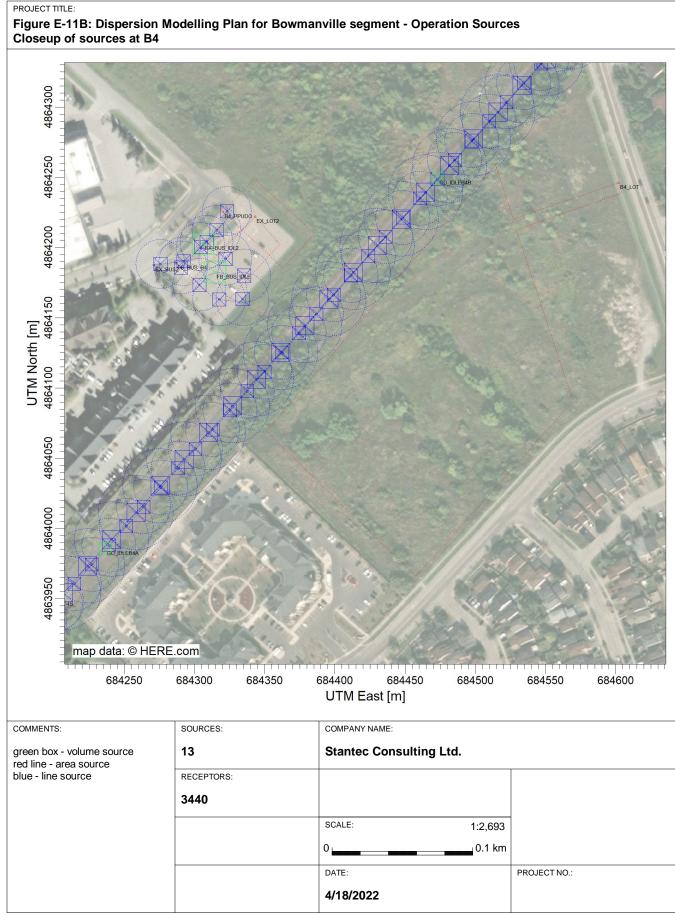
Note: (1) % of overall emission is calculated using hourly emission rates.



 $\label{eq:c:lusersclim} C: \label{eq:c:lusersclim} C: \label{eq:c:lusersc$




 $\label{eq:c:lusersclim} C: \label{eq:c:lusersclim} C: \label{eq:c:lusersc$

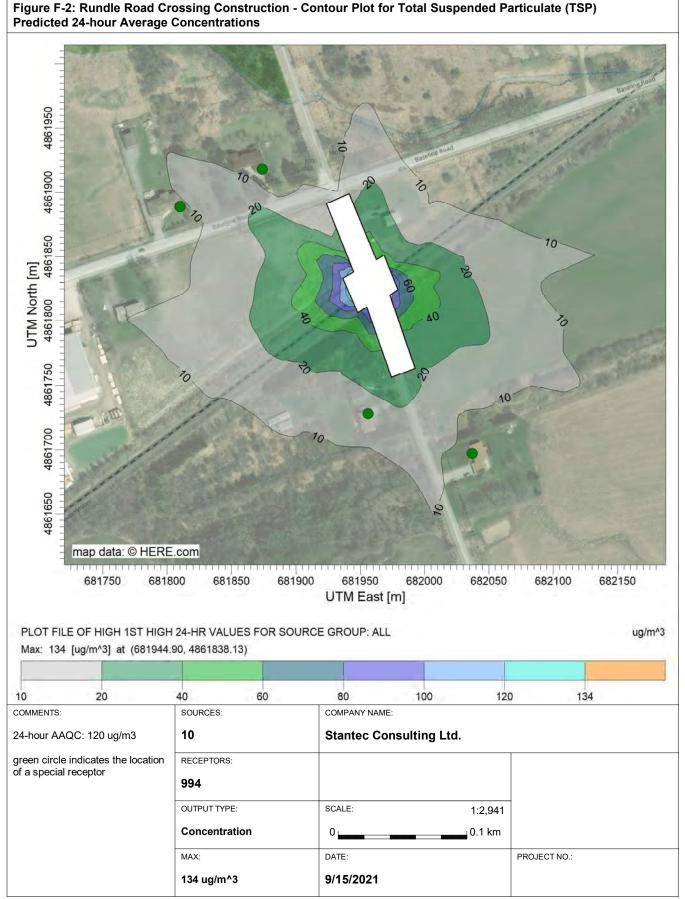

C:\Users\clim\Documents\Models\Aermod19191\Bowmanville_courtice\op_ex_courtice\op_ex_courtice.isc

C:\Users\clim\Documents\Models\Aermod19191\Bowmanville_courtice\op_ex_courtice\op_ex_courtice.isc

 $\label{eq:c:lusersclim} C: \label{eq:c:lusersclim} C: \label{eq:c:lusersc$

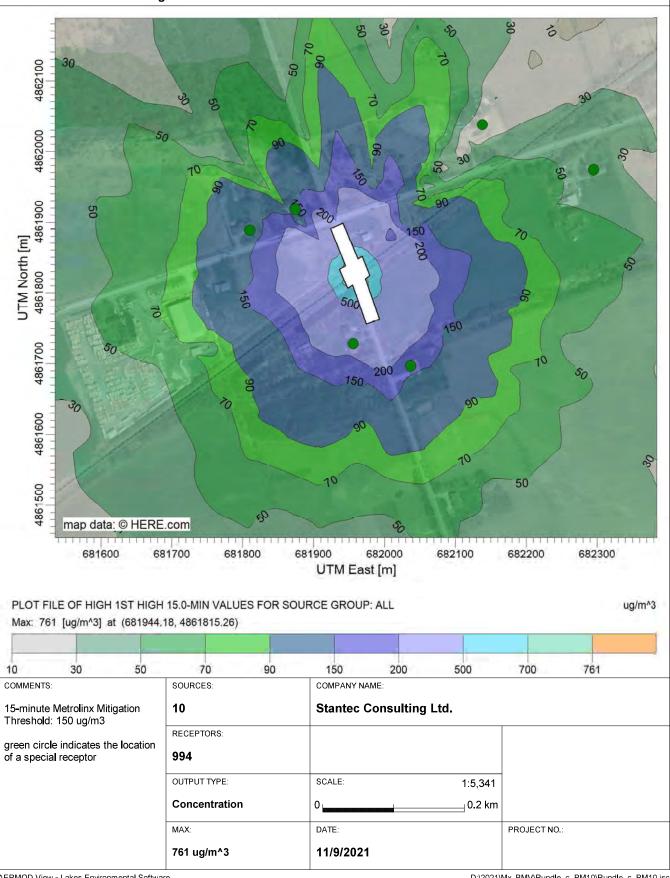
 $\label{eq:c:lusersclim} C: \label{eq:c:lusersclim} C: \label{eq:c:lusersc$

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental Project Report: Air Quality Technical Report


Appendix F Contour Plots (Project Alone Concentrations)

PROJECT TITLE: Figure F-1: Rundle Road Crossing Construction - Contour Plot for Nitrogen Dioxide Predicted 1-hour Average 98th Percentile Concentrations 4862000 20 4861900 60 o, UTM North [m] 1700 4861800 20 4861700 60 40 4861600 20 20 4861500 map data: © HERE.com 682300 682000 682100 681600 681800 682200 681900 681700 UTM East [m] PLOT FILE OF 8TH-HIGHEST MAX DAILY 1-HR VALUES AVERAGED OVER 3 YEARS FOR SOURCE GROUP: ALL ug/m^3 Max: 119 [ug/m^3] at (681983.52, 4861759.53) 20 40 60 83 100 119 COMMENTS: SOURCES: COMPANY NAME: 1-hour 2020 CAAQS: 119 ug/m3 1-hour 2025 CAAQS: 83 ug/m3 Stantec Consulting Ltd. 10 RECEPTORS: green circle indicates the location 994 of a special receptor OUTPUT TYPE: SCALE: 1:4,792 Concentration 0.1 km 0 MAX: DATE: PROJECT NO .: 119 ug/m^3 4/16/2022

AERMOD View - Lakes Environmental Software


D:\2021\Mx_BMV_reruns\Rundle_c_no2_3\Rundle_c_no2_3.isc

AERMOD View - Lakes Environmental Software

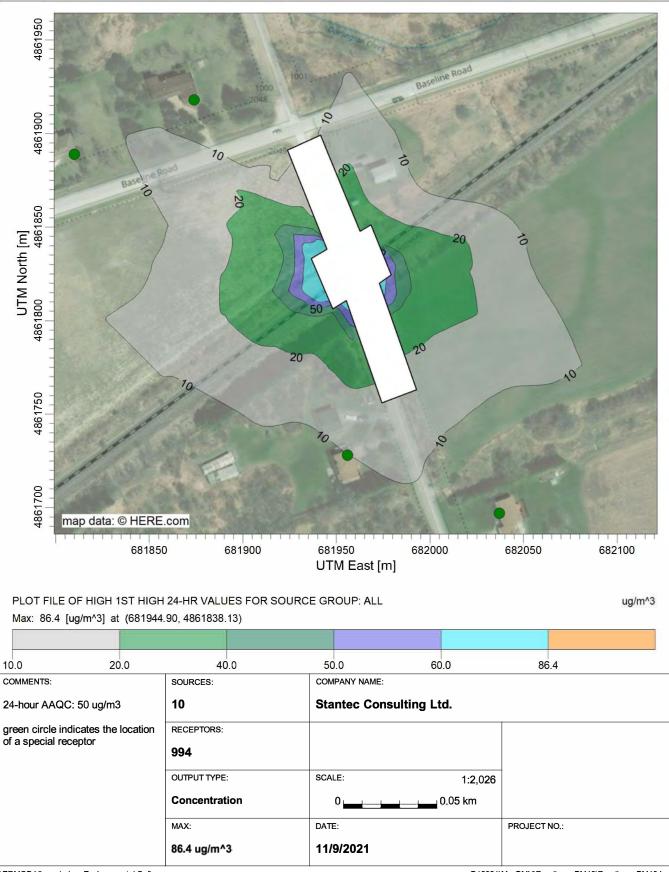
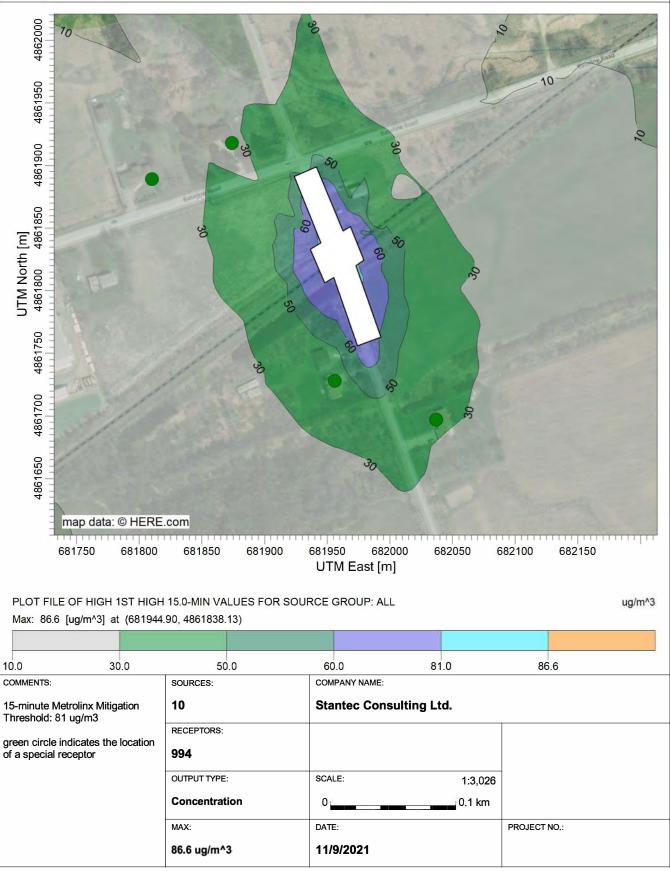

 $D:\label{eq:linear} D:\label{eq:linear} D:\l$

Figure F-3: Rundle Road Crossing Construction - Contour Plot for PM10 **Predicted 15-minute Average Concentrations**

D:\2021\Mx_BMV\Rundle_c_PM10\Rundle_c_PM10.isc


Figure F-4: Rundle Road Crossing Construction - Contour Plot for PM10 Predicted 24-hour Average Concentrations

AERMOD View - Lakes Environmental Software

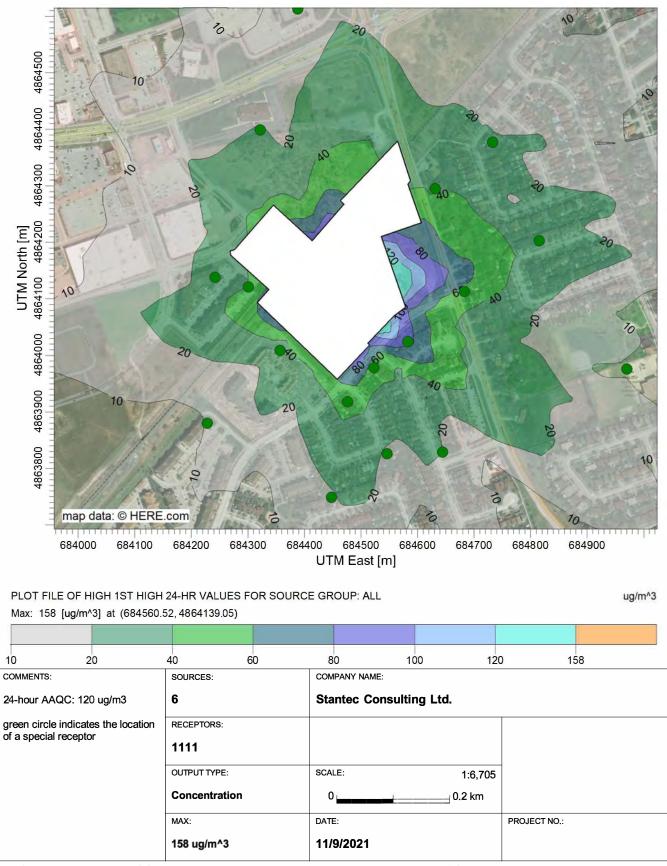
D:\2021\Mx_BMV\Rundle_c_PM10\Rundle_c_PM10.isc

Figure F-5: Rundle Road Crossing Construction - Contour Plot for PM2.5 Predicted 15-minute Average Concentrations

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\Rundle_c_PM25\Rundle_c_PM25.isc

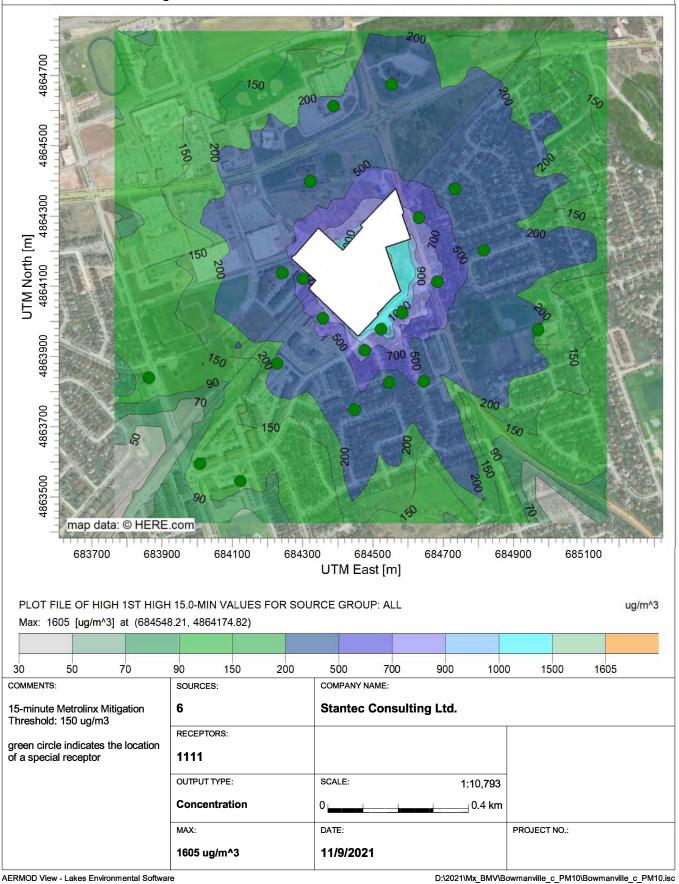
PROJECT TITLE: Figure F-6: Rundle Road Crossing Construction - Contour Plot for Crystalline Silica **Predicted 15-minute Average Concentrations** 5 5 4861950 10 4861900 5 5 UTM North [m] 1861800 4861850 4861800 3 4861750 15 10 4861700 10 5 map data: © HERE.com 681800 681850 681900 681950 682000 682050 682150 682100 UTM East [m] PLOT FILE OF HIGH 1ST HIGH 15.0-MIN VALUES FOR SOURCE GROUP: ALL ug/m^3 Max: 39.3 [ug/m^3] at (681944.18, 4861815.26) 5.0 10.0 20.0 30.0 39.3 15.0 25.0 COMMENTS: SOURCES: COMPANY NAME: Stantec Consulting Ltd. 15-minute Metrolinx Mitigation 10 Threshold: 25 ug/m3 RECEPTORS: green circle indicates the location 994 of a special receptor OUTPUT TYPE: SCALE: 1:2.611 **0.05** km Concentration 0 MAX: DATE: PROJECT NO .:

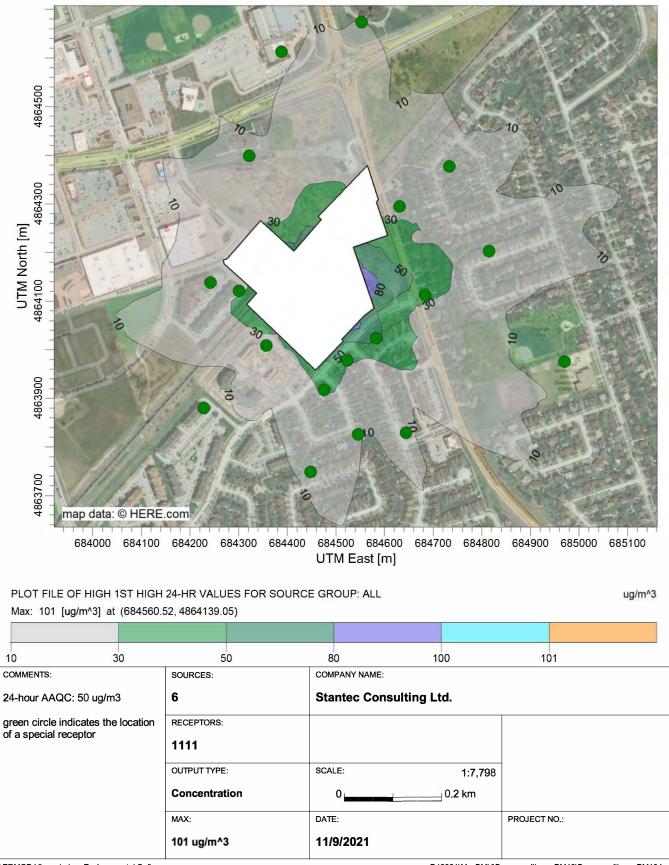

11/9/2021

AERMOD View - Lakes Environmental Software

39.3 ug/m^3

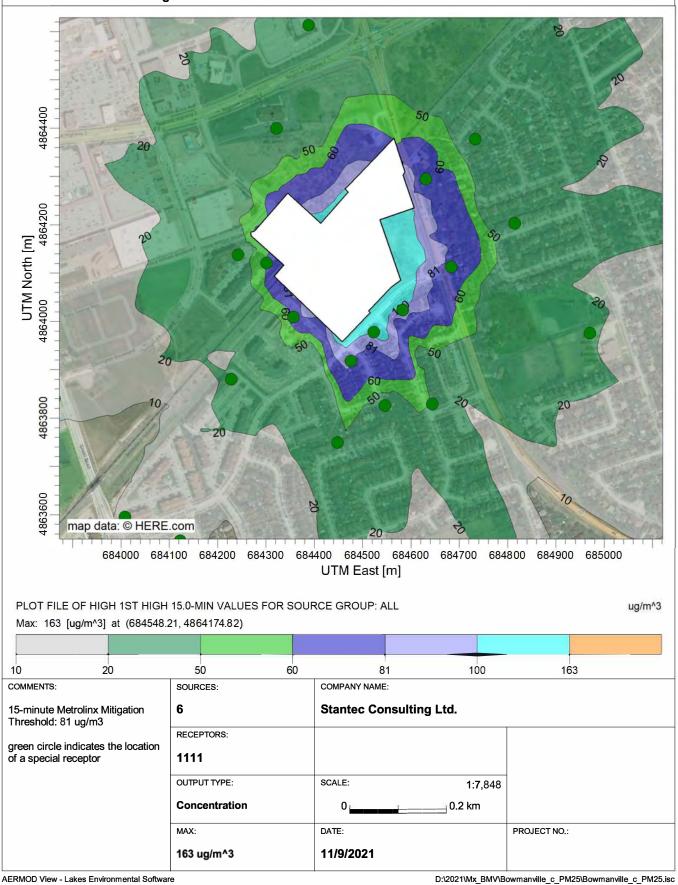
D:\2021\Mx_BMV\Rundle_c_CS\Rundle_c_CS.isc

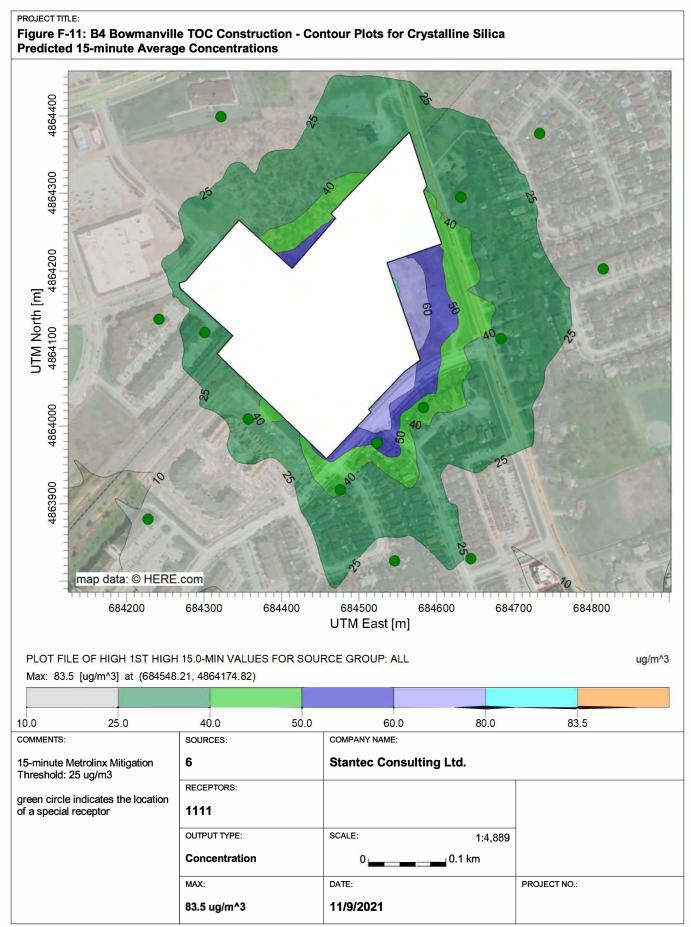


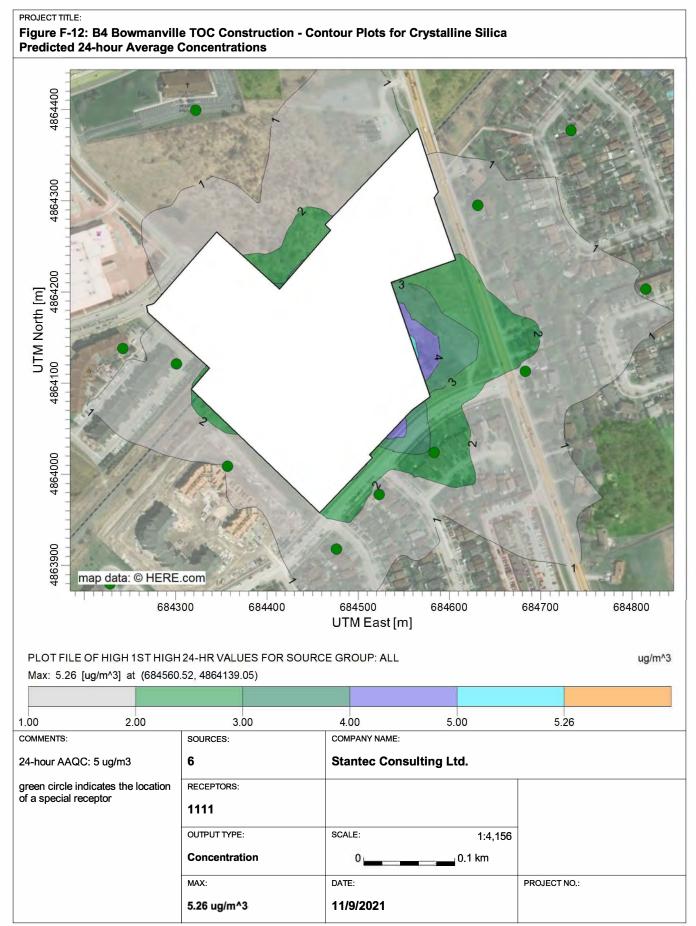

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\Bowmanville_c_TSP\Bowmanville_c_TSP.isc

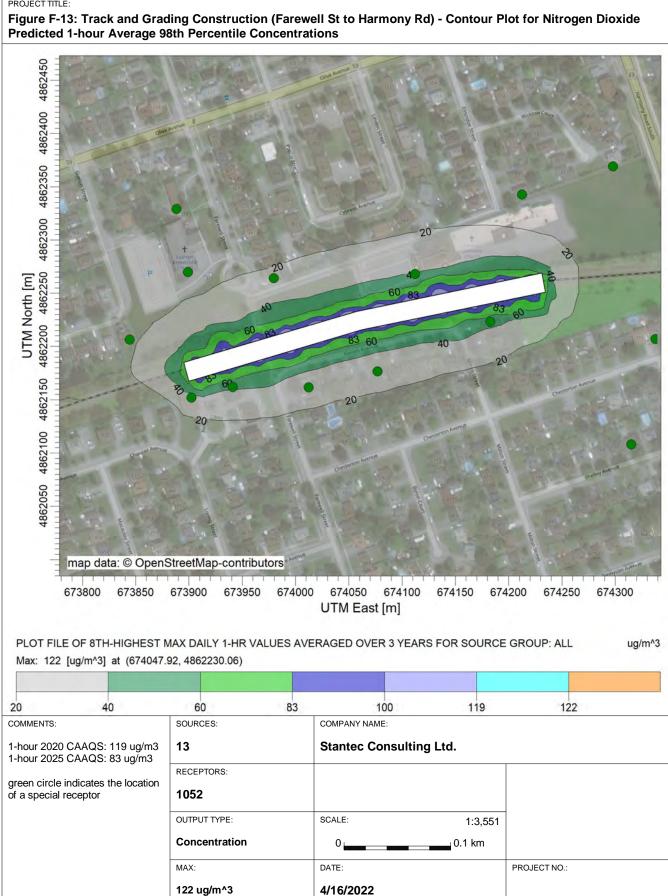
Figure F-8: B4 Bowmanville TOC Construction - Contour Plot for PM10 Predicted 15-minute Average Concentrations

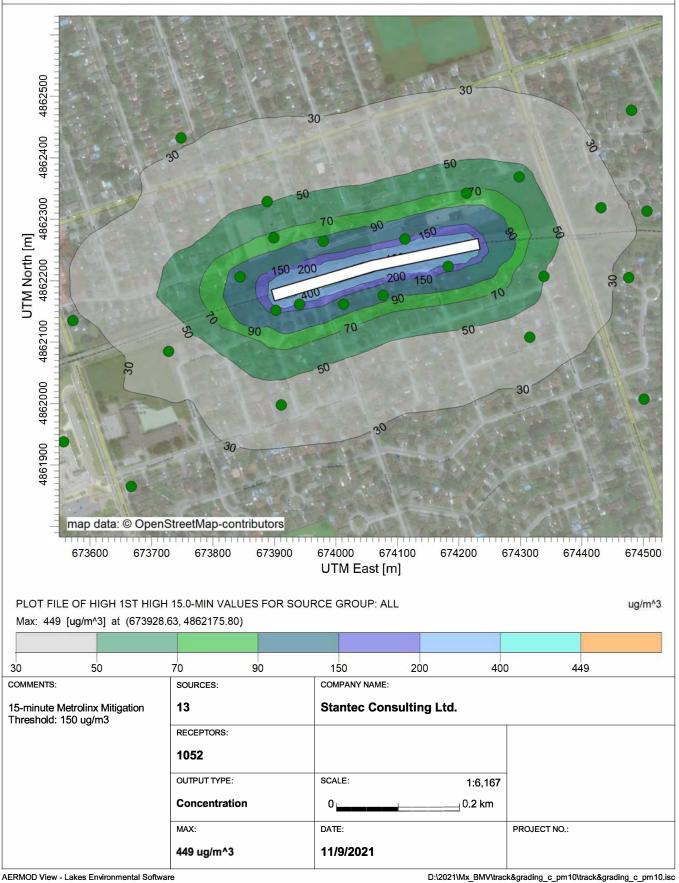

Figure F-9: B4 Bowmanville TOC Construction - Contour Plot for PM10 Predicted 24-hour Average Concentrations

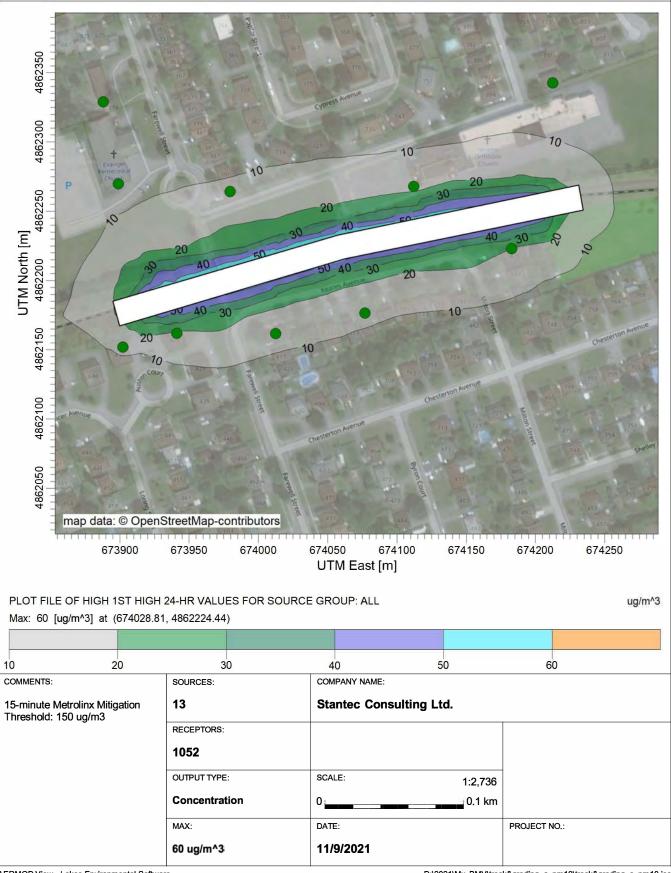



AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\Bowmanville_c_PM10\Bowmanville_c_PM10.isc


Figure F-10: B4 Bowmanville TOC Construction - Contour Plot for PM2.5 Predicted 15-minute Average Concentrations


D:\2021\Mx_BMV\Bowmanville_c_CS\Bowmanville_c_CS.isc


AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV_reruns\track&grading_c_no2_3\track&grading_c_no2_3.isc

Figure F-14: Track and Grading (Farewell Street to Harmony Road) - Contour Plot for PM10 Predicted 15-minute Average Concentrations

Figure F-15: Track and Grading (Farewell Street to Harmony Road) - Contour Plot for PM10 Predicted 24-hour Average Concentrations

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\track&grading_c_pm10\track&grading_c_pm10.isc

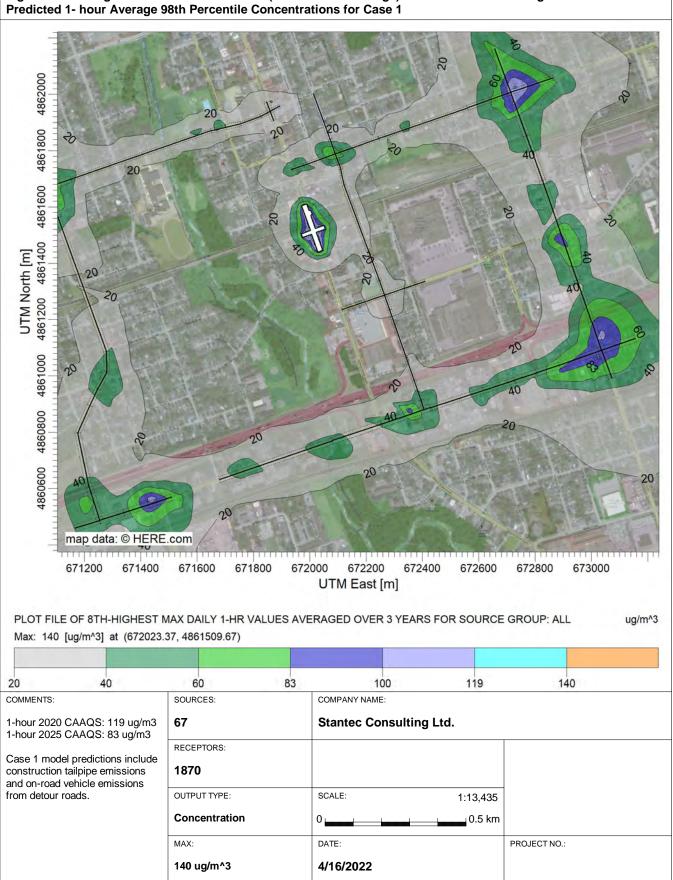
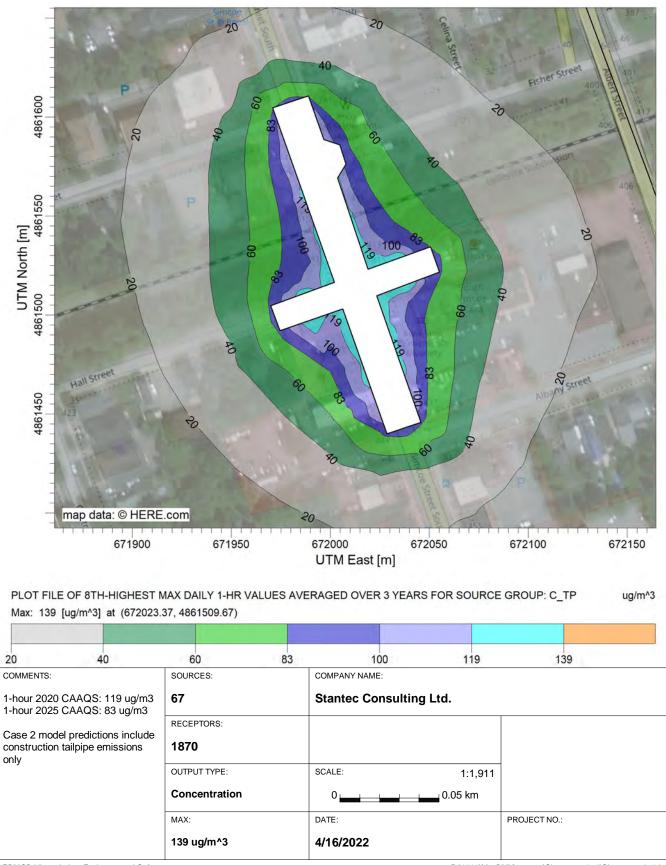
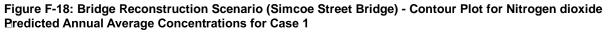
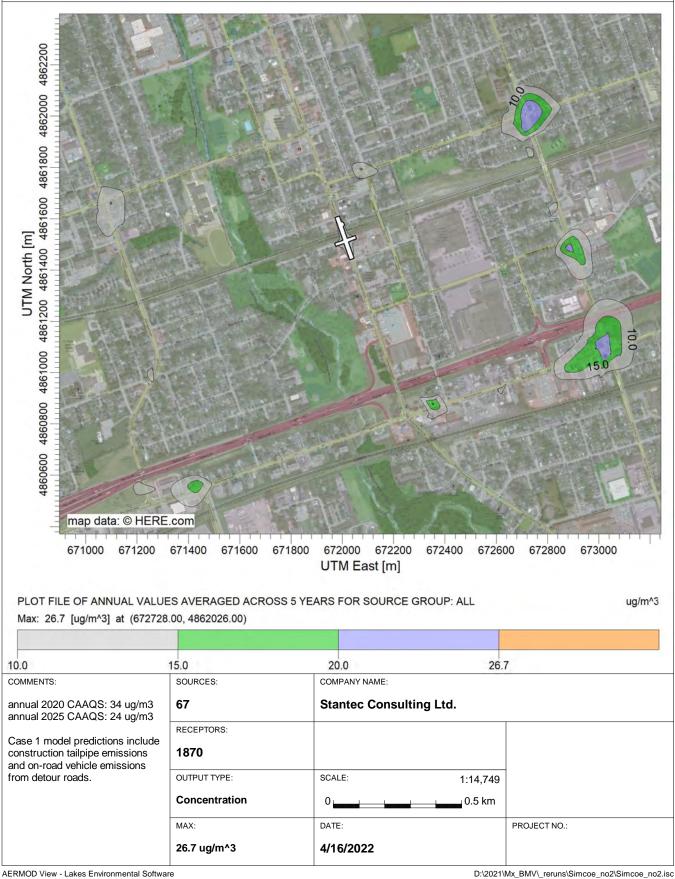
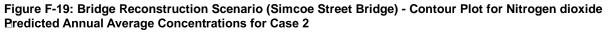



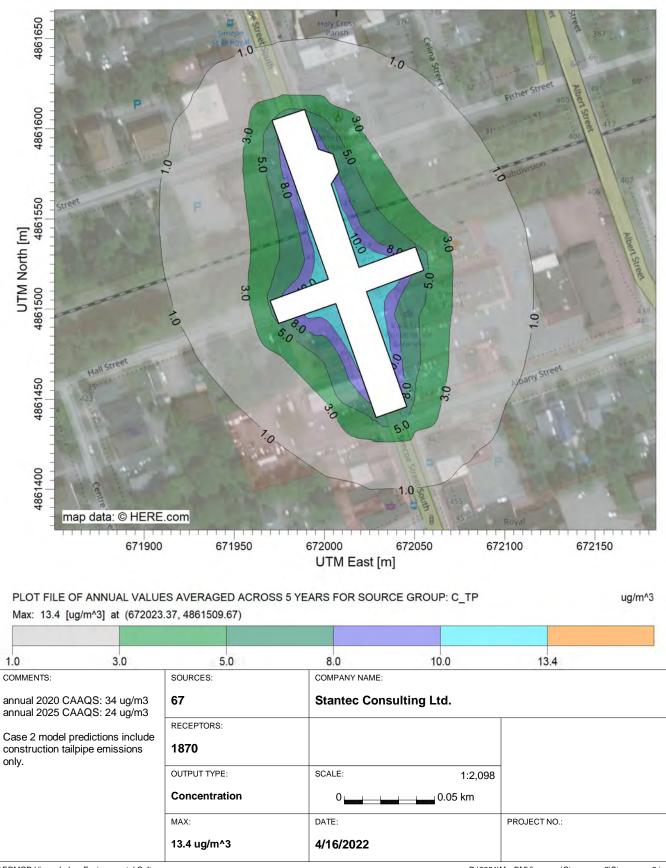
Figure F-16: Bridge Reconstruction Scenario (Simcoe Street Bridge) - Contour Plot for Nitrogen dioxide

AERMOD View - Lakes Environmental Software


D:\2021\Mx_BMV_reruns\Simcoe_no2_2\Simcoe_no2_2.isc

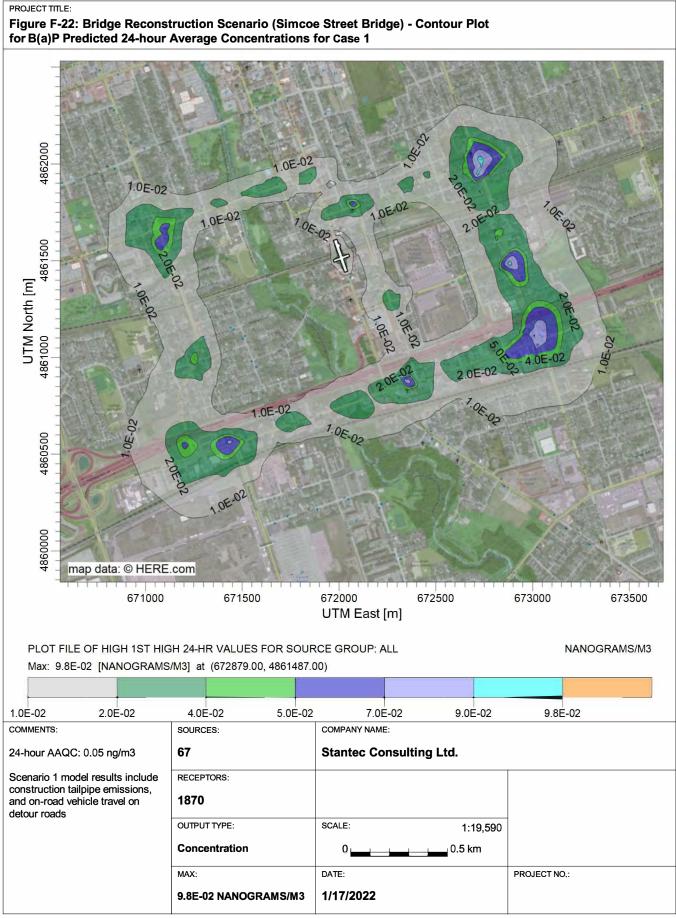





AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV_reruns\Simcoe_no2_2\Simcoe_no2_2.isc

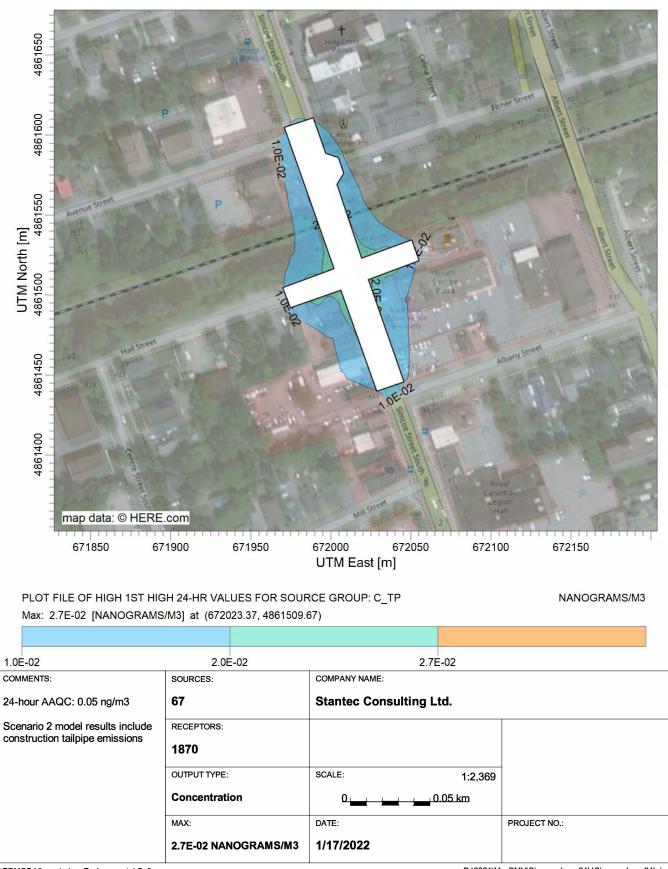
AERMOD View - Lakes Environmental Software


D:\2021\Mx_BMV_reruns\Simcoe_no2\Simcoe_no2.isc

PROJECT TITLE: Figure F-20: Bridge Reconstruction Scenario (Simcoe Street Bridge) - Contour Plot for PM10 Predicted 15-minute Average Concentrations for Case 1 1862000 UTM North [m] 4861500 1861000 4860500 map data: © HERE.com 671500 672000 672500 671000 673000 UTM East [m] PLOT FILE OF HIGH 1ST HIGH 15.0-MIN VALUES FOR SOURCE GROUP: ALL ug/m^3 Max: 349 [ug/m^3] at (671992.70, 4861542.99) 30 50 100 300 349 150 200 COMMENTS: SOURCES: COMPANY NAME: 67 Stantec Consulting Ltd. 15-minute Metrolinx mitigation threshold: 150 ug/m3 RECEPTORS: Scenario 1 model results include 1870 construction tailpipe emissions, construction dust and on-road OUTPUT TYPE: SCALE: vehicle travel on detour roads 1:15,524 Concentration 0.5 km 0 MAX: DATE: PROJECT NO .: 349 ug/m^3 1/17/2022

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\Simcoe_pm10\Simcoe_pm10.isc


PROJECT TITLE: Figure F-21: Bridge Reconstruction Scenario (Simcoe Street Bridge) - Contour Plot for PM10 Predicted 15-minute Average Concentration for Case 2 4861700 30 4861650 100 4861600 UTM North [m] 00 4861550 30 4861500 30 4861450 30 1861400 map data: © HERE.com 671950 672000 671800 671850 671900 672050 672100 672150 UTM East [m] PLOT FILE OF HIGH 1ST HIGH 15.0-MIN VALUES FOR SOURCE GROUP: ALL ug/m^3 Max: 344 [ug/m^3] at (671992.70, 4861542.99) 30 50 100 300 344 150 200 COMMENTS: SOURCES: COMPANY NAME: 67 Stantec Consulting Ltd. 15-minute Metrolinx mitigation threshold:150 ug/m3 RECEPTORS: Scenario 2 model results include 1870 construction tailpipe emissions and construction dust OUTPUT TYPE: SCALE: 1:2,757 Concentration 0.1 km 0 MAX: DATE: PROJECT NO .: 344 ug/m^3 1/17/2022

AERMOD View - Lakes Environmental Software

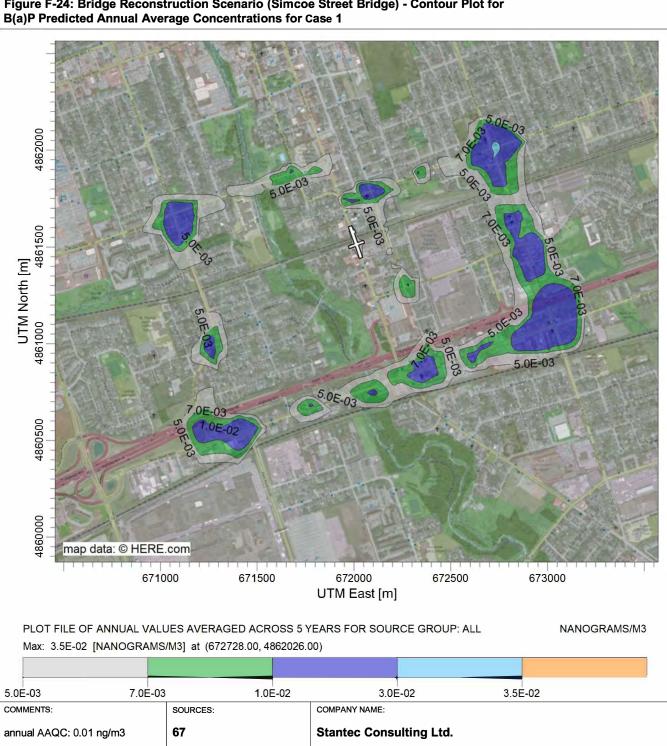

D:\2021\Mx_BMV\Simcoe_bap_24h\Simcoe_bap_24h.isc

Figure F-23: Bridge Reconstruction Scenario (Simcoe Street Bridge) - Contour Plot for B(a)P Predicted 24-hour Average Concentrations for Case 2

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\Simcoe_bap_24h\Simcoe_bap_24h.isc

SCALE:

DATE:

0

1/17/2022

Figure F-24: Bridge Reconstruction Scenario (Simcoe Street Bridge) - Contour Plot for

AERMOD View - Lakes Environmental Software

Scenario 1 model results include construction tailpipe emissions

and on-road vehicle travel on

detour roads

RECEPTORS:

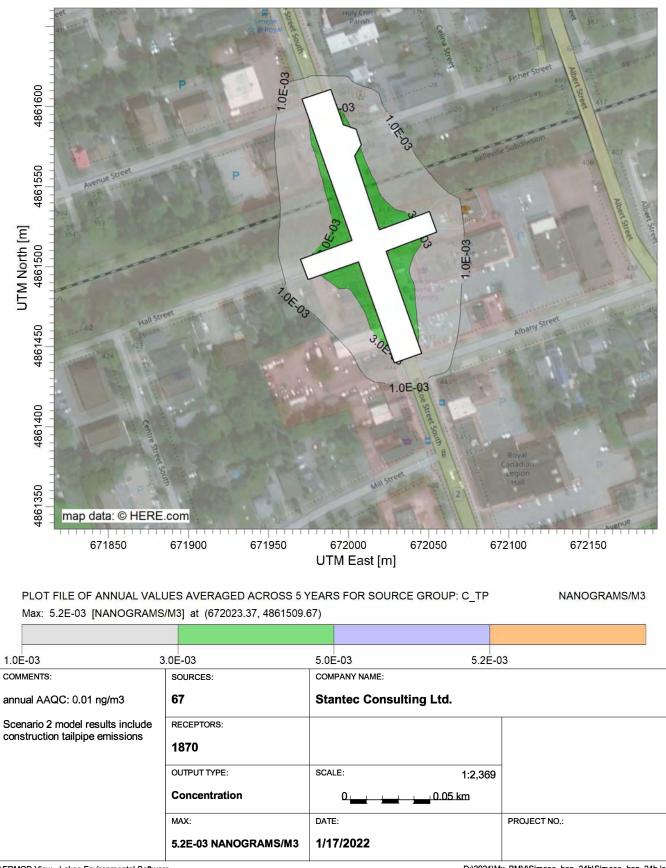
OUTPUT TYPE:

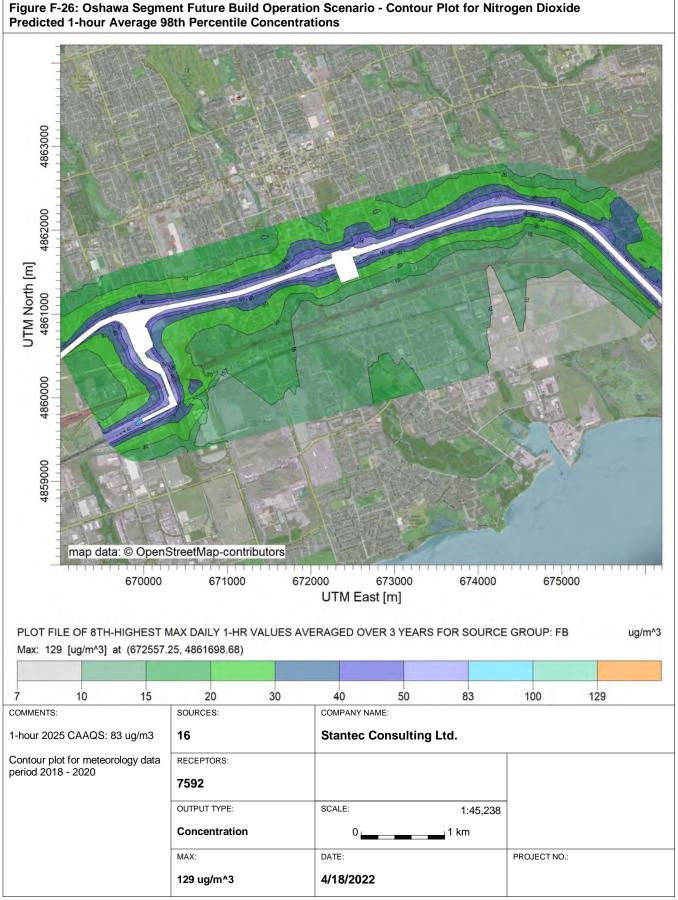
Concentration

3.5E-02 NANOGRAMS/M3

1870

MAX:

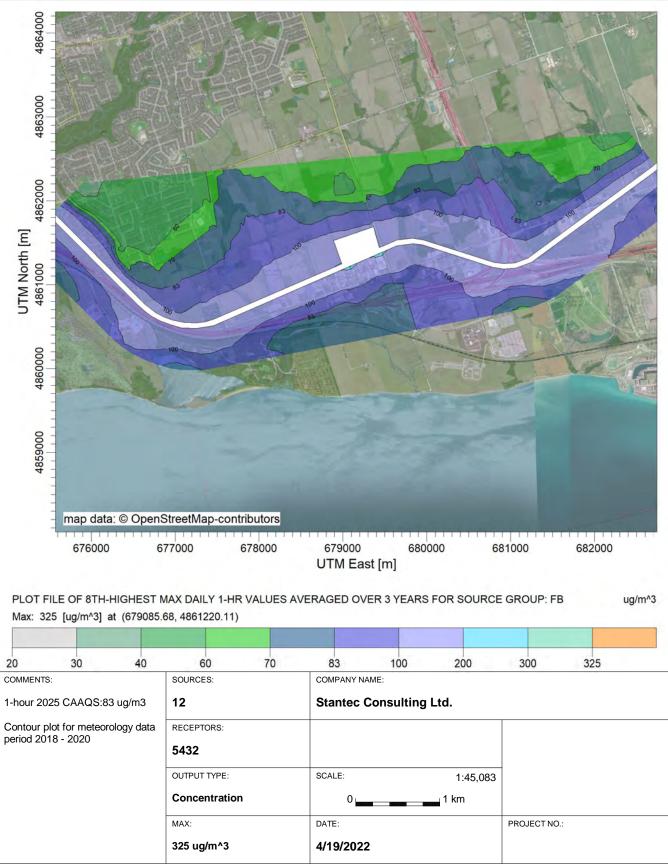

PROJECT NO .:


1:19,591

0.5 km

D:\2021\Mx_BMV\Simcoe_bap_24h\Simcoe_bap_24h.isc

Figure F-25: Bridge Reconstruction Scenario (Simcoe Street Bridge) - Contour Plot for B(a)P Predicted Annual Average Concentrations for Case 2



AERMOD View - Lakes Environmental Software

C:\Users\clim\Documents\Models\Aermod19191\Bowmanville_oshawa\op_Osh_caaqs3\op_Osh_caaqs3.isc

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\op_cou_no2_1h_3\op_cou_no2_1h_3.isc

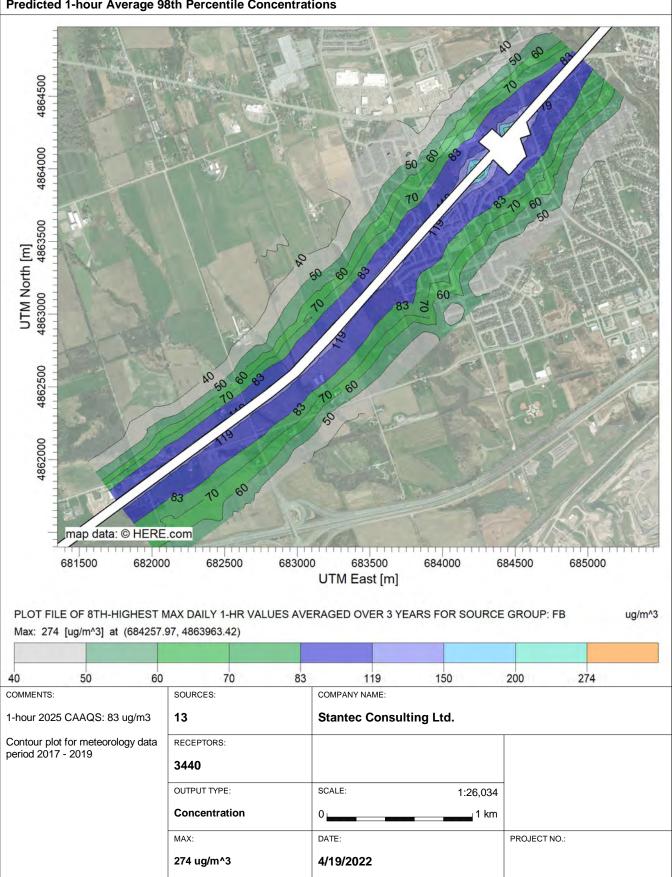
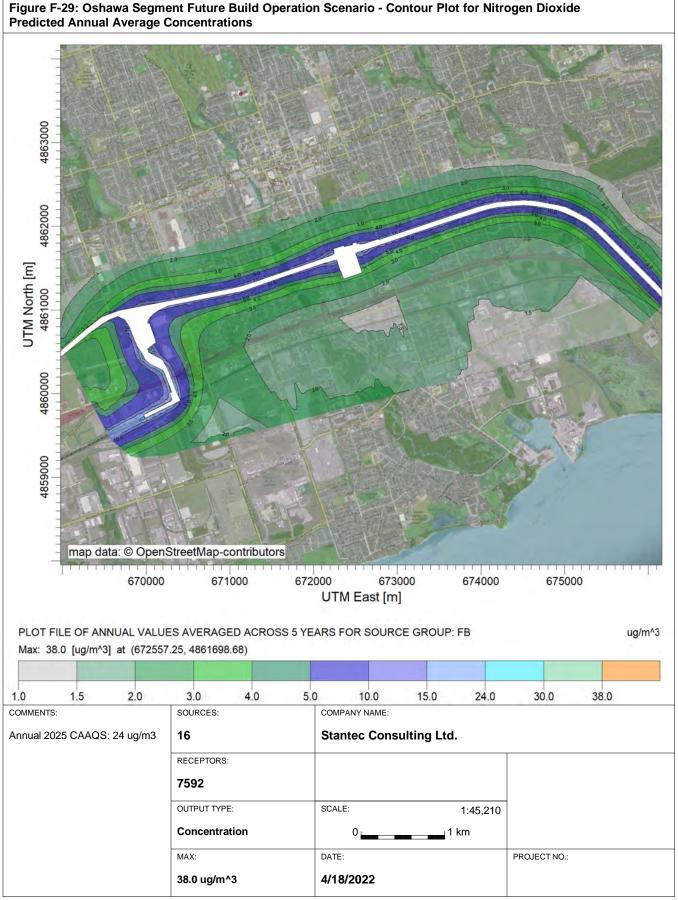
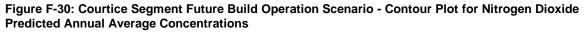
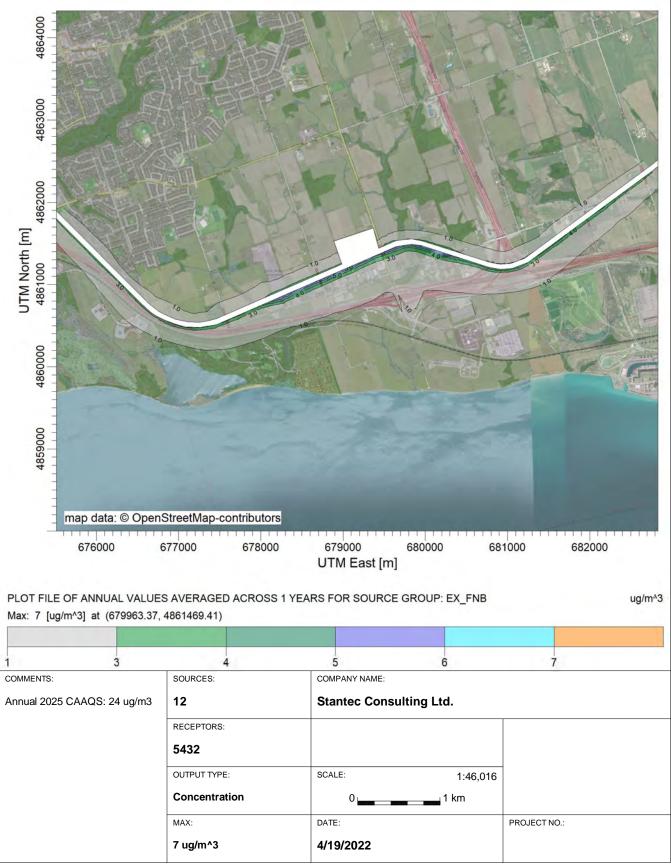



Figure F-28: Bowmanville Segment Future Build Operation Scenario - Contour Plot for Nitrogen Dioxide Predicted 1-hour Average 98th Percentile Concentrations


AERMOD View - Lakes Environmental Software


D:\2021\Mx_BMV\op_bmv_no1_1h_1\op_bmv_no1_1h_1.isc

AERMOD View - Lakes Environmental Software

C:\Users\clim\Documents\Models\Aermod19191\Bowmanville_oshawa\op_Osh_NOx24\op_Osh_NOx24.isc

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\op_cou_no2_24h\op_cou_no2_24h.isc

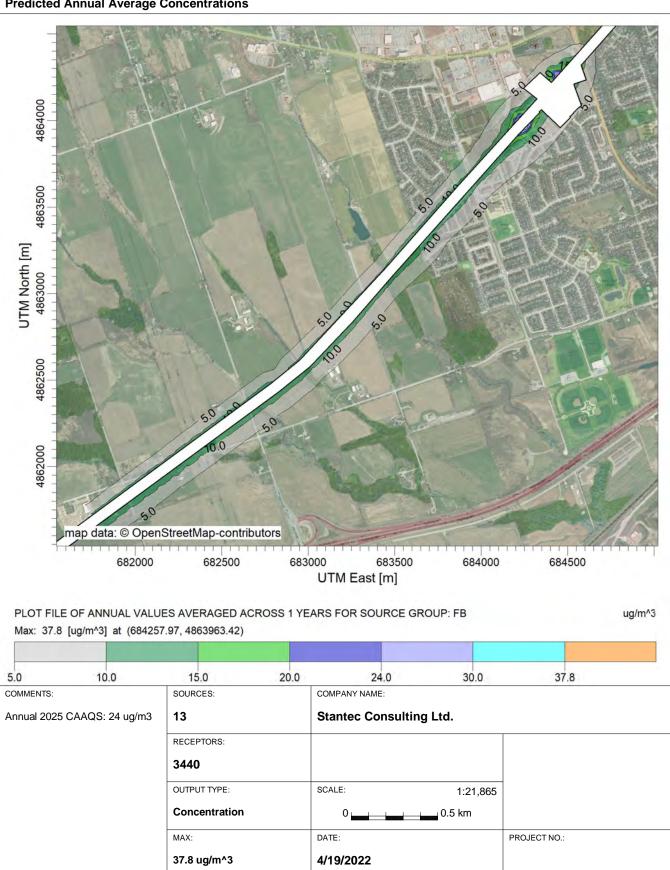


Figure F-31: Bowmanville Segment Future Build Operation Scenario - Contour Plot for Nitrogen Dioxide Predicted Annual Average Concentrations

AERMOD View - Lakes Environmental Software

D:\2021\Mx_BMV\op_bmv_no2_24h\op_bmv_no2_24h.isc

Addendum to Oshawa to Bowmanville Rail Service Extension Environmental **Project Report: Air Quality Technical Report**

Appendix G Greenhouse Gas Emission Sources and **Emission Estimation**

Per the draft "Technical Guide Related to the Strategic Assessment of Climate Change" dated August 2021, Net GHG emissions from the Project are calculated using the following equation:

Net GHG Emissions = Direct GHG Emissions + Acquired Energy GHG Emissions - Avoided Domestic GHG Emissions

- Offset measures

Summary of Site-Wide Project GHG Emissions in kt CO2e

Construction 2022 2023 2024 Operation 2025 2026 2027 2028 2030 2031 2032 2034 2035 2034 2035 2036 2037 2038 2039 2038 2039 2040 2041	4.0969 4.0969 4.0969 14.7075	emissions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	emissions 0 0 0 0 0 3.9971 4.0770 4.1586 4.2417 4.3266 4.4131 4.5014 4.5014 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0969 4.0969 4.0969 11.0187 10.9372 10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2023 2024 Operation 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2034	4.0969 4.0969 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0 03883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3.9971 4.0770 4.1586 4.2417 4.3266 4.4131 4.5014 4.5014 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0969 4.0969 11.0986 11.0187 10.9372 10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2024 Dperation 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030	4.0969 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3.9971 4.0770 4.1586 4.2417 4.3266 4.4131 4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.0969 11.0986 11.0187 10.9372 10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
Deperation 2025 2026 2027 2028 2029 2030 2033 2034 2035 2036 2037 2038 2039	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.9971 4.0770 4.1586 4.2417 4.3266 4.4131 4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0 0 0 0 0	11.0986 11.0187 10.9372 10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2036 2037 2038 2039 2040	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0 0 0 0 0	4.0770 4.1586 4.2417 4.3266 4.4131 4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0 0 0 0	11.0187 10.9372 10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2026 2027 2028 2029 2030 2031 2031 2032 2033 2034 2035 2036 2037 2038 2039 2039	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0 0 0 0 0	4.0770 4.1586 4.2417 4.3266 4.4131 4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0 0 0 0	11.0187 10.9372 10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2027 2028 2029 2031 2032 2033 2034 2035 2036 2037 2038 2039 2034	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0 0 0 0	4.1586 4.2417 4.3266 4.4131 4.5014 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0 0 0	10.9372 10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2034	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0 0 0	4.2417 4.3266 4.4131 4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0 0 0	10.8540 10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2029 2030 2031 2032 2033 2034 2035 2035 2035 2036 2037 2038 2039 2040 2040 2040 205 205 205 205 205 205 205 205 205 20	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0 0 0	4.3266 4.4131 4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0 0	10.7692 10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0 0	4.4131 4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0 0	10.6826 10.5944 10.5043 10.4125 10.3188 10.2233
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0 0	4.5014 4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0 0	10.5944 10.5043 10.4125 10.3188 10.2233
2032 2033 2034 2035 2036 2036 2037 2038 2038 2039 2040	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0 0	4.5914 4.6832 4.7769 4.8724 4.9699	0 0 0 0	10.5043 10.4125 10.3188 10.2233
2033 2034 2035 2036 2037 2038 2039 2039 2040	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0 0	4.6832 4.7769 4.8724 4.9699	0 0 0	10.4125 10.3188 10.2233
2034 2035 2036 2037 2038 2039 2040 2040 2040 2051 2051 2051 2051 2051 2051 2051 205	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883 0.3883 0.3883	0 0 0	4.7769 4.8724 4.9699	0	10.3188 10.2233
2035 2036 2037 2038 2039 2040	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883 0.3883	0	4.8724 4.9699	0	10.2233
2036 2037 2038 2039 2040	14.7075 14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883 0.3883	0	4.9699		
2037 2038 2039 2040	14.7075 14.7075 14.7075 14.7075 14.7075	0.3883 0.3883			U	10.1259
2038 2039 2040	14.7075 14.7075 14.7075 14.7075	0.3883		5.0693	0	10.0265
2039 2040	14.7075 14.7075 14.7075		0	5.1707	0	9.9251
2040	14.7075 14.7075		0	5.2741	0	9.8217
2041		0.3883	0	5.3796	0	9.7162
		0.3883	0	5.4871	0	9.6086
2042	14.7075	0.3883	0	5.5969	0	9.4988
2043	14.7075	0.3883	0	5.7088	0	9.3869
2044	14.7075	0.3883	0	5.8230	0	9.2727
2045	14.7075	0.3883	0	5.9395	0	9.1563
2046	14.7075	0.3883	0	6.0583	0	9.0375
2047	14.7075	0.3883	0	6.1794	0	8.9163
2048	14.7075	0.3883	0	6.3030	0	8.7927
2049	14.7075	0.3883	0	6.4291	0	8.6667
2050	14.7075	0.3883	0	6.4291	0	8.6667
2051 2052	14.7075	0.3883	0	6.4291	0	8.6667
2052	14.7075 14.7075	0.3883 0.3883	0	6.4291 6.4291	0	8.6667 8.6667
2054	14.7075	0.3883	0	6.4291	0	8.6667
2055	14.7075	0.3883	0	6.4291	0	8.6667
2056	14.7075	0.3883	0	6.4291	0	8.6667
2057	14.7075	0.3883	0	6.4291	0	8.6667
2058	14.7075	0.3883	0	6.4291	0	8.6667
2059	14.7075	0.3883	0	6.4291	0	8.6667
2060	14.7075	0.3883	0	6.4291	0	8.6667
2061	14.7075	0.3883	0	6.4291	0	8.6667
2062	14.7075	0.3883	0	6.4291	0	8.6667
2063	14.7075	0.3883	0	6.4291	0	8.6667
2064	14.7075	0.3883	0	6.4291	0	8.6667
2065	14.7075	0.3883	0	6.4291	0	8.6667
2066	14.7075	0.3883	0	6.4291	0	8.6667
2067	14.7075	0.3883	0	6.4291	0	8.6667
2068	14.7075	0.3883	0	6.4291	0	8.6667
2069	14.7075	0.3883	0	6.4291	0	8.6667
2070	14.7075	0.3883	0	6.4291	0	8.6667
2071	14.7075	0.3883	0	6.4291	0	8.6667
2072	14.7075	0.3883	0	6.4291	0	8.6667
2073	14.7075 14.7075	0.3883	0	6.4291	0	8.6667
2074	14.7075	0.3883 0.3883	0	6.4291 6.4291	0	8.6667 8.6667
2075	14.7075	0.3883	0	6.4291	0	
2076	14.7075	0.3883	0	6.4291	0	8.6667 8.6667
2078	14.7075	0.3883	0	6.4291	0	8.6667
2079	14.7075	0.3883	0	6.4291	0	8.6667
2079	14.7075	0.3883	0	6.4291	0	8.6667
2081	14.7075	0.3883	0	6.4291	0	8.6667
2082	14.7075	0.3883	0	6.4291	0	8.6667
2083	14.7075	0.3883	0	6.4291	0	8.6667
2084	14.7075	0.3883	0	6.4291	0	8.6667
Decommissioning						

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Project Construction GHG Emissions Summary

Summary of Site-Wide GHG Emissions

Source Group	CO2 (kt)	CH4 (kt)	N2O (kt)	Total GHG Emissions (kt CO2 eq)			
Land Use Change							
Land Clearing		0.2308	0.2308				
Track & Grading							
On-road and Off-road equipment on-site	2.68	1.40E-04	8.19E-05	3.7099			
Station Platforms							
On-road and Off-road equipment on-site	2.44	1.28E-04	7.48E-05	3.5681			
Bridge Expansions							
modified bridges							
On-road and Off-road equipment on-site	0.10	5.32E-06	3.12E-06	0.1897			
new bridges							
On-road and Off-road equipment on-site	1.43	7.47E-05	4.38E-05	2.0354			
bridge replacements							
On-road and Off-road equipment on-site	1.72	9.01E-05	5.28E-05	2.3981			
At-Grade Crossing upgrades							
On-road and Off-road equipment on-site	0.12	6.37E-06	3.73E-06	0.1588			
Total GHG Emissions Duri	ng Construction	(kt CO2 eq over	a 3-year period)	12.2908			
Estimated Annual GHG Emissions During Construction 4.0969							

Note: The original GHG assessment assumes that Albert Street Bridge will be reconstructed. Since the completion of the original GHG assessment, Albert Street Bridge will only be removed and not reconstructed. The GHG quantification has not been updated to reflect this change. The results should be conservative.

Summary of Site-Wide GHG Emissions

Source Group	CO2 (kt)	CH4 (kt)	N2O (kt)	Estimated GHG Emissions (kt CO2 eq/year)
Direct Emission Sources				
GO Trains	12.1430	6.75E-04	4.66E-03	13.5490
GO Buses	1.1414	5.96E-05	3.49E-05	1.1533
Stationary fuel combustion equipment	0.0051	1.38E-07	4.17E-08	0.0051
Indirect Emission Sources				
Electricity consumption		0.3883	0.3883	
	Total GHG D	uring Operation	(kt CO2 og/year)	15 0957

Total GHG During Operation (kt CO2 eq/year) 15.0957

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Project Construction Component: Land Use Change

Greenhouse Gas Emissions During Project Construction: Land Clearing
Description:

Greenhouse gas (GHG) emissions generated as a result of land clearing.

Contaminant(s) of Concern: Emissions of stored CO2.

 Land clearing area
 121 acres
 estimated vegetative area within Project footprint

 Type of existing vegetation in area to be cleared
 Upland mixed wood forest
 worst case assumption

Since the area to be cleared does not contain a significant amount of forested area, greenhouse gas emissions from the change in land cover is expected to be insignificant. To illustrate the impact, 121 acres of fully forested land typically has 230.8 tonnes CO2e sink potential.

Emissions from equipment used for any land clearing is included in the construction vehicles calculations.

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Project Construction Component: Track & Grading

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Description:

Greenhouse gas (GHG) emissions generated as a result of fuel combustion in the equipment used during track and grading of the new corridor. The fuel combustion sources will be the following equipment during construction, and expected annual GHG emissions (in CO2 equivalents) from each of these sources are estimated in this datasheet. On-road construction
 Off-road construction

Contaminant(s) of Concern:

Emissions of CO2, CH4 and N2O in the form of CO2e

GWP	
1	
25	
298	1
-	1 25

Methodology: Emission Factor (EF)

Diesel is the primary fuel that will be used in the onsite construction equipment. Emissions are estimated based on (1) GHG emission factors from published resources relevant to the fuel combustion equipment to be used during the construction; and (2) estimated fuel usage for each type of equipment.

GHG Emission Calculations:

Constants for Calculations

Diesel HHV	38.50	GJ/kL	36,490,955	Btu/m3	Ontario GHG Guideline 2019, Table 20-1a
Thermal efficiency (diesel engine)	8089	Btu/hp-hr	A		API Compendium (2009), Table 4-2
Conversion factor	1000	Lin 1 m3			
Conversion factor	0.1589873	m3 in 1 bbl			
Conversion factor	947817	Btu/m3 in 1 Gj/kl			

The calculations for fuel usage are following the equation presented in API (2009); Equation 4-5

 $FC = ER \times LF \times OT \times ETT \times \frac{1}{HV}$

(Equation 4-5)

- HV FC = annual fuel consumed (volume'yr); ER = equipment rating (hp, kW, or J); LF = equipment toad factor (fraction); OT = annual operating time (hr/yr); ETT = equipment thermal efficiency (Btu_{input}/hp-hr_{output}, Btu_{input}/kW-hr_{output}, or J_{input}/J_{oupput}); and HV = fuel heating value (energy/volume).

The calculations for GHG emissions follow the equation:

Construction Off-Road and On-Road Mobile Equipment Emissions

Description:

Off-road and On-Road equipment will be used during construction of the facility. Tailpipe emissions of GHGs due to the fuel combustion would be generated from these sources

	Construction Phase						Grading			Track			
Type of Equipment ¹	Power Rating (hp/equipment) ²	Fuel Type	Operating Load ³	Equipment Type	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Grading	Track	Total
Backhoe	120	Diesel	40%	Off-Road	2	50%	18			18	32,176	0	32,176
Ballast regulator	250	Diesel	50%	Off-Road			18	2	50%	6	0	27,931	27,931
Bobcat	115	Diesel	40%	Off-Road			18	1	50%	18	0	15,418	15,418
Compactor	100	Diesel	20%	Off-Road	2	50%	18			18	13,407	0	13,407
Concrete truck	500	Diesel	40%	On-Road	4	10%	18			18	53,627	0	53,627
Crane	270	Diesel	16%	Off-Road	1	50%	18	1	10%	18	14,479	2,896	17,375
Dump Truck	600	Diesel	40%	On-Road	4	50%	18	2	50%	18	321,760	160,880	482,641
Dynamic stabilizer	475	Diesel	50%	Off-Road			18	1	50%	6	0	26,534	26,534
Flatbed truck	360	Diesel	40%	On-Road	1	10%	18	1	50%	18	9,653	48,264	57,917
Flash butt rail welder	402	Diesel	40%	Off-Road			18	1		6	0	0	0
Front end loader	300	Diesel	40%	Off-Road	2	50%	18	1	50%	18	80,440	40,220	120,660
Grader	200	Diesel	40%	Off-Road	2	50%	18			18	53,627	0	53,627
Locomotive / rail cars	-	-	-	-			18	1	0%	18	-	-	-
Pickup truck	290	Diesel	40%	On-Road	4	50%	18	6	50%	18	155,518	233,276	388,794
Rail drill	4	Diesel	20%	Off-Road			18	1	10%	18	0	54	54
Rail grinder	30	Diesel	50%	Off-Road			18	1	0%	18	0	0	0
Rail saw	50	Diesel	20%	Off-Road			18	1	10%	18	0	670	670
Speedswing	163	Diesel	50%	Off-Road			18	1	50%	18	0	27,316	27,316
Spike machine	140	Diesel	50%	Off-Road			18	1	5%	18	0	2,346	2,346
Track liner/tamper	270	Diesel	50%	Off-Road			18	2	50%	6	0	30,165	30,165
Water truck	285	Diesel	40%	On-Road	1	10%	18	1	10%	18	7,642	7,642	15,284
Zoomboom	110	Diesel	20%	Off-Road			18	1	10%	18	0	1,475	1,475
											742,328	625,087	1,367,415

1

Notes:

1) Equipment that may be used onsite and duration is estimated by the project design team.
2) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction.
3) Not all the equipment will be operating at their full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction PWAR Roadway Construction Noise Model User's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration.
An "acoustical usage factor" for each type of construction equipment is used to estimate the fraction of time each piece of construction equipment is operating at full power during a construction operation. The acoustical usage factor is also considered as the duty cycle / operating load usage factor of the construction equipment.
A) Construction activities as \$100 mm for an \$500 mm for an \$60 mm for an \$

4) Construction activities will occur during 8:00 a.m. to 5:00 p.m. for an 8 hour work day (1 hour assumed for breaks), Monday to Friday. Each piece of equipment will not be operational for the entire work day. The % of time each piece of equipment is used is estimated by the Project design team.

5) Assumes 1 month has, on average, 21 working days.

GHG emission calculation - Off-road Diesel Equipr

Data	Value	Unit	Reference / Note				
Total fuel usage Diesel	369,153	L	Calculated				
Emission Factors:							
CO2	2680.5	g/L					
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 1-3				
N2O	0.022	g/L	1				
CO2	2680.5	g/L					
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 4				
N2O	0.227	g/L	1				
Emissions Diesel:							
CO2	989,515	kg	Calculated				
CH4	26.9	kg	Calculated				
N2O	53.5	kg	Calculated				
Total emissions	1,006.1	tonne CO2eq	Calculated				
Note:			•				
It is assumed that construction equipment to be used will be either US EPA Tier 3 or Tier 4 emission compliant at the following ratios: Tier 3							
			Tier 4 60%				
GHG emission calculation - On-road Dies	el Equipment:						

Data	Value	Unit	Reference / Note
HDDVs Total fuel usage	998,262	L	Calculated
LDDTs Total fuel usage	0	L	Calculated
HDDVs Emission Factors:			
CO2	2680.5	g/L	
CH4	0.14		Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Diesel: HDDVs Moderate Control.
N2O	0.082	g/L	
LDDTs Emission Factors:			
CO2	2680.5	g/L	
CH4	0.068		Environment Canada 2022, NIR 1990-2021, Annex 6, Table A6.1-14 Road Transport: Diesel: LDDTs Moderate Control.
N20	0.21	g/L	
Emissions Diesel:			
CO2	2,675,841	kg	Calculated
CH4	140	kg	Calculated
N2O	82	kg	Calculated
Total emissions	2,704	tonne CO2eq	Calculated

Summary of Site-Wide GHG Emissions

Source Group	Estimated GHG Emissions (kt CO2 eq)	Total GHG Emissions (kt CO2 eq)
Off-road equipment on-site	1.0061	3,7099
On-road equipment on-site	2.7037	3.7099

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Project Construction Component: Stations

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Description: Greenhouse gas (GHG) emissions generated as a result of fuel combustion in the equipment used during the construction of each station.

The fuel combustion sources will be the following equipment during construction, and expected annual GHG emissions (in CO2 equivalents) from each of these sources are estimated in this data • On-road construction • Off-road construction

Contaminant(s) of Concern: Emissions of CO2, CH4 and N2O in the form of CO2e

Global Warming Potentials (GWPs): GHG GWP

 CO2
 1

 CH4
 25

 N2O
 298

 Source: ECCC 2021 NIR 1990-2019 Part 1., these values are from the IPCC Fourth Assessment Report (IPCC, 2012).

Methodology: Emission Factor (EF) Diesel is the primary fuel that will be used in the onsite construction equipment. Emissions are estimated based on (1) GHG emission factors from published resources relevant to the fuel combustion equipment to be used during the construction; and (2) estimated fuel usage for each type of equipment.

GHG Emission Calculations:

Constants for Calculations					
Diesel HHV	38.50	GJ/kL	36,490,955	Btu/m3	Ontario GHG Guideline 2019, Table 20-1a
Thermal efficiency (diesel engine)	8089	Btu/hp-hr			API Compendium (2009), Table 4-2
Conversion factor	1000	Lin 1 m3			
Conversion factor	0.1589873	m3 in 1 bbl			
Conversion factor	947817	Btu/m3 in 1 Gj/kl			

(Equation 4-5)

The calculations for fuel usage are following the equation presented in API (2009); Equation 4-5

$FC = ER \times LF \times OT \times ETT \times \frac{1}{HV}$

$$\begin{split} & \text{Were} \\ & \text{Were} \\ & \text{FC} = \text{annual field consumed (volume 'yr);} \\ & \text{ER} = \text{equipment rating (hp, kW, or J);} \\ & \text{LF} = \text{equipment rating (hp, kW, or J);} \\ & \text{TF} = \text{equipment rating (hp, kW, or J);} \\ & \text{TT} = \text{equipment thermal efficiency (Btu spec' hp-hr steps)}, Btu spec' kW-hr steps, or \\ & \text{J}_{starged'} \text{J}_{stapb}; \text{and} \\ & \text{HV} = \text{fuel heating value (energy'volume).} \end{split}$$

The calculations for GHG emissions follow the equation:

 $Emissions \; \left(\frac{t}{year}\right) = Fuel \; usage \; \left(\frac{L}{year}\right) \times Emission \; Factor \; \left(\frac{g}{L}\right) \times Conversion \; \left(\frac{tonne}{10^4 g}\right)$

Construction Off-Road and On-Road Mobile Equipment Emissions

Description: Off-road and On-Road equipment will be used during construction of the facility. Tailpipe emissions of GHGs due to the fuel combustion would be generated from these sources.

	Construc	tion Phase				Clearing		Parking construction			Building/Platform construction			Fuel Usage (L)			
Type of Equipment ¹	Power Rating (hp/equipment) ²	Fuel Type	Operating Load ³	Equipment Type	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Clearing	Parking construction	Building/Platfo rm construction	Total
Asphalt spreader	142	Diesel	50%	Off-Road			1	1	10%	9			24	0	2,380	0	2,380
Backhoe	120	Diesel	40%	Off-Road	1	50%	1	1	10%	9	1	10%	24	894	1,609	4,290	6,793
Bobcat	115	Diesel	40%	Off-Road			1			9	1	50%	24	0	0	20,557	20,557
Caisson auger	300	Diesel	20%	Off-Road			1			9	1	10%	24	0	0	5,363	5,363
Compactor	100	Diesel	20%	Off-Road			1	1	50%	9	1	10%	24	0	3,352	1,788	5,139
Concrete truck	500	Diesel	40%	On-Road			1	1	10%	9	1	10%	24	0	6,703	17,876	24,579
Crane	270	Diesel	16%	Off-Road			1	1	50%	0	1	10%	24	0	0	3,861	3,861
Dump Truck	600	Diesel	40%	On-Road	4	50%	1	2	50%	9	1	10%	24	17,876	80,440	21,451	119,766
Earth scraper	600	Diesel	40%	Off-Road	1	50%	1			9			24	4,469	0	0	4,469
Flatbed truck	360	Diesel	40%	On-Road			1	1	10%	9	1	50%	24	0	4,826	64,352	69,178
Front end loader	300	Diesel	40%	Off-Road			1	1	50%	9			24	0	20,110	0	20,110
Grader	200	Diesel	40%	Off-Road			1	1	50%	9			24	0	13,407	0	13,407
Paving roller	100	Diesel	20%	Off-Road			1	2	10%	9			24	0	1,341	0	1,341
Water truck	285	Diesel	40%	On-Road	1	10%	1	1	10%	9	1	10%	24	425	3,821	10,189	14,435
Welder	210	Diesel	40%	Off-Road			1			9	1	10%	24	0	0	7,508	7,508
Zoomboom	110	Diesel	20%	Off-Road			1			9	1	50%	24	0	0	9,832	9,832
														23,238	132,827	139,537	295,602

Notes:

1) Equipment that may be used onsite and duration is estimated by the project design team. 2) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction.

3) Not all the equipment will be operating at their full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction period is assumed based on the following reference: FHVA Roadway Construction Noise Model User's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration. An "acoustical usage factor' for each type of construction equipment is used to estimate the fraction of time each piece of construction equipment. Is operating at full power during a construction exercision estimate and usage factor of the construction equipment.

4) Construction activities will occur during 8:00 a.m. to 5:00 p.m. for an 8 hour work day (1 hour assumed for breaks), Monday to Friday. Each piece of equipment will not be operational for the entire work day. The % of time each piece of 5) Assumes 1 month has, on average, 21 working days.

GHG emission calculation - Off-road Diesel Ec

GHG emission calculation - Off-road Dies	sel Equipment:		
Data	Value	Unit	Reference / Note
Total fuel usage Diesel	100,758	L	Calculated
Emission Factors:			
CO2	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 1-3
N20	0.022	g/L	1
CO2	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 4
N20	0.227	g/L	
Emissions Diesel:			
CO2	270,082	kg	Calculated
CH4	7.4	kg	Calculated
N20	14.6	kg	Calculated
Total emissions	274.6	tonne CO2eq	Calculated

Note: It is assumed that construction equipment to be used will be either US EPA Tier 3 or Tier 4 emission compliant at the following ratios:

NOLE.			
It is assumed that construction equipment to	be used will be either	US EPA Tier 3 or Tier 4	4 emission compliant at the following ratios: Tier 3 409 Tier 4 609
GHG emission calculation - On-road Dies	el Equipment:		
Data	Value	Unit	Reference / Note
HDDVs Total fuel usage	227,958	L	Calculated
LDDTs Total fuel usage	0	L	Calculated
HDDVs Emission Factors:			
CO2	2680.5	g/L	
CH4	0.14	g/L	Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Diesel: HDDVs Moderate Control.
N2O	0.082	g/L	
LDDTs Emission Factors:			
CO2	2680.5	g/L	Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Diesel: LDDTs
CH4	0.068	g/L	Moderate Control.
N2O	0.21	g/L	
Emissions Diesel:			
CO2	611,042	kg	Calculated
CH4	32	kg	Calculated
N2O	19	kg	Calculated
Total emissions	617	tonne CO2eq	Calculated

Summary of Site-Wide GHG Emissions per Station						
Source Group	Estimated GHG	Total GHG				
	Emissions (kt CO2	Emissions (kt CO2				
	eq)	eq)				
Off-road equipment on-site	0.2746	0.8920				
On-road equipment on-site	0.6174	0.0920				

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Project Construction Component: Modified Bridges

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Description: Greenhouse gas (GHG) emissions generated as a result of fuel combustion in the equipment used during the construction of a modified bridge. The fuel combustion sources will be the following equipment during construction, and expected annual GHG emissions (in CO2 equivalents) from each of these sources are estimated in this datasheet. • Off-road construction • Off-road construction

Contaminant(s) of Concern: Emissions of CO2, CH4 and N2O in the form of CO2e

Global Warming Potentials (GWPs): GHG GWP

 CO2
 25

 CH4
 25

 N2O
 298

 Source: ECCC 2021 NIR 1990-2019 Part 1., these
 values are from the IPCC Fourth Assessment Report (IPCC, 2012).

Methodology: Emission Factor (EF)

Methodology: Emission Factor (EF) Disels its the primary fuel that will be used in the onsite construction equipment. Emissions are estimated based on (1) GHG emission factors from published resources relevant to the fuel combustion equipment to be used during the construction; and (2) estimated fuel usage for each type of equipment.

GHG Emission Calculations:

Constants for Calculations					
Diesel HHV	38.50	GJ/kL	36,490,955	Btu/m3	Ontario GHG Guideline 2019, Table 20-1a
Thermal efficiency (diesel engine)	8089	Btu/hp-hr			API Compendium (2009), Table 4-2
Conversion factor	1000	Lin 1 m3			
Conversion factor	0.1589873	m3 in 1 bbl			
Conversion factor	947817	Btu/m3 in 1 Gj/kl			
					-

(Equation 4-5)

The calculations for fuel usage are following the equation presented in API (2009); Equation 4-5

 $FC = ER \times LF \times OT \times ETT \times \frac{1}{HV}$

- HV

 FC = annual fuel consumed (volume yrr);

 ER = equipment rating (hp, kW, or J);

 LT = equipment load factor (faction);

 OT = annual operating time (hu/yr);

 ETT = equipment thermal efficiency (Btu npue hp-hr anpue, Btu npue kW-hr anpue, or

 T_mean Japen Japen); and

 HV = fuel heating value (energy/volume).

The calculations for GHG emissions follow the equation:

 $\text{Emissions } \left(\frac{t}{\text{year}}\right) = \text{Fuel usage } \left(\frac{L}{\text{year}}\right) \times \text{Emission Factor } \left(\frac{g}{L}\right) \times \text{Conversion } \left(\frac{\text{tonne}}{10^6 g}\right)$

Construction Off-Road and On-Road Mobile Equipment Emissions
Description:
Off-road and On-Road equipment will be used during construction of the facility. Tailpipe emissions of GHGs due to the fuel combustion would be generated from these sources.

	Construct	ion Phase			Remo	vals and Site Prepa	aration	A	butment underpinn	ing		Site clean up			Fuel Usage) (L)	
Type of Equipment ¹	Power Rating (hp/equipment) ²	Fuel Type	Operating Load ³	Equipment Type	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months) ^{1,5}	Removals and Site Preparation	Abutment underpinning	Site clean up	Total
Augers/Drill Rig	260	Diesel	20%	Off-Road			1	2	10%	3			1	0	1,162	0	1,162
Backhoe	120	Diesel	40%	Off-Road	1	50%	1	1	50%	3			1	894	2,681	0	3,575
Bobcat	115	Diesel	40%	Off-Road	1	50%	1			3	1	50%	1	857	0	857	1,713
Boom truck	500	Diesel	50%	Off-Road			1	1	10%	3			1	0	2,793	0	2,793
Concrete breaker	68	Diesel	50%	Off-Road	1	10%	1			3			1	127	0	0	127
Concrete pump	100	Diesel	20%	Off-Road			1	1	10%	3			1	0	223	0	223
Concrete saw	50	Diesel	20%	Off-Road	1	10%	1			3			1	37	0	0	37
Concrete truck	500	Diesel	40%	On-Road			1	2	10%	3			1	0	4,469	0	4,469
Dump Truck	600	Diesel	40%	On-Road	2	50%	1	1	10%	3	1	10%	1	8,938	2,681	894	12,513
Flatbed truck	360	Diesel	40%	On-Road			1	1	10%	3			1	0	1,609	0	1,609
Pile Driver	240	Diesel	50%	Off-Road			1	1	10%	3			1	0	1,341	0	1,341
Water truck	285	Diesel	40%	On-Road			1			3	1	10%	1	0	0	425	425
Welder	210	Diesel	40%	Off-Road			1	1	50%	3			1	0	4,692	0	4,692
Zoomboom	110	Diesel	20%	Off-Road			1	1	10%	3			1	0	246	0	246
													Total	10,852	21,898	2,175	34,924

40% 60%

Notes:

1) Equipment that may be used onsite and duration is estimated by the project design team. 2) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction.

3) Not all the equipment will be operating at their full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction period is assumed based on the following reference: FHVA Roadway Construction Noise Model User's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration. An "acoustical usage factor" for each type of construction equipment is used to estimate the fraction of time each piece of construction equipment is used to estimate the fraction of time each piece of construction equipment at full power during a construction operation. The acoustical usage factor is also considered as the duty cycle / operating load usage factor of the construction equipment.

Construction activities will occur during 8:00 a.m. to 5:00 p.m. for an 8 hour work day (1 hour assumed for breaks), Monday to Friday. Each piece of equipment will not be operational for the entire work day. The % of time each piece of equipment is used is estimated by the Project design team.
 Assumes 1 month has, on average, 21 working days.

GHG emission calculation - Off-road Diesel Equipment

Data	Value	Unit	Reference / Note
Total fuel usage Diesel	15,909	L	Calculated
Emission Factors:			
CO2	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 1-3
N20	0.022	g/L	
CO2	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 4
N2O	0.227	g/L	
Emissions Diesel:			
CO2	42,645	kg	Calculated
CH4	1.2	kg	Calculated
N2O	2.3	kg	Calculated
Total emissions	43.4	tonne CO2eq	Calculated
Noto:			

Note: It is assumed that construction equipment to be used will be either US EPA Tier 3 or Tier 4 emission compliant at the following ratios: Tier 3 Tier 4

GHG emission calculation - On-road Diesel Equipment:

Data	Value	Unit	Reference / Note						
HDDVs Total fuel usage	19,015	L	Calculated						
LDDTs Total fuel usage	0	L	Calculated						
HDDVs Emission Factors:									
CO2	2680.5	g/L							
CH4	0.14	g/L	Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Diesel: HDDVs Moderate Control.						
N20	0.082	g/L							
LDDTs Emission Factors:									
CO2	2680.5	g/L	Environment Canada 2022. NIR 1990-2020. Annex 6. Table A6.1-14 Road Transport: Diesel: LDDTs						
CH4	0.068	g/L	Moderate Control.						
N2O	0.21	g/L	inducted outrio.						
Emissions Diesel:									
CO2	50,970	kg	Calculated						
CH4	3	kg	Calculated						
N20	2	kg	Calculated						
Total emissions	52	tonne CO2eq	Calculated						

Summary of Site-Wide GHG Emissions p	er Modified Bridge	
Source Group	Estimated GHG Emissions (kt CO2 eq)	Total GHG Emissions (kt CO2 eq)
Off-road equipment on-site	0.0434	0.0949
On-road equipment on-site	0.0515	0.0545

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Project Construction Component: New Bridges

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Descriptions Descriptions (DHC) emissions generated as a result of fact combustion in the exploment used during the construction of a new bridge. The fact combustion sources will be the following equipment during construction, and expected annual GHG emissions (in CO2 equivalents) from each of these sources are estimated in this distanced. • On-ward construction

Contaminant(s) of Concern: Emissions of CO2, CH4 and N2O in the form of CO2e

 Biobal Warning Potentials (SWP9):
 GWP

 CO2
 1

 CO3
 2

 MO
 2

 Storce: ECCC 2021 NRT 1969-2019 Fart 1. hone values are from the IPCC Fourth Assessment Report (IPCC, 2012).

Methodoloor: Emission Factor (EF) Desets list he primary led that will be used in the onsele construction equipment. Emissions are estimated based on (1) GNG emission factors from published resources relevant to the fuel combustion equipment to be used during the construction; and (2) estimated fuel usage for each type of equipment.

GHG Emission Calculations:

 Conduction
 38.50
 QLML
 36.60.055 (Bullma)
 Ontario GHG Guideline 2018; Table 20-18

 Disext HVV
 Bitulha-br
 API Comparison Guidenine 2018; Table 20-18
 API Comparison Guidenine 2018; Table 20-18
 API Comparison Guidenine 2018; Table 20-18

 Conversion State
 0.1560/071
 R-18.10
 API Comparison Guidenine 2017; Table 4-2
 API Comparison Guidenine 2018; Table 4-2

 Conversion State
 0.1560/071
 R-18.10
 API Comparison Guidenine 2017; Table 3-10; API Comparison Guidenine 2018; Table 3-10; API Comparison Guidenine 20

The calculations for GHG emissions follow the equation:

 $\text{Emissions} \; \left(\frac{t}{y \text{ ear}} \right) = \text{Fuel usage} \; \left(\frac{L}{y \text{ ear}} \right) \times \text{Emission Factor} \; \left(\frac{8}{L} \right) \times \text{Conversion} \; \left(\frac{t \text{sonn} \pi}{10^6 g} \right)$

Construction OffRoad and On-Road Mobile Equipment Emissions Description: OffRoad and On-Road equipment will be used during construction of the facility. Talipipe emissions of GHGs due to the fuel combustion would be generated from these sources.

	Constructi	on Phase				relocation and road	i closure	A 4	butment construct	ion		Span construction			Road reinstatement	t		Site clean up				Fuel Usage	a (L)	1	/ /
Type of Equipment ¹	Power Rating (hp/equipment) ²	Fuel Type	Operating Load ³	Equipment Type	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (month	s) Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months) ^{1,5}	Utility relocation and road closure	Abutment construction	Span construction	Road reinstatement	Site clean up	Total
Asphalt spreader	142	Diesel	50%	Off-Road			6			1			2	1	10%	2			1	0	0	0	529	0	529
Augers/Drill Rig	260	Diesel	20%	Off-Road			6	1	50%	1			2			2			1	0	968	0	0	0	968
Backhoe	120	Diesel	40%	Off-Road	1	50%	6	2	50%	1			2			2			1	5,363	1,788	0	0	0	7,150
Bobcat	115	Diesel	40%	Off-Road	1	50%	6			1			2			2	1	50%	1	5,139	0	0	0	857	5,996
Boom truck	500	Diesel	50%	Off-Road	1	10%	6			1	1	10%	2	1	50%	2			1	5,586	0	1,862	9,310	0	16,758
Compactor	100	Diesel	20%	Off-Road	1	10%	6			1			2	1	10%	2			1	447	0	0	149	0	596
Concrete breaker	68	Diesel	50%	Off-Road			6			1		10%	2			2			1	0	0	0	0	0	0
Concrete pump	100	Diesel	20%	Off-Road			6	1	10%	1	1	10%	2			2			1	0	74	149	0	0	223
Concrete truck	500	Diesel	40%	On-Road			6	4	10%	1	4	10%	2			2			1	0	2,979	5,959	0	0	8,938
Crane	270	Diesel	16%	Off-Road			6			1			2			2			1	0	0	0	0	0	0
Dump Truck	600	Diesel	40%	On-Road	2	50%	6	1	10%	1			2	2	50%	2	1	10%	1	53,627	894	0	17,876	894	73,290
Flatbed truck	360	Diesel	40%	On-Road			6	1	10%	1	1	10%	2			2			1	0	536	1,073	0	0	1,609
Pavement saw	50	Diesel	20%	Off-Road	1	10%	6			1			2			2			1	223	0	0	0	0	223
Paving roller Pile Driver	100	Diesel	20%	Off-Road	1	10%	6			1			2	1	10%	2			1	447	0	0	149	0	596
	240	Diesel	50%	Off-Road			6	1	50%	1			2			2			1	0	2,234	0	0	0	2,234
Water truck	285	Diesel	40%	On-Road	1	10%	6	1	10%	1	1	10%	2	1	10%	2	1	10%	1	2,547	425	849	849	425	5,095
Zoomboom	110	Diesel	20%	Off-Road			6			1	1	50%	2			2			1	0	0	819	0	0	819
																			Total	73,379	9,899	10,710	28,862	2,175	125,025

Note: 1) Equipment that may be used online and duration is estimated by the project design team. 2) Detailed construction equipment is not available from the project design. The makeImodel of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction. 3) Notal il the equipment will be generating at their full load considering the conditions such as stilling, moving, tasking and non-spectrating inter-tor the equipment during the contratuction period assumed based on the following reference.
New York Roadway Construction New Hold Burk's Code, preserved by U.S. Department of Transportation, Federal Highway Administration. An "socialized usage factor" for each type of construction equipment is used to settime the fination of time exch pixel of construction equipment.

4) Construction activities will accur during 8:00 a.m. to 5:00 p.m. for an 8 hour work day (1 hour assumed for breaks), Monday to Friday. Each piece of equipment will not be operational for the entire work day. The % of time each piece of equipment is used is estimated by the Project design team.
5) Assumes 1 month has, on average, 21 working days.

Data	Value	Unit	Reference / Note
Fotal fuel usage Diesel	36,094	L	Calculated
Emission Factors:			
CO2	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >= 19kW, Tier 1-3
N20	0.022	g/L	
C02	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 4
N20	0.227	g/L	
Emissions Diesel: CO2	96 749		Calculated
CO2 CH4	96,749	kg	Calculated
N2O	5.2	kg ka	Calculated
Total emissions	98.4	tonne CO2eg	Calculated
Note:	98.4	tonne CO2eq	Gaccinico
		11-14	
GHG emission calculation - On-road Dies Data	Value	Unit	Reference / Note
		Unit	
Data	Value	Unit L	Reference / Note
Data HDDVs Total fuel usage	Value 88,931	Unit L L	Reference / Note Calculated
Data HDDVs Total fuel usage LDDTs Total fuel usage	Value 88,931	Unit L L g/L	Reference / Note Calculated Calcu
Data HDDVs Total fuel usage LDDTs Total fuel usage HDDVs Emission Factors:	Value 88,931 0	L	Reference / Note Calculated Calculated Calculated Environment Canada 2022, NR 1969-2020, Annex 8, Table A6 1-14 Read Transport Deset-HDDVs
Data HDDVs Total fuel usage LDDTs Total fuel usage HDDVs Emission Factors: CO2	Value 88,931 0 2680.5	L L g/L	Reference / Note Calculated Calcu
Data HDDVs Total fuel usage LDDTs Total fuel usage HDDVs Emission Factors: CO2 CH4 N2O	Value 88,931 0 2680.5 0.14	L L g/L g/L	Reference / Note Calculated Calculated Calculated Environment Canada 2022, NR 1969-2020, Annex 8, Table A6 1-14 Read Transport Deset-HDDVs
Data HDDVs Total fuel usage LDDTs Total fuel usage HDDVs Emission Factors: CO2 CH4 N2O	Value 88,931 0 2680.5 0.14	L L g/L g/L	Reference / Note Calculated Calculated Calculated Calculated Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6, 1-14 Read Transport: Diesel: HDDVs Molecument Canada 2022, NIR 1990-2020, Annex 6, Table A6, 1-14 Read Transport: Diesel: HDDVs
Data HDDVs Total fuel usage LDDYs Total fuel usage HDDVs Emission Factors: C02 C04 N20 LDDTs Emission Factors: C05 LDDTs Emission Factors: C05	Value 88,931 0 2680.5 0.14 0.082	L L g/L g/L	Reference / Note Calculated Calculated Calculated Environment Canada 2022, NR 1990-2020, Annex 6, Table A6, 1-14 Road Transport Deset: HDDVs Moderate Control Environment Canada 2022, NR 1990-2020, Annex 6, Table A6, 1-14 Road Transport Deset: LDDTs
Data HDDVs Total fuel usage HDDVs Emission Factors: C02 C04 N20Vs Emission Factors: C02 C04 N20 LDDTs Emission Factors: C02	Value 88,931 0 2680.5 0.14 0.082 2680.5	L L g/L g/L g/L	Reference / Note Calculated Calculated Calculated Calculated Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6, 1-14 Read Transport: Diesel: HDDVs Molecument Canada 2022, NIR 1990-2020, Annex 6, Table A6, 1-14 Read Transport: Diesel: HDDVs
Data Dota Dota Dota Dota Dota Dota Dota	Value 88,931 0 2680.5 0.14 0.082 2680.5 0.068	9/L 9/L 9/L 9/L 9/L 9/L	Reference / Note Calculated Calculated Calculated Environment Canada 2022, NR 1990-2020, Annex 6, Table A6, 1-14 Road Transport Deset: HDDVs Moderate Control Environment Canada 2022, NR 1990-2020, Annex 6, Table A6, 1-14 Road Transport Deset: LDDTs
Data Dota Dota Dota Dota Dota Dota Dota	Value 88,931 0 2680.5 0.14 0.082 2680.5 0.068	9/L 9/L 9/L 9/L 9/L 9/L	Reference / Note Calculated Calculated Calculated Environment Canada 2022, NR 1990-2020, Annex 6, Table A6, 1-14 Road Transport Deset: HDDVs Moderate Control Environment Canada 2022, NR 1990-2020, Annex 6, Table A6, 1-14 Road Transport Deset: LDDTs
Data DDT Data DDT Total fixel usage LDT Total fixel usage HDDVs Emission Factors: CD2 CH4 NDD LDDTs Emission Factors: CD2 CH4 NDD Emission Factors: NDD Emissions Deset:	Value 88,931 0 2680.5 0.14 0.082 2680.5 0.068 0.21	L L g/L g/L g/L g/L	Reference / Note Calculated Calculated Calculated Environment Canada 2022, NR 1990-2020, Annex 8, Table A0, 1-14 Road Transport: Deset: HDDVs Moderate Control. Environment Canada 2022, NR 1990-2020, Annex 6, Table A0, 1-14 Road Transport: Deset: LDDTs Moderate Control.
Deta DD15 Total fuel usage LDD15 Total fuel usage HDD16 Emission Factors: C02 C04 LDD15 Emission Factors: C02 C05 Emissions Deset: C02 C02 C04 NR00 C02 C02 C04	Value 88,931 0 2680.5 0.14 0.082 2680.5 0.088 0.21 238,380	L L g/L g/L g/L g/L g/L kg	Reference / Note Calculated Calculated Calculated Calculated Environment Canada 2022, NR 1990-2020, Annes 6, Table A6.1-14 Road Transport: Dead: HDDVs Moderate Control Environment Canada 2022, NR 1990-2020, Annes 6, Table A6.1-14 Road Transport: Dead: HDDVs Moderate Control Calculated Calculated

Summary of Site-Wide GHG Emiss	ions per New Bridge	
Source Group	Estimated GHG Emissions (kt CO2 eq)	Total GHG Emissions (kt CO2 eq)
Off-road equipment on-site	0.0984	0.3392
On-road equipment on-site	0.2409	0.3352

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility Project Construction Component: Bridge Replacements

Source: Construction Non-Road Mobile Equipment Emissions (Various Phases)

Description: Generations gain (SHE) emissions generated as a result of hall combustion in the explorent used during bridge replacement activities. The full combustions will be the following explorent during construction, and expected annual GHB emissions (in CC2 exploriants) from each of these sources are estimated in this dataset. • Oxead acconstruction

Contaminant(s) of Concern: Emissions of CO2, CH4 and N2O in the form of CO2e

 Bibbal Warming Rescribe (SWPE).
 OWP

 C04
 28

 Doc
 28

 Doc
 These values are from the IPCC Fourth Assessment Report (PCC, 2010).

Methodokow: Ensision Factor (EF) Disea is the primary bert that will be used in the onsite construction equipment. Ensistons are estimated based on (1) GHG ensisten factors tempulatiked resources relevant to the fuel combustion equipment to be used during the construction; and (2) estimated tail and get for each year of equipment.

GHG Emission Calculations:

 Occurrent In Section/0000
 Data 05
 Data
 Distance
 Distance

 Thermal afficiency (decad engine)
 86.00
 Ibits/bit
 API Compandum (2009), Table 4.2

 Operand Section
 100
 Ibits/bit
 API Compandum (2009), Table 4.2

 Operandic Reference
 0.000
 Ibits 1 and
 API Compandum (2009), Table 4.2

 Operandic Reference
 0.158/072
 rd is 1 and
 API Compandum (2009), Table 4.2

 Operandic Reference
 0.158/072
 rd is 1 and
 API Compandum (2009), Table 4.2

 $\begin{array}{l} [M(RY) & [M(R$

The calculations for GHG emissions follow the equation:

 $\text{Emissions} \; \left(\frac{t}{y \text{rest}}\right) = \text{Fuel usage } \left(\frac{L}{y \text{rest}}\right) \times \text{Emission Factor } \left(\frac{g}{L}\right) \times \text{Conversion } \left(\frac{t \text{come}}{L t^4 g}\right)$

Construction Off-Read and On-Road Mobile Equipment Emissions Description: Off-read and Gh-Road exploment will be used during construction of the facility. Tailpipe emissions of GHGs due to the fault combustion would be gene

 Control
 <t

Asphalt spreader	142	Diesel	50%	Off-Road			6			1			1			2	1	10%	2			1	0	0	0	0	529	0 529	4
Augers/Drill Rig	260	Diesel	20%	Off-Road			6			1	1	50%	1			2			2			1	0	0	968	0	0	0 968	1
Backhoe	120	Diesel	40%	Off-Road	1	50%	6	2	50%	1	2	50%	1			2			2			1	5,363	1,788	1,788	0	0	0 8,938	1
Bobcat	115	Diesel	40%	Off-Road	1	50%	6	1	50%	1			1			2			2	1	50%	1	5,139	857	0	0	0	857 6,852	
Boom truck	500	Diesel	50%	Off-Road	1	10%	6			1			1	1	10%	2	1	50%	2			1	5,586	0	0	1,862	9,310	0 16,758	1
Compactor	100	Diesel	20%	Off-Road	1	10%	6			1			1			2	1	10%	2			1	447	0	0	0	149	0 596	
Concrete breaker	68	Diesel	50%	Off-Road			6	2	50%	1			1		10%	2			2			1	0	1,266	0	0	0	0 1,266	4
Concrete pump	100	Diesel	20%	Off-Road			6			1	1	10%	1	1	10%	2			2			1	0	0	74	149	0	0 223	1
Concrete truck	500	Diesel	40%	On-Road			6			1	4	10%	1	4	10%	2			2			1	0	0	2,979	5,959	0	0 8,938	4
Crane	270	Diesel	16%	Off-Road			6	1	5%	1			1			2			2			1	0	80	0	0	0	0 80	
Dump Truck Flatbed truck	600	Diesel	40%	On-Road	2	50%	6	4	50%	1	1	10%	1			2	2	50%	2	1	10%	1	53,627	17,876	894	0	17,876	894 91,165	4
	360	Diesel	40%	On-Road			6			1	1	10%	1	1	10%	2			2			1	0	0	536	1,073	0	0 1,609	4
Pavement saw	50	Diesel	20%	Off-Road	1	10%	6			1			1			2			2			1	223	0	0	0	0	0 223	
Paving roller Pile Driver	100	Diesel	20%	Off-Road	1	10%	6			1			1			2	1	10%	2			1	447	0	0	0	149	0 596	1
	240	Diesel	50%	Off-Road			6			1	1	50%	1			2			2			1	0	0	2,234	0	0	0 2,234	4
Water truck	285	Diesel	40%	On-Road	1	10%	6	1	10%	1	1	10%	1	1	10%	2	1	10%	2	1	10%	1	2,547	425	425	849	849	425 5,519	1
Zoomboom	110	Diesel	20%	Off-Road			6			1			1	1	50%	2			2			1	0	0	0	819	0	0 819	4
																						Total	73,379	22,291	9,899	10,710	28,862	2,175 147,316	4

Nets: 1) Explore that may be used earlier and duration is defined by the project decign team. 2) Displore that may be used earlier to a subset the time to group design. The maximum defined matching backgroup the subset of the control of the analysis of the control of the control of the analysis of the control of the analysis of the control of the control of the analysis of the control of the analysis of the control o

Construction schedules will docur dang 10 do is to do ja ho an is to do ja ho an is how work day. They are subject ware book may be on a real construction schedules will docur dang 10 do ja ho an is to do ja how and how work day. (They assumed for breaks), blonday to Priday. Each passe of expanses will not be operational for the wetter work day. The % of time each pass of a sphere term is not be extended by the prior dang term.

GHG emission calculation - Off-road Die: Data	Value	Unit	Reference / Note
otal fuel usage Diesel	40.084	L	Calculated
mission Factors:		-	
C02	2680.5	at	
CH4	0.073	o'L	ECCC 2022, NR 1990-2020, Amex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 1-3
N20	0.022	gL	
CO2	2680.5	9L	
CH4	0.073	9L	ECCC 2022, NR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 4
N20	0.227	9L	
missions Dieset			
CO2	107,446	kg	Calculated
CH4	2.9	kg	Calculated
N20	5.8	kg	Calculated
otal emissions Inter	109.3	tonne CO2eq	Calculated
HG emission calculation - On-road Dies Data	Value	Unit	Reference / Note
IDDVs Total fuel usage	107,231	L	Calculated
LDDTs Total fuel usage	0	L	Calculated
IDDVs Emission Factors:			
CO2	2680.5	gL	
CH4	0.14	9L	Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Diesel: HDDVs Moderate Control.
N20	0.082	9°L	Modelane Consol.
DDTs Emission Factors:			
CO2	2680.5	9L	
CH4	0.068	9L	Environment Canada 2022, NR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Dieset: LDDTs Moderate Control
N20	0.21	9L	
missions Dieset			
CO2	287,433	kg	Calculated
	15	kg	Calculated
CH4			
CH4 N20	9	kg	Calculated
N20	9 290	kg tonne CO2eq	Calculated Calculated
N2O Total emissions	290	tonne CO2eq	
	290	tonne CO2eq	

CIT-road equipment on-site 0.2004 0.3997

Emission Inventory - Metrolinx Oshawa to Bowmanville Rail Service Extension and Rail Maintenance Facility **Project Construction Component: Widen Crossings**

Source: Construction Non-Road Mobile Equipment Emissions

Description:

Greenhouse gas (GHG) emissions generated as a result of fuel combustion in the equipment used during the widening of crossings.

The fuel combustion sources will be the following equipment during construction, and expected annual GHG emissions (in CO2 equivalents) from each of these sources are estimated in this datasheet. On-road construction · Off-road construction

Contaminant(s) of Concern:

Emissions of CO2, CH4 and N2O in the form of CO2e

Global Warming Potentials (GWPs):					
GHG	GWP				
CO2	1				
CH4	25				
N2O	298				

Source: ECCC 2021 NIR 1990-2019 Part 1., these values are from the IPCC Fourth Assessment Report (IPCC, 2012).

Methodology: Emission Factor (EF) Dissel is the primary fuel that will be used in the onsite construction equipment. Emissions are estimated based on (1) GHG emission factors from published resources relevant to the fuel combustion equipment to be used during the construction; and (2) estimated fuel usage for each type of equipment.

GHG Emission Calculations:

Constants for Calculations

Diesel HHV	38.50	GJ/kL	36,490,955	Btu/m3	Ontario GHG Guideline 2019, Table 20-1a
Thermal efficiency (diesel engine)	8089	Btu/hp-hr			API Compendium (2009), Table 4-2
Conversion factor	1000	Lin 1 m3			
Conversion factor	0.1589873	m3 in 1 bbl			
Conversion factor	947817	Btu/m3 in 1 Gj/kl			

The calculations for fuel usage are following the equation presented in API (2009); Equation 4-5

 $FC = ER \times LF \times OT \times ETT \times \frac{1}{HV}$

(Equation 4-5)

- where FC = annual fuel consumed (volume/yr); ER = equipment rating (hp, kW, or J); LF = equipment tood factor (fraction); OT = annual operating time (hr/yr); ETT = equipment thermal efficiency (Btu_{input}/hp-hr_{output}, Btu_{input}/kW-hr_{output}, or J_{input}/J_{ouput}); and HV = fuel heating value (energy/volume).

The calculations for GHG emissions follow the equation:

 $\text{Emissions}\left(\frac{t}{vear}\right) = \text{Fuel usage } \left(\frac{L}{vear}\right) \times \text{Emission Factor } \left(\frac{g}{L}\right) \times \text{Conversion } \left(\frac{\text{tonne}}{10^6 g}\right)$

Construction Off-Road and On-Road Mobile Equipment Emissions

Description:

Off-road and On-Road equipment will be used during construction of the facility. Tailpipe emissions of GHGs due to the fuel combustion would be generated from these sources.

	Construct	ion Phase	Remo	ovals and Reconstru	iction			
Type of Equipment ¹	Power Rating (hp/equipment) ²	Fuel Type	Operating Load ³	Equipment Type	Total Number of Equipment to be Used Onsite ¹	% time used ⁴	Duration (months)	Fuel Usage (L)
Backhoe	120	Diesel	40%	Off-Road	1	50%	0.5	447
Bobcat	115	Diesel	40%	Off-Road	1	50%	0.5	428
Boom truck	500	Diesel	50%	Off-Road	1	10%	0.5	466
Compactor	100	Diesel	20%	Off-Road	1	10%	0.5	37
Concrete Saw	50	Diesel	20%	Off-Road	1	10%	0.5	19
Concrete truck	500	Diesel	40%	On-Road	1	10%	0.5	372
Dump Truck	600	Diesel	40%	On-Road	2	50%	0.5	4,469
Pavement saw	50	Diesel	20%	Off-Road	1	10%	0.5	19
Paving roller	100	Diesel	20%	Off-Road	1	10%	0.5	37
Water truck	285	Diesel	40%	On-Road	1	10%	0.5	212
Notes:							Total	6,506

1) Equipment that may be used onsite and duration is estimated by the project design team. 2) Detailed construction equipment is not available from the project design. The make/model of each construction equipment is selected from commonly used equipment to represent the units that may be used at the project construction.

3) Not all the equipment will be operating at their full load considering the conditions such as idling, moving, loading and non-operating time. The average operating load for the equipment during the construction period is assumed based on the following reference: FHWA Roadway Construction Noise Model User's Guide, prepared by U.S. Department of Transportation, Federal Highway Administration. An 'acoustical usage factor' for each type of construction equipment is used to estimate the fraction of time each piece of construction equipment is operating at full power during a construction operation. The acoustical usage factor is also considered as the duty cycle / operating load usage factor of the construction equipment.

4) Construction activities will occur during 8:00 a.m. to 5:00 p.m. for an 8 hour work day (1 hour assumed for breaks), Monday to Friday. Each piece of equipment will not be operational for the entire work day. The % of time each piece of equipment is used is estimated by the Project design team.

1

5) Assumes 1 month has, on average, 21 working days.

Data	Value	Unit	Reference / Note
Total fuel usage Diesel	1,452	L	Calculated
Emission Factors:			
CO2	2680.5	g/L	
CH4 0.073		g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 1-3
N2O	0.022	g/L	
CO2	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 4
N2O	0.227	g/L	
Emissions Diesel:			
CO2	3,893	kg	Calculated
CH4	0.1	kg	Calculated
N2O	0.2	kg	Calculated
Total emissions	4.0	tonne CO2eq	Calculated

It is assumed that construction equipment to	be used will be eithe	er US EPA Tier 3 or Tier	r 4 emission compliant at the following ratios:	Tier 3	40%		
GHG emission calculation - On-road Diese	el Equipment:			Tier 4	60%		
Data	Value	Unit	Reference / Note				
HDDVs Total fuel usage	5,054	L	Calculated				
LDDTs Total fuel usage	0	L	Calculated				
HDDVs Emission Factors:							
CO2	2680.5	g/L					
CH4	0.14	g/L	Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Diesel: HDDVs Moderate Control.				
N20	0.082	g/L					
LDDTs Emission Factors:							
CO2	2680.5	g/L					
CH4	0.068	g/L	Environment Canada 2022, NIR 1990-2020, Annex 6, Ta Moderate Control.	able A6.1-14 Road Transport: Diesei	LDDIS		
N2O	0.21	g/L					
Emissions Diesel:							
CO2	13,546	kg	Calculated				
CH4	1	kg	Calculated				
N20	0	kg	Calculated				
Total emissions	14	tonne CO2eq	Calculated				

Summary of Site-Wide GHG Emissions per Crossing

Source Group	Estimated GHG Emissions (kt CO2 eq)	Total GHG Emissions (kt CO2 eq)
Off-road equipment on-site	0.0040	0.0176
On-road equipment on-site	0.0137	0.0170

Source: Diesel Train Emissions

Description: Greenhouse gas (GHG) emissions generated as a result of locomotive fuel combustion.

GO Train Schedule				Reference	
Total Number of Mx GO Train Passes per day (weekday)		54		two way total - Provided by Jennifer Wong @ Metrolinx via email on November 24, 2021	
Total Number of Mx GO Train Passes per day (weekend)		18		two way total - Stantec RFI # 201075-STANTEC-RFI-00019	
Project track length (km)		18.6		Provided by Project design team	
Weekdays per year		261		Stantec Assumption	
Weekends per year		104		Stantec Assumption	
Annual Travel length (km)		296,968		Calculated	
Train speed along corridor (km/h)		88		assumes a constant travel speed through rail corridor - Stantec RFI # 201075-STANTEC-RFI-00019	
Annual Travel Time (hrs within Project area)	3,356			Calculated	
Idling Time at Each Station (minutes)	1.5			Stantec RFI # 201075-STANTEC-RFI-00019	
# of Stations within Study Area	4			Provided by Project design team	
Annual Idle Time at Each Station (hrs)	1,597			Calculated	
GO Train Engine Parameters	Line	e Haul	HEP	Reference	
Engine Tier Rating	Tier 2	Tier 3	Tier 2	Stantec RFI # 201075-STANTEC-RFI-00017	
Fuel Type	Diesel	Diesel	Diesel	Stantec RFI # 201075-STANTEC-RFI-00017	
Engines per Train	2	2	2	Stantec RFI # 201075-STANTEC-RFI-00043	
% of Fleet	70%	30%	100%	Stantec RFI # 201075-STANTEC-RFI-00017	
Fuel Use (88 km/h or Notch 6) - L/hr	528.52	431.78	-	Stantec RFI # 201075-STANTEC-RFI-00017	
Fuel Use (Idling) - L/hr	19.82	20.01	-	Stantec RFI # 201075-STANTEC-RFI-00017	
Fuel Use @ 50% load	-	-	112.50	constant operating load of 50% as per the draft Metrolinx AQ Guide dated November 2019.	

<u>Contaminant(s) of Concern:</u> Emissions of CO2, CH4 and N2O in the form of CO2e

Global Warming Potentials (GWPs):

	GHG	GWP
CO2		1
CH4		25
N2O		298

Source: ECCC 2021 NIR 1990-2019 Part 1., these values are from the IPCC Fourth Assessment Report (IPCC, 2012).

Methodology: Emission Factor (EF)

Dissel is the primary fuel that will be used in the trains. Emissions are estimated based on (1) GHG emission factors from published resources relevant to the fuel combustion equipment; and (2) estimated fuel usage.

GHG Emission Calculations:

The calculations for GHG emissions follow the equation:

$$\mathsf{Emissions} \ \left(\frac{t}{\texttt{year}}\right) = \mathsf{Fuel} \ \mathsf{usage} \ \left(\frac{L}{\texttt{year}}\right) \times \mathsf{Emission} \ \mathsf{Factor} \ \left(\frac{g}{L}\right) \times \mathsf{Conversion} \ \left(\frac{\mathsf{tonne}}{\mathsf{10^6g}}\right)$$

GO Train Emissions (Travelling @ 55mph)

Engine Type	Engines per Train	L/hr per Engine	% of Fleet	Travel Time (hr)	Fuel Usage (L)
Line Haul Tier 2	2	528.52	70%	3,356	2,483,018
Line Haul Tier 3	2	431.78	30%	3,356	869,369
HEP Tier 2	2	112.50	100%	3,356	755,045

GO Train Emissions (Idling)

Engine Type	Engines per Train	L/hr per Engine	% of Fleet	Annual Idle Time (hr)	Fuel Usage (L)
Line Haul Tier 2	2	19.82	70%	1,597	44,302
Line Haul Tier 3	2	20.01	30%	1,597	19,169
HEP Tier 2	2	112.50	100%	1,597	359,235

GHG emission calculation - Railway Diesel Train:

Data	Value	Unit	Reference / Note
Total fuel usage Diesel	4,530,138	L	Calculated
Emission Factors:			
CO2	2680.5	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Railways: Diesel
CH4	0.149	g/L	Train
N2O	1.029	g/L	
Emissions Diesel:			
CO2	12,143,034	kg	Calculated
CH4	675.0	kg	Calculated
N2O	4,661.5	kg	Calculated
Total emissions	13,549.0	tonne CO2eq	Calculated

Estimated GHG	Total GHG
Emissions (kt	Emissions (kt
CO2 eq)	CO2 eq)
13.5	13.5
	Emissions (kt CO2 eq)

Source: GO Bus Fuel Combustion

Description:

GO Bus service will increase at B4 TOC in the future build scenario.

Greenhouse gas (GHG) emissions are generated as a result of diesel fuel combustion from operating additional GO Buses

Bus Volumes:

GO Bus service is currently provided at the proposed B4 TOC at Clarington Blvd. @ Durham Hwy. 2 (Bowmanville) Park & Ride. This stop is located just north of the existing CP rail tracks. The current bus count was derived from the GO Bus schedule for Route 88 Peterborough/Oshawa. Specifically, GO Buses travel between Trent University and Oshawa GO Station. The Project will not provide GO Bus service to B1, B2 or B3 TOC. Therefore, it is assumed that the current Go Bus 88 travel route will not change in the future build scenario. Future bus counts for B4 TOC were provided by Metrolinx (RFI 201075-STANTEC-RFI-00019).

	Curre	ent GO Bus Count	s	Fu	ture Bus Counts	Difference	
Bus Schedule	Southbound (SB)	Northbound (NB)	Total	Southbound (SB)	Northbound (NB)	Total	Future Total - Current Total
Weekday	14	14	28	18	18	36	8
Weekend	10	10	20	13	13	26	6

Contaminant(s) of Concern:

Emissions of CO2, CH4 and N2O in the form of CO2e

Global Warming Potentials (GWPs):	

GHG		GWP	
CO2		1	
CH4		25	1
N2O		298	1
Courses ECCC 2021 NID 1000 2010 Ded	1 these velues are f	rom the IDCC Fourt	

Source: ECCC 2021 NIR 1990-2019 Part 1., these values are from the IPCC Fourth Assessment Report (IPCC, 2012).

Methodology: Emission Factor (EF) Diesel is the primary fuel that will be used in the GO Buses. Emissions are estimated based on (1) GHC emission factors from published resources relevant to the fuel combustion equipment; and (2) estimated fuel usage.

GHG Emission Calculations:

Constants for Calculations

Diesel HHV	38.50	GJ/kL	36,490,955	Btu/m3	Ontario GHG Guideline 2019, Table 20-1a
Thermal efficiency (diesel engine)	8089	Btu/hp-hr			API Compendium (2009), Table 4-2
Conversion factor	1000	Lin 1 m3			
Conversion factor	0.1589873	m3 in 1 bbl			
Conversion factor	947817	Btu/m3 in 1 Gj/kl			

The calculations for fuel usage are following the equation presented in API (2009); Equation 4-5

 $FC = ER \times LF \times OT \times ETT \times \frac{1}{HV}$

(Equation 4-5)

 $\label{eq:response} \begin{array}{l} Hv \\ \text{where} \\ FC = annual fixel constant (volume (yr)); \\ FR = equipment 1 load factor (fraction); \\ LF = equipment 1 load factor (fraction); \\ OT = annual operating time (hr/yr); \\ FTT = equipment thermal efficiency (Bru input hp-hr empon, Bru input kW-hr empon, or \\ J input J equip); and \\ HV = fuel heating value (energy/volume). \end{array}$

The calculations for GHG emissions follow the equation:

Emissions $\left(\frac{t}{v_{rear}}\right)$ = Fuel usage $\left(\frac{L}{v_{rear}}\right)$ × Emission Factor $\left(\frac{g}{L}\right)$ ×Conversion $\left(\frac{tonne}{10^{6}g}\right)$

On-Road Emissions:

Equipment	Power Rating (hp) ¹	Fuel Type	Operating Load ²	Equipment Type	Additional GO Buses per Day ³	Travel Time (hrs) ⁴	Days Per Year	Annual Operating Time (hrs) ⁵	Fuel Usage (L)
Transit Bus - Weekday	425	Diesel	100%	On-Road	8	1.67	261	3480	327,852
Transit Bus - Weekend	425	Diesel	100%	On-Road	6	1.67	104	1040	97,979
Notos:								Total	425 924

1) Highest standard transit bus hp rating listed in Table 13 of the Metrolinx Draft Environmental Guide: Recommended Approach for Assessing and Mitigating Air Quality Impacts and Greenhouse Gas Emissions of Metrolinx Public Transit Projects dated November 2019. Metrolinx Public Transit Projects dated November 2019.

2) Conservative Stantec assumption since operating time considers actual bus travel time.

The difference between future GO bus volumes with the Project minus current (2021) volumes.
 Approximate GO Bus travel time from Trent University to Oshawa GO Station - derived from the GO Bus schedule for Route 88 Peterborough/Oshawa.

5) Annual operating time (hrs) = Additional GO Buses per Day x Travel Time (hrs) x Days per Year

GHG emission calculation - On-road Diesel Equipment:

Data	Value	Unit	Reference / Note
HDDVs Total fuel usage	425,831	L	Calculated
HDDVs Emission Factors:			
CO2	2680.5	g/L	Environment Canada 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Road Transport: Diesel:
CH4	0.14	g/L	HDDVs Moderate Control.
N2O	0.082	g/L	
Emissions Diesel:			
CO2	1,141,439	kg	Calculated
CH4	60	kg	Calculated
N2O	35	kg	Calculated
Total emissions	1,153	tonne CO2eq	Calculated

Summary of Site-Wide GHG Emissions from GO Buses	
Source Group	Estimated GHG
	Emissions (kt
	CO2 eq)
On-road equipment on-site	1.2

Source: Stationary Fuel Combustion at B1, B2, B3 and B4 TOC

Description:

Greenhouse gas (GHG) emissions generated during Project Operations as a result of using the following equipment at each TOC:

- 1 diesel fired standby generator - mobile maintenance equipment is not stored or dedicated to each station. Indoor maintenance equipment are all 120V with minimal power draws and trickle chargers are used. Emissions from mobile equipment is therefore expected to be insignificant.

Contaminant(s) of Concern:

Emissions of CO2, CH4 and N2O in the form of CO2e

Methodology: Emission Factor (EF)

Emissions estimated based on:

(1) Maximum annual fuel consumption of the generator based on the equipment specification sheet
 (2) Assumed operating time; and
 (3) ON Guideline for Quantification, Reporting and Verification for GHG Emissions February 2020 Version (ON Guidance, 2020) which references Canada's Greenhouse Gas Quantification Requirements, December 2019 Version 3.0 (GGQR, 2019).

Global Warming Potentials (GWPs):

GHG	GWP
CO2	1
CH4	25
N2O	298

Source: ECCC 2020 NIR 1990-2018 Part 1., these values are from the IPCC Fourth Assessment Report (IPCC, 2012).

GHG Emission Calculations: 1 Standby Diesel Generator

Constants for Calculation

Data	Value	Unit	Reference / Note
Total # of Units	4		Stantec assumes 1 unit per TOC
Standby Power Rating	600	kW	Based on similar units installed at existing GO stations 201075-STANTEC-GENRFI-00040
Fuel Type	diesel		
Operating Time	0.5	hour/month	Stantec assumption - 30 minute testing per month
Fuel consumption	79.0	L/hr	Based on unit specification @ 50% load
Fuel consumption	1,896	L/year	Calculated

Data	Value	Unit	Reference / Note
Diesel Emission Factors:			
CO2	2680.5	g/L	
CH4	0.073	g/L	ECCC 2022, NIR 1990-2020, Annex 6, Table A6.1-14 Off-road: Off-road Diesel >=19kW, Tier 1-3
N2O	0.022	g/L	
Diesel Emissions:			
CO2	5.08	tonnes/year	Calculated
CH4	0.0001384	tonnes/year	Calculated
N2O	0.0000417	tonnes/year	Calculated
Total emissions	0.0051	kt CO2eq/year	Calculated

Source: Electricity Consumption at B1, B2, B3 and B4 Stations

Description:

Greenhouse gas (GHG) emissions generated as a result of electricity consumed from the grid during operation for B1, B2, B3 and B4 Stations.

<u>Contaminant(s) of Concern:</u> Emissions of CO2, CH4 and N2O in the form of CO2e

Methodology: Emission Factor (EF) Emissions estimated based on (1) GHG electricity consumption intensity emission factors for Ontario in 2019 from ECCC 2021 NIR Part 3; (2) Estimated station power requirements based on an existing similar station

GHG Emission Calculation:

Constants for Station Power Calculations:

	Parameter	Reference
# of Stations	4	B1, B2, B3 and B4
Power Load Requirement for each station	62.4	kW (based on a similar operating GO station 201075-STANTEC-GENRFI-00040 - for simplicity, Stantec assumes an identical power
Electricity Use	2,186,496	kWh per year (calculated) = # of stations * power load rating (kW) * 8760 hours
Consumption Intensity	28	g CO2 eq/kWh for Ontario (ECCC 2020 NIR)
Conversion factor	1,000,000	gram to tonne
Conversion factor	1,000	tonne to kilotonne
Indirect Emissions	0.06	kt CO2 eq per year
	0.00	

Constants for Wayside Power at B4 station only calculations:

	Parameter	Reference
# of Units	2	two units at B4 station as per 01075-STANTEC GEN-RFI-00045
Power Load Requirement wayside power unit	1,000	kW per unit as per 01075-STANTEC GEN-RFI-00045
Electricity Use	11,680,000	kWh per year (calculated) = # of units * power load rating (kW) * 5840 hours
Consumption Intensity	28	g CO2 eq/kWh for Ontario (ECCC 2020 NIR)
Conversion factor	1,000,000	gram to tonne
Conversion factor	1,000	tonne to kilotonne
Indirect Emissions	0.33	kt CO2 eq per year

Sample Calculation: Station Power

Worst Case Peak Indirect Emissions = Electricity Consumed (kW) x Operating Time (hours) x Consumption Intensity (g CO2 eq/kWh) x 1 t/10⁶ g x 1kt/10³ t

=	4 stations x 62.4 kW x 8760 hours x 30 (g CO2 eq/kWh) x 1 t/10° g x 1kt/10° t
_	

= 0.06 ki CO2 eq per year								
Summary of Site-Wide GHG Emissions								
Source Group	Estimated GHG	Total GHG Emissions (kt CO2 eq / year)						
Electric on-site	0.39	0.39						

Greenhouse Gas Emissions Reduction During Project Operation: Reduced Automobile Vehicle Kilometres Travelled Description:

Greenhouse gas (GHG) emissions reductions as a result of reduced automobile kilometres travelled due to the implementation of the Project.

Contaminant(s) of Concern: Emissions of CO2, CH4 and N2O in the form of CO2e

Methodology: Emission Factor (EF) Emissions estimated based on: (1) Total reduction in vehicle kilometres travelled for the 60-year evaluation period of the project, 201075-STANTEC-GENRFI-00040; (2) 2017 Canada specific vehicle emission factor from IEA (2019), Fuel Economy in Major Car Markets, IEA, Paris https://www.iea.org/reports/fuel-economy-in-major-car-markets

GHG Emission Calculation:

Constants for Calculations:

	Parameter	Reference
Vehicle Kilometres Reduced	1,713,811,574	km (the 60-year evaluation period of the project)
Emission Factor	206	g CO2 eq/km (IEA 2019)
Conversion factor	1,000,000	gram to tonne
Conversion factor	1,000	tonne to kilotonne
60-Year Emissions Reduction	353	kt CO2 eq

Sample Calculation:

E Calculation. Emissions Reduction (kt CO2 eq) = Vehicle Kilometres Reduced (km) x Emission Factor (g CO2 eq/km) x 1 t/10⁶ g x 1 kt/10³ tonne = (1,713,811,574 km x 206 g CO2 eq/km x 1 kt/10⁶ g x 1 kt/10³ tonne = 353.0

Year	Vehicle Kilometers Reduced	Annual Emission Reduction
2025	19,403,338	4.00
2026	19,791,405	4.08
2027	20,187,233	4.16
2028	20,590,978	4.24
2029	21,002,798	4.33
2030	21,422,853	4.41
2031	21,851,311	4.50
2032	22,288,337	4.59
2033	22,734,103	4.68
2034	23,188,786	4.78
2035	23,652,561	4.87
2036	24,125,612	4.97
2037	24,608,125	5.07
2038	25,100,287	5.17
2039	25,602,293	5.27
2040	26,114,339	5.38
2041	26,636,626	5.49
2042	27,169,358	5.60
2042	27,712,745	5.71
2043	28,267,000	5.82
2045	28,832,340	5.94
2045	29,408,987	6.06
2040		6.18
2047	29,997,167 30,597,110	6.30
2048		6.43
	31,209,052	6.43
2050	31,209,052	6.43
2051	31,209,052	
2052	31,209,052	6.43
2053	31,209,052	6.43
2054	31,209,052	6.43
2055	31,209,052	6.43
2056	31,209,052	6.43
2057	31,209,052	6.43
2058	31,209,052	6.43
2059	31,209,052	6.43
2060	31,209,052	6.43
2061	31,209,052	6.43
2062	31,209,052	6.43
2063	31,209,052	6.43
2064	31,209,052	6.43
2065	31,209,052	6.43
2066	31,209,052	6.43
2067	31,209,052	6.43
2068	31,209,052	6.43
2069	31,209,052	6.43
2070	31,209,052	6.43
2071	31,209,052	6.43
2072	31,209,052	6.43
2073	31,209,052	6.43
2074	31,209,052	6.43
2075	31,209,052	6.43
2076	31,209,052	6.43
2077	31,209,052	6.43
2078	31,209,052	6.43
2079	31,209,052	6.43
2080	31,209,052	6.43
2081	31,209,052	6.43
2082	31,209,052	6.43
2083	31,209,052	6.43
2084	31,209,052	6.43

Summary of Site-Wide GHG Emissions

Source Group	Total Estimated GHG
	Emissions (kt CO2 eq for a 60
	vear period)
On-Road	353